MECHANICS
Kinematics of particles
Kinetics of particles
Geostatics and Hydromechanics
Special relativity
Dep,physics
De
p,
ph
ys
ics
2
Chap.1 Kinematics of particles
—— describing motion of particles
1,Base conception
2,Important conception
3,Discussion of curve motion
4,Relative motion
De
p,
ph
ys
ics
3
1,Base conception
Particles
to describe an object whose parts all move in exactly the
same way,Even a complex object can be treated as a particle
if there are no internal motions.
Reference frame and Coordinate frame
Vectors
a physical quantity that requires the specification of both
direction and magnitude.
De
p,
ph
ys
ics
4
2,Important conception
Position vector
Displacement vector
Z
Y
X
O
r
Z
Y
X
O
1r
2r
r
( ) ( )r r t t r t
()r r t?
( ) ( ) ( )r x t i y t j z t k
De
p,
ph
ys
ics
5
r?
ixx ab?)(
kzjyix
kzz ab?)(
br
ar
jyy ab?)(
kzjyixr bbbb
kzjyixr aaaa
222 )()()( zyxr
rzc o s,ryc o s,c o s rx
rs
o
br?
r
ar?
s?
a
b
De
p,
ph
ys
ics
6
Velocity vector
① average velocity
② instantaneous velocity
Acceleration vector
① average acceleration
② instantaneous acceleration
rv
t?
0
l im
t
r d rv
t d t
va
t?
0
l im
t
v d va
t d t
De
p,
ph
ys
ics
7
kvjviv zyx
222222 )()()(
dt
dz
dt
dy
dt
dxvvvvv
zyx
kdtdzjdtdyidtdxv
dt
ds?
v
v
v
v
v
v zyx c o s,c o s,c o s
)( dtdr?
De
p,
ph
ys
ics
8
dt
vda
kdtdvjdt
dv
idtdva zyx
k
dt
zdj
dt
ydi
dt
xd
2
2
2
2
2
2
kajaia zyx
222 zyx aaaaa
c o s aa x c o s aa y aa zco s
2
2
dt
rd?
De
p,
ph
ys
ics
9
(例 ) 以下为质点的位置矢量:
( c o s )r R t i tj ( 为正常数)R?、
求质点的速度、加速度,并分别求出速度、加速度的大小和方向。
解:
xy
d r d x d yv v i v j i j
d t d t d t
c o sx R t y t已知:,
2 2 2 2| | ( s i n ) 1 s i n 1v R t R t
( s i n )xyv v i v j R t i j
2 2 2 2 2 2
si n 1c os c os
si n 1 si n 1
Rt
R t R t
,
De
p,
ph
ys
ics
10
2
2
( sin ) 1
( c os )
| | | c os |
yx
xy
xy
dvdvdv
a a i a j i j
dt dt dt
v R t v
a R t i
a R t
据上知:,
方向为 x轴方向
De
p,
ph
ys
ics
11
3,Discussion of curve motion
Projectile motion
① The velocity of particle is:
② The displacement of particle is:
00
00
c os
si n
x
y
dx
vv
dt
dy
v v gt
dt
0 0 0 0
00
2
0 0 0 0
00
c o s c o s
1
( s in ) s in
2
tt
x
tt
y
x v d t v d t v t
y v d t v g t d t v t g t
0v
0? x
y
De
p,
ph
ys
ics
12
Circular motion
(1) the rotational variables
① angular velocity
② angular acceleration
0
l i m
t
t
d
t dt
2
20
l i m
t
t
dd
t d t d t
De
p,
ph
ys
ics
13
(2)relationship between linear and angular variables
00
2
2
l im l im
tt
n
t
l
v R R
tt
v
aR
R
dv d
a R R
dt dt
lR o
R
l
De
p,
ph
ys
ics
14
(3) Uniform circular motion
A limit,0
Direction of acceleration,normal
A replacing,lv
Rv?
Magnitude of acceleration:
l
o
R
Av
Bv
v
Av
Bv
o?
2
00
l im l imn
tt
v v l va
t R t R
(Centripetal acceleration)
De
p,
ph
ys
ics
15
(4) Variable circular motion
C
A
B
)(tv?
v
)( ttv
o?
x
)(tv?
s?
O
R
)( ttv
0 0 0
l im l im l im
t t t
v A C C Ba
t t t
2
0
l im n
t
A C v a
tR?
00
l i m l i m
tt
C B v d v a
t t d t
De
p,
ph
ys
ics
16
Summarizing:
Two kind of problem on kinematics of particle
1,Have known movement function,how can get
velocity and acceleration?
)( )( )( tatvtr
dtrddtvd
By derivative
De
p,
ph
ys
ics
17
〔 例 〕 平静的湖面上有一小船,一人在湖边处有一定高度的岸上以匀速率 v0收绳子,使小船向岸边靠拢,求小船的运动速度 。
x
0v
H
L
0解:选取坐标如图,O是固定点 。 有:
dtdxv? dt
dLv
0
( 这是本题的关键 )
22 HLx
022 vx
L
HL
dt
dLL
dt
dxv
3
2
0
2
3
2
0
22
0
2
0
2
0
2
00
x
vH
x
vL
x
v
x
vLv
x
v
dtx
dxLv
xd t
dLv
dt
dva
负号表示 v的方向与 x 轴的正方向相反 。
De
p,
ph
ys
ics
18
2,Have known acceleration,how can get velocity,
movement function?
ttvv dtavd 00
dt
vda
tt dtavv
0
0
ttrr dtvrd
00
dtrdv t
t dtvrr 00
By integral
De
p,
ph
ys
ics
19
解:
kvdxdvvdtdxdxdvdtdva
即 dv
k
1dx
积分得
dvk1dx 0vx0
0
m a x
k
vx 0
m a x?
〔 例 〕 列车沿一水平直线运动,刹车后列车的加速度 a = - kv,k为一正常数,刹车时的车速为 v0,求刹车后列车最多能行进多远?
De
p,
ph
ys
ics
20
4,Relative motion
Based on the classical theory:
① spatial coordinates are absolute and give
identical readings for all observers.
② time is a universal coordinate having identical
values for all observers.
De
p,
ph
ys
ics
21
r
iutR
x
y S
z
O x?
y? S?
z?
O?
P
r?
u?
rRr
kzjyixrS:
kzjyixrS,
turRrr
tt
utxx
yy
zz
tt
Coordinate commutation
动画
De
p,
ph
ys
ics
22
amFS
amFS
r
iutR
x
y S
z
O x?
y? S?
z?
O?
P
r?
u?
zz
yy
xx
aa
aa
aa
tt
uvv
tt
aa
tt
Velocity
commutation
Acceleration
commutation
tt
zz
yy
xx
vv
vv
uvv
动画
De
p,
ph
ys
ics
23
Summarizing:
a b s o l u t e c o n v e c t e d r e l a t i v er R r
a b s o lu te c o n v e c te d r e la ti v ev v v
ab sol ut e re l at i v eaa
De
p,
ph
ys
ics
24
〔 例 〕 一飞机驾驶员想往正北方向航行,而风以 60km/h的速度由东向西刮来,如果飞机的行速(在风中的速率)为 180km/h,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明。
解:因为在随风一起运动的坐标系中,空气为静止的,故飞机在静止空气中的行速即为飞机相对于风的速度。
风地机风机地 vvv
风地v
机风v
机地v
1a r c s i n a r c s i n 1 9,4 7
3
v
v
地机风风
2 2 2 2 1 8 0 6 0 1 7 0 /v v v k m h地机地 机 ()风 风
De
p,
ph
ys
ics
25
(例)一人划船渡江,江水的流速为 2.0km/h,船相对江水的速率为 4.0km/h,
江水宽 1.0km,若想用最短时间渡江,人应该按什么方向划行?要经过多长时间渡过江去?
解:如图所示建立坐标系设船对地的速度方向与江对地的速度方向夹角为,江对地的速度方向与船对江的速度方向为则:
1km
v船地
v船江
v江地
o
x
y
sinLS 其中 L为河的宽度,S为船的位移联立上两式,消除 得:sin?
si n( 18 0 ) si n
vv
船地 船江
si n( 18 0 )
LS t
vv船江 船地其中 t为渡江的时间
De
p,
ph
ys
ics
26
Chap.2 Kinetics of particles
1.NEWTON’S LAW
2,WORK and ENERGY
3,MOMENTUM
De
p,
ph
ys
ics
27
1.NEWTON’S LAW
Newton’s First Law
An object at rest remains at rest,and an object in
motion continues in motion with constant velocity (that
is,constant speed in a straight line) unless it experiences
a net external force.
Newton’s Third Law
If two bodies interact,the magnitude of the force
exerted on body 1 by body 2 is equal to the magnitude of
the force exerted on body 2 by body 1,and these two
forces are opposite in direction.
De
p,
ph
ys
ics
28
Newton’s Second Law
The acceleration of an object is directly proportional to the
resultant force acting on it and inversely proportional to its
mass,The direction of the acceleration is the direction of the
resultant force.
dt
PdF
dt vmd )(
amdtvdm?
dt
dmv
dt
vdm?
De
p,
ph
ys
ics
29
Note:Conditions of the law
1.Macroscopic system with low velocity
2.Inertial reference frame
2
2
d v d r
F m m
dt dt
De
p,
ph
ys
ics
30
(例 )一质量为 m 的物体,以 v 的初速度沿与水平方向成? 角的方向抛出,空气的阻力与物体的动量成正比,比例系数为 k,求物体的 运动轨迹。
gm?
vkm? mvkm gm,解,建立坐标系如图研究对象,m”受力运动方程,(矢量方程)
运动方程的分量式:
xk m vx,
yk m vmgy,
dt
dvm x
dt
dvm y
gm? vkm? dtvdm
动画
De
p,
ph
ys
ics
31
)1(kdtvdv
x
x
)2(dtkvg dv
y
y
dt
dvkvg y
y
dt
dvkv x
x
由( 2)
tvv
y
y dt
kvg
dv
y 0s i n
0
t kty dtgekvgkdy 0 00 ])s i n[(1
])s i n[(1 0 gekvgkv ktydtdy?
02
1 ( s in ) ( 1 )kt gty g k v e
kk?
由( 1)
t ktx dtevdx 000 c o s
co s0 ktx evv dtdx?
dtkvdv
x
x
0
t
co s0v
xv
0 c o s ( 1 )ktvxe
k
De
p,
ph
ys
ics
32
Summarizing:
Favr
dxdvmvdtdvmxF )(
m
dtdvmtF )( vvtt md vdttF 00 )( )(tv
dtdvmvF )( vvtt dvvF mdt 00 )()(tv
vvxx mv d vdxxF 00 )(
)(tv)( xv?
De
p,
ph
ys
ics
33
noninertial frames and pseudoforces 动画
a?
00 球对地a F
没问题!
a
De
p,
ph
ys
ics
34
How to resolve the problem?
(1) Select an inertial reference frame and consider only ‘real’ force.
(2) Select a noninertial reference frame and define pseudoforce.
Pseudoforce:
feel ‘real’
But violate the Newton’s third law.
It can reflect that noninertial have acceleration.
p n o n i n e r t i a lF m a
De
p,
ph
ys
ics
35
(例 )如图:一木块静止在一个水平匀速转动的转盘上,转盘相对地面以角速度?,求在转动参照系的惯性力。
解:地面参照系的观察者,木块作匀速圆周运动,
nmaf?向心静摩擦向心 ff? 2?mr
在转盘上,木块静止不动,即,0a?
amF 0? *fF 惯性力真实力
真实力惯性力 Ff * 静摩擦f rmr?2
namf*惯性力即,——惯性离心力惯性离心力 = – 向心力 作用与反作用?
NO!
mr
De
p,
ph
ys
ics
36
2 WORK and ENERGY
Work
How can we evaluate the work done by the force?
① By constant force
② By variable force
d W F d r?
W c osFrrF
dsFba c o s
abW rdF
c o sb
a rdF
ba F dr c os
Generally,work have relationship
with the path the object takes.
De
p,
ph
ys
ics
37
Conservative force and potential energy
Work of gravity
x
y
z
O
),,( 0000 zyxM
),,( zyxM
G?
()dW P dr m gk dx i dy j dzk m gd z
0
0()
z
z
W m g d z m g z m g z
F
x
z
x d W F d x k x i d x i k x d x
2
1
22
21
11()
22
x
x
W d W k x d x k x k x
Work of elastic force
De
p,
ph
ys
ics
38
① A force is conservative if the work it does on an object
moving between two points is independent of the path the
object takes between the point.
② The potential energy is energy associated with the
configuration of a system,Here configuration means how the
parts of a system are located or arranged with respect to one
another(for example,the height of the ball in the ball—earth
system)
0
l
W F d r
De
p,
ph
ys
ics
39
③ the relationship between conservative force and
potential energy:
)( kzEjyEixEF PPP
0
dMp ME F r
De
p,
ph
ys
ics
40
Kinetic Energy and theorem of kinetic energy
① Kinetic energy,We define the quantity
as the kinetic energy,It’s a scalar quantity,
212 mv
2
()
11
( ) ( ) ( )
22
d p d m v
dw F d r d r d r
dt dt
d m v v d m v v d mv
De
p,
ph
ys
ics
41
② Theorem of kinetic energy
the net work done by the forces acting on a body is equal to
the change in the kinetic energy of the body.
2 2 21 1 1()
2 2 2
bb
ba
aa
W F d r d m v m v m v
Note,energy theorem has the same form in all
inertial reference frames.
De
p,
ph
ys
ics
42
Work-energy theorem
The work done by the external force and nonconservative force
is equal to the increase of the mechanical energy of system.
o i kW W E
i c nW W W
cpWE
o n k pW W E E E
De
p,
ph
ys
ics
43
Law of conservation of mechanical
energy
In an isolated system in which only conservative forces act,the
total mechanical energy remains constant,
o n k pW W E E E
0
De
p,
ph
ys
ics
44
3 Momentum theorem
Impulse and Momentum theorem
2121 PPtt PddtF
1212 vmvmPP
PddtF
impulse
The impulse depends on the strength of force and on
its duration(time interval).
Momentum theorem,the impulse of the force acting on
an object equals the change in momentum of that
object.
De
p,
ph
ys
ics
45
Law of conservation of Momentum
when no external forces act on a system,the total
momentum of the system is not changed.
( ) ( )i i i iF f d t d m v
( ) ( )ii
i i iii
F f d t d m v
Based on Newton’s third law,0
i i
f
PddtF
Example,collisions
De
p,
ph
ys
ics
46
Angular momentum
r?
vm?
L?
12 smkg
s i nr m vL?
direction,perpendicular to the plane formed by pr,
vmrL
pr
De
p,
ph
ys
ics
47
时间累积效应
dtPdF
1221 PPdtFtt
1221 LLdttt
0F?
0
12
21 kk EErdF 122121 EErdfrdF 内非外动量守恒21 PP
角动量守恒21 LL
机械能守恒21 EE?
00 内非外 AA
空间累积效应牛二律,瞬时效应动量定理角动量定理动能定理
De
p,
ph
ys
ics
48
a
b
L?
bv
T
(例 )质量为 m 的小球系在线的 一端,线的另一端固定,线长 L,先拉动小球,使线水平张直,
然后松手让小 球落下,求:线摆下?角时,小球的速率 Vb和线的张力 T.
解法一,用牛顿第二定律
)1(co s?dtdvmmamg
)2(s i n
2
LvmmaTmg n
建立自然坐标如图
Tgm,受力分析,运动方程,a
b
L
d n?
gm?
T
研究对象:小球。
De
p,
ph
ys
ics
49
bv v d vLd g 00 c o s
2
2
1s i n
bvgL
s in2 gLv b
将上述结果代入( 2)
用 d S 乘方程( 1)的两边:
dvdtdSdSgco s
3 s inT m g
De
p,
ph
ys
ics
50
解法二,用动能定理解法三,用机械能守恒定律研究对象:小球、线、地球组成的系统。
只有重力作功,Ea = Eb,机械能守恒。 令 b 处势能为零
s in2 gLv b
2
2
1sin
bmvm g L
a
b
L
d n?
gm?
T?
ds
22
(
11
22 baabW m v m v合外力的功)
s in2 gLv b
2
2
1sin
bmvm g L
研究对象:小球。
De
p,
ph
ys
ics
51
(例 ) 在光滑的水平桌面上,固定着如图所示的半圆形屏障质量为 m 的滑块以初速 V1 沿屏障一端的切线方向进入屏障内滑块与屏障间的摩擦系数为
。 求:当滑块从屏障另一端滑出时,摩擦力对它所作的功
1v
俯视图联立,Rvmf
2
R
v
dt
dv 2即分析:变力作功,用动能定理必须先找出末态的 V2
解:研究对象,滑块,建立自然坐标,受力分析,Nf,
v
f
N
n
运动方程:
法向切向
nmaN?
maf
R
vm 2?
Ndtdvm
动画
De
p,
ph
ys
ics
52
v
f
N
设滑块进入屏障后,速度为 v 时,已沿屏障转动了,?”角,经过的时间为 t,则上式改为:
vddv 即
dvdvvv 0 2
1
1
2ln
v
v
evv 12
因合外力的功只有摩擦力的功
N 不作功,根据动能定理:
dt
dv
R
v 2
d
dv
R
v
dt
d
d
dv
W?
)1(21 221emv
2
1
2
2 2
1
2
1 mvmv?
De
p,
ph
ys
ics
53
Chap.3 Geostatics
1.Base Conception
2,Kinematics of rigid body
3,Dynamics of rigid body
De
p,
ph
ys
ics
54
1.Base conceptionof fixed-axis rotation of
rigid body
Rigid body,we call the body rigid body when there is no relative
motion in it,It is a ideal model.
Motion of the rigid body,the most general motion of a
rigid body includes rotational and translational motion,
Fixed-axis rotation of rigid body,the rigid body rotate
circling an immobile axis,
De
p,
ph
ys
ics
55
动画
De
p,
ph
ys
ics
56
2,kinematics of Fixed-axis rotation of rigid
body
Angular displacement,
Instantaneous angular velocity:
Instantaneous angular acceleration:
0
l im
t
d
t d t
0l i mt
d
t d t
Angular position,
d
vrDirection,right-hand rule
De
p,
ph
ys
ics
57
3,Dynamics of rigid body
Torque FrM
s inrFM?Magnitude:
Direction,right-hand rule?
r?
F?
M?
Newton’s second law for rotation
tJJM d
d
rotational inertia,depends on the mass of the object and on the
perpendicular distance between the object and the axis of rotation.
2J m r?
De
p,
ph
ys
ics
58
im?
—outside force
iF
—internal forceif?
Base on Newton’s second law:
iiii m afF
Argumentation:
ω
O
iF
if
i?i
im?
ir?
O’
iiiiiiii rmamfF s i ns i nTangential:
Normal:
2c o sc o s iiiniiiii rmamfF
Multiply tangential equation by
ir
2s i ns i n iiiiiiii rmrfrF
N
i ii
N
i iii
N
i iii
rmrfrF
1
2
11
)(s i ns i n
De
p,
ph
ys
ics
59
0s in
1
N
i iii
rf?
Base on Newton’s third law:
N
i ii
N
i iii
rmrF
1
2
1
)(s i n
t
JJM
d
d
22
ii
i
J m r r d m
De
p,
ph
ys
ics
60
L
m细棒
2
3
1 mLJ?
细棒 2121 mLJ?
薄圆环或薄圆筒
2mRJ?
圆盘或圆柱体薄球壳
2
2
1 mRJ?
R m
2
3
2 mRJ? 球体
2
5
2 mRJ?
m
L
R m R m
R m
De
p,
ph
ys
ics
61
(例 ) 计算质量为 M,长为 L 的均匀细杆的转动惯量
(1) 假定转轴通过杆中心并与杆垂直 ;
(2) 假定转轴通过杆的端点与杆垂直。
0 dm
xdxx
x
0 dm
dx
x
rotational inertia have relationship with the axis
解,dx
L
Mdm?
dmxdJ 2? dxx
L
M 2?
dxLMxJ L L 21
21
2 2
12
1 ML?
dxLMxJ L 0 2 231 ML? 42' LMJJ zz
De
p,
ph
ys
ics
62
Parallel axis theorem,
2MLJJ z'z
z
L
C
M
z'
Vertical distance between two axisL
Z is the axis pass the centre of masszJ
Z’is the arbitrary axis parallel to the Z'zJ
perpendicular axis theorem:
Axis x,y are in the board
Axis z is perpendicular to the board.
z
x y
yxz JJJ
De
p,
ph
ys
ics
63
(例 )圆环绕中心轴旋转的转动惯量,其质量为 m
(例 )圆盘绕中心轴旋转的转动惯量,其质量为 m
RL lRmRJ π20 20 2 dd?
23π2
0
2 π2π2d mRRmRlR R
rrs dπ2d?
sm dd
Rm RmrrR mmrJ 0 2320 2 2d2d
rRmrrrRm d2dπ2π 22
R
dl
O
m
mR
Or
dr
转动惯量与质量分布有关。
De
p,
ph
ys
ics
64
ddWFr
dsF 2c o s
()d s r d
0‘
0
d
r
F?
r?d
P
| | c o sF d r
dsF?s i n?
dFr s in?
Md?
2
1
dWM?
work of torque
De
p,
ph
ys
ics
65
kinetics energy of rotation of rigid body
im?
2
2
1
iiki mE v
22
2
1?
ii rm
2221?iikik rmEE
2221 ii rm
2
2
1?J?
m
2
2
1?JE
k?
De
p,
ph
ys
ics
66
2121 )21d(d 2JWW
2
1
2
2 2
1
2
1 JJ
kE
kEJJMdW
2
1
2
2 2
1
2
12
1
dd MW d
dt
dJ?
dt
dJd dJ? )2
1d( 2?J?
dt
dJM
dt
d
Kinetic theorem of rigid body
De
p,
ph
ys
ics
67
Potential energy of rigid body
iip ghmE Cii mg hm hmmg
Centre of mass
ch 0?
PE
C im
ih
PK EEE
Cm ghJ
2
2
1?
Mechanical energy
1 d
cr r mm
De
p,
ph
ys
ics
68
Angular momentum of rigid body
r?
vm?
L?
vmrL
2
i i i i i iL m v r m r
22 ()
i i i i
ii
L m r m r J
LJ
De
p,
ph
ys
ics
69
Law of conservation of angular momentum
)d(dd JLtM
Angular momentum theorem
2
1
2 1 2 1d
t
t M t L L J J
0
2
1
2 1 2 1d
t
t M t L L J J
De
p,
ph
ys
ics
70
刚体定轴转动与质点一维运动的对比位移 x? 角位移
速度 dtdxv? 角速度 dt
d
加速度
2
2
dt
xd
dt
dva 角加速度
2
2
dt
d
dt
d
质点一维运动 刚体定轴转动质量 m 转动惯量 dmrJ 2
力 F? 力矩 FrM
运动定律 amF 转动定律 JM?
动量 vmp 动量 质心vmp
角动量 prL 角动量 JL i
动量定理 1221 mvmvF d ttt 角动量定理 1221 JJM d ttt
动量守恒定律 时 0 F
恒量 ii vm
角动量守恒定律 时 0?M?
恒量J
质点一维运动 刚体定轴转动力的功 rdFA 力矩的功?
MdA
动能 221 mvE k? 转动动能 221 JE k
(平动动能 ) 221 质心mvE k?
动能定理
2
1
2
2 2
1
2
1 mvmvA
外 2122 2
1
2
1 JJA
外转动动能定理重力势能 mgh 重力势能 质心mg h
机械能守恒定律时非保内外 0 AA
恒量 pk EE
时非保内外 0 AA
机械能守恒定律恒量 pk EE
De
p,
ph
ys
ics
73
(例 )一根轻绳跨过一定滑轮(滑轮 视为圆盘),绳的两端分别 悬有质量为 m1 和 m2 的物体,m1 < m2,滑轮的质量为
m,半径为 R,所受的摩擦阻力矩为?r,绳与滑轮间无相对滑动。试求:物体的加速度和绳的张力。
已知,m1,m2,m,R,?r 求,21,,T T a
.
1m 2m
m R
动画解,研究对象 m1,m2,m
建立坐标,受力分析 如图对各隔离体写出运动方程,
gm1
1T
gm2
2T
y
0
'1T '2T
r?
对 m, JRTRT r'1'2
'22'112,,21,TTTTmRJRa
对 m1,amgmT 111
对 m2,amTgm 222
De
p,
ph
ys
ics
74
mmm
Rgmma
r
2
1
)(
21
12
mmm
Rgmmm
T
r
2
1
])
2
1
2[(
21
21
1
mmm
RgmmmT
r
2
1
])
2
12[(
21
12
2
De
p,
ph
ys
ics
75
u
r R
(例 )如图,质量为 M 半径为 R 的转台初始角速度为?0,有一质量为 m的人站在转台的中心,若他相对于转台以恒定的速度 u 沿半径向边缘走去,求人走了 t 时间后,转台转过的角度。(竖直轴所受摩擦阻力矩不计)
人与转台系统对轴 角动量守恒解:设 t 时刻人走到距转台中心 r = ut 处,转台的角速度为?.
)2(2 22202 tmuRMRM
2
22
0
21
MR
tmu?
dtd
dt
MR
tmudtd
tt
0
2
22
0
00 21
]
)2(
arc t an [
)2(
2
1
2
1
0
R
M
mut
M
mu
R
De
p,
ph
ys
ics
76
0vmvmdtF
)1(0 mvmvF d t
对棒,角动量定理
Jdt
00 JJLLdt
JdtlF )2( '
例 4,一根质量为 M,长为 l 的均匀细棒,可绕通过棒中心的垂直轴 Z,在 xy
平面内转动。开始时静止,今有质量为 m 的小球以速度 逆着轴的方向碰撞棒的端点,假设碰撞是弹性的,试求碰撞后小球的弹回速度 和棒的 角速度
0v? v?
)2(2 JF d tl
( 1)、( 2)联立:
)3()(2 0 Jmvmvl
x
y z
M l0v? m
v?F?
'F?
对小球,动量定理受力分析:小球 棒F? 'F?
解法一 研究对象:小球,棒球、棒、地系统机械能守恒,
220 2121 mvmv )4(21 2J
De
p,
ph
ys
ics
77
( 3)( 4)联立将 代入,舍弃 的解2121 MlJ? 0vv?
03
3 v
mM
mMv
方向:沿 y 正向
0)3(
12 v
lmM
m
方向:沿 z 正向
(内力矩很大,小球重力忽略)
解法二,应用角动量守恒和机械能守恒定律研究系统:小球、细棒
0 合外力矩?
碰撞前后,角动量守恒:
弹性碰撞,球、棒、地系统机械能守恒,
De
p,
ph
ys
ics
78
( 4)( 5)联立可求 v
)4(212121 2220 Jmvmv
0vmr
Z的负方向Z的正方向 Z的正方向
)5(22 0 J mvl mvl
vmrJ
De
p,
ph
ys
ics
79
Chapter 4 special relativity
1.The postulates of special relativity
2.The Lorentz transformation
3.Kinetics of special relativity
De
p,
ph
ys
ics
80
1,The postulates of special relativity
Troubles with classical physics
The postulates of special relativity
① The principle of relativity,The laws of physics are the
same in all inertial reference frames.
② The principle of the constancy of the speed of light,The
speed of light in free space has the same value c in all
inertial reference frames.
De
p,
ph
ys
ics
81
① the relativity of simultaneity
An experiment:
y'y
x
x'
A' B'M
v
o
Observed in S' frame:
Light can not reached
A' and B' at the same
time
Light reached A' and B'
at the same time
Observed in S frame:
动画动画
Some conclusion from postulates
De
p,
ph
ys
ics
82
② time dilation
Y Y'
A'
d
Observed in S' frame:
C'
duration:
Y
C C
L L
X'
X
X'
X
Observed in S frame:
cdt 2
cLt 2
22 2tvdL
21 ( / )
tt
vc
Obviously
21
2
cv
cd
Y'
d
A'
动画动画
Proper time
De
p,
ph
ys
ics
83
③ the relativity of length
Example,a car run along X axis
with velocity v,How long is it in
both frame?
L'
A' B'x
1 X
X'
y y'
o o'
Measured in S frame:
2)(1 cv
tt
2)(1
cvtt
v
21 cvtv21 cvL < L'L= v?t
L =v?t?t Proper time 动画动画
Measured in S' frame:
vLtDuration,
2)(1 cvLL
Proper length
De
p,
ph
ys
ics
84
y y'
v
o o'
X'
X
2,The Lorentz transformation
Lorentz transformation equations
2)(1
c
v
vtxx
yy
zz
2
2
)(1 cv
x
c
vt
t
Lorentz transformation
equations
De
p,
ph
ys
ics
85
vtxx
xcvtt 2?
yy
zz
vtxx
yy
zz
tt —— Galilean transformation equations
cv
21
1
)( vtxdtddtxd
r a cu u v
Lorentz
factor
2)(1
c
v
vtxx
yy
zz
2
2
)(1 cv
x
c
vt
t
v << C
discuss
Speed
parameter
De
p,
ph
ys
ics
86
Inverse Lorentz transformation equations
tvxx
yy
zz
)( 2 x
c
vtt
vtxx
xcvtt 2?
yy
zz
De
p,
ph
ys
ics
87
Consequence of the Lorentz transformation
① the relativity of length (Length contraction)
L' is rest in S’ frame
Measured inS‘ frame:
Measured in S frame:
Based on Lorentz transformation:
2
22
2
)(1 cv
vtxx
2
11
1
)(1 cv
vtxx
12 xxL
12 xxL
12 tt?
2
12
12
1 cv
xxxx
S'S
L'x1' x2'
x1 x2
v
21 cv
LL
Proper length
De
p,
ph
ys
ics
88
Evens in S frame corresponding,A (x1,0,0,t1) B (x2,0,0,t2)
2
121
1
)(1 cv
x
c
vt
t
2
222
2
)(1 cv
x
c
vt
t
2
12212
1
)()(
c
v
xx
c
vtt
t
Two evens in S‘ frame,A' (x'1,0,0,t'1) B' (x'2,0,0,t'2)
② the relativity of time (time dilation)
De
p,
ph
ys
ics
89
discuss2
12212
1
)()(
c
v
xx
c
vtt
t
12xx 12tt
⑴
2
2
1 cv
x
c
v
t
0? t1 ≠ t2 the relativity of simultaneity
If x'2 > x'1 Then
21tt?
De
p,
ph
ys
ics
90
2
12
)(1
)(
c
v
ttt
Proper time
⊿ t > ⊿ t'2)(1
cv
t
⑵ 12xx
12tt
t2 – t1=
>0 A is before B
=0 A and B are the same time
<0 A is after B
21tt 12xx
⑶ ( A’ is before B’)
2
12212
1
)()(
c
v
xx
c
vtt
t
De
p,
ph
ys
ics
91
⊿ t and ⊿ t' have the same sign
The law of causation in inertial
frame is absolute.
conclusio
n
22
22
( 1 )
1 ( ) 1 ( )
v v x
t x t
c c tt
vv
cc
2
2
( 1 )
1 ( )
v
tu
c
v
c
De
p,
ph
ys
ics
92
(例 )一高速列车 v=0.6c,沿平直轨道运动,车上 A,B两人相距 L=10m。
B在车前,A在车后,当列车通过一 站台时突然发生枪战事件,站台上的人看到 A先向 B开枪,过 12.5ns,B才向 A开枪。站台上的人作证,枪战是 A挑起。若你是法官你将如何判断?
C6.0
A BmL 10'?动画
De
p,
ph
ys
ics
93
2
2
)(1 cv
x
c
vt
t
解,已知 ⊿ t =12.5ns ⊿ x'=10m
xc vcvtt 221< 0s810
2
12212
1
)()(
c
v
xx
c
vtt
t
De
p,
ph
ys
ics
94
S frame
dtdxu x? td
xdu x
S' frame2
1 cv
vtxx
21
c
v
v
dt
dx
td
xd
21 cv
vuu x
x
Based on:
?
td
xdu x
dt
dx
c
v
v
dt
dx
2
1?
x
x
u
c
v
vu
21?
dt
dyu
y?
dt
dzuz?
td
ydu
y?
tdzduz?
td
dt
dt
xd
dt
td
dt
xd
vtxx
)( 2 xcvtt
③ the transformation of velocities
De
p,
ph
ys
ics
95
x
xx
ucv
vuu
21?
y
d y d y d tu
d t d t d t
2
2
1
1 c
v
ucv
uu
x
y
y
2
2
1
1 c
v
ucv
uu
x
zz?
tddtdtzdtd zdu z
note,yy udtdytd ydu
(1) when v <<c,
vuu xx
yy uu
zz uu
vuu
(2) a beam of light run along X axis in S frame ux=c uy=0 uz=0
In S' frame:
x
x
x
u
c
v
vuu
21?
0 yy uu
0 zz uu u'= Ccv
vc
1 c?
discuss
De
p,
ph
ys
ics
96
2
2
1
1 c
v
u
c
v
uu
x
z
z?
2
2
1
1 c
v
u
c
v
u
u
x
y
y?
x
x
x
u
c
v
vuu
21
x
x
x
u
c
v
vuu
21?
2
2
1
1 c
v
u
c
v
u
u
x
y
y?
2
2
1
1 c
v
u
c
v
u
u
x
z
z?
De
p,
ph
ys
ics
97
(例 )在地面测到两个飞船分别以 0.9C和 –0.9C的速度向相反方向飞行,求其中一飞船看另一飞船的速 度是多少?
甲乙
x
y
x'
y'
o'
0.9C-0.9C解:设 S系静止在乙飞船上,
S' 系静止在地面上。
S'系相对 S系的速度,v=0.9C
甲船相对 S' 系的速度,
< C0 yy uu 0 zz uu u=0.994475C
若按伽利略变换,u=u'+v=1.8C
甲船相对 S系(乙船)的速度:
x
x
x
u
c
v
vuu
21 9.09.01
9.09.0 CC C994 475.0?
Cu x 9.0
De
p,
ph
ys
ics
98
Relativistic mass
2
2
0
1
c
v
m
m
3,Kinetics of special relativity
0m
is the rest mass
Relativistic momentum
vmP
2
0
1
vm
t
PF
d
d
2
0
1d
d
vm
t
De
p,
ph
ys
ics
99
202 cmmc0EEE k
2
20
02
21
mc mc
v
c
Relativistic kinetic energy
Rest energy
Total relativistic
energy
Relationship of energy and momentum
420222 cmcPE
De
p,
ph
ys
ics
100
(例 ) 在参照系 S中,有两个静止质量都是 mo的粒子 A,B,分别以速度运动。相碰后合在一起,成为一个静止质量 为
Mo的粒子。求 Mo?
ivvivv BA,
解,设合成粒子的速度为 u?
由动量守恒,uMvmvm BBAA
粒子是一维运动:
∵ mA=mB,vA=vB
由能量守恒,M0C2= mAC2+mBC2
则得,BAo mmM
显然,Mo? 2mo,且 Mo > 2mo
mAvA-mBvB=Mu
2
0
1
2
c
v
m
∴ u= 0 即合成粒子是静止的
De
p,
ph
ys
ics
101
附:广义相对论( general relativity)
研究问题,相对作非匀速运动的两个观察者所进行的时空测量定律。
数学工具,弯曲空间几何学 ——黎曼几何学
De
p,
ph
ys
ics
102
De
p,
ph
ys
ics
103
测试:
1.在水平面上做圆周运动的小球,运动半径为 R,t时刻的速率为 v,求该时刻小球加速度的大小?( 3分)
2.一单摆在作圆周摆运动,摆角 θ,绳长 L,求该球向心加速度? ( 3分)
3.质量分别为 m,2m的两个木块 A,B中间连一轻弹簧,放在光滑水平桌面上,紧压弹簧后放手,问放手瞬间两木块速度大小的比值?
( 3分)
/ABvv
2
22( ) ( )d v v
d t R?
tannag
/ 2 / 1ABvv?
De
p,
ph
ys
ics
104
S
h
A
4.斜抛运动的初速度为 v0,抛出的角度与水平成 θ,问最高位置的曲率半径 R?
( 3分)
5.一人乘雪橇,从高度为 h的点 A滑下,滑到距 A水平距离 S的地方停止,问雪地的摩擦系数 μ。 ( 3分)
6.一根质量为 M,长为 l 的均匀细棒,可绕通过棒中心的垂直轴 Z,在 xy 平面内转动。开始时静止,今有质量为 m 的小球以速度 v0逆着轴的方向碰撞棒的端点,假设碰撞是完全弹性的,试求碰撞后小球的弹回速度和棒的 角速度 。 ( 5
分)
x
y z
M l0v? m
v?
2( co s )vR
g
h
s
答案
Kinematics of particles
Kinetics of particles
Geostatics and Hydromechanics
Special relativity
Dep,physics
De
p,
ph
ys
ics
2
Chap.1 Kinematics of particles
—— describing motion of particles
1,Base conception
2,Important conception
3,Discussion of curve motion
4,Relative motion
De
p,
ph
ys
ics
3
1,Base conception
Particles
to describe an object whose parts all move in exactly the
same way,Even a complex object can be treated as a particle
if there are no internal motions.
Reference frame and Coordinate frame
Vectors
a physical quantity that requires the specification of both
direction and magnitude.
De
p,
ph
ys
ics
4
2,Important conception
Position vector
Displacement vector
Z
Y
X
O
r
Z
Y
X
O
1r
2r
r
( ) ( )r r t t r t
()r r t?
( ) ( ) ( )r x t i y t j z t k
De
p,
ph
ys
ics
5
r?
ixx ab?)(
kzjyix
kzz ab?)(
br
ar
jyy ab?)(
kzjyixr bbbb
kzjyixr aaaa
222 )()()( zyxr
rzc o s,ryc o s,c o s rx
rs
o
br?
r
ar?
s?
a
b
De
p,
ph
ys
ics
6
Velocity vector
① average velocity
② instantaneous velocity
Acceleration vector
① average acceleration
② instantaneous acceleration
rv
t?
0
l im
t
r d rv
t d t
va
t?
0
l im
t
v d va
t d t
De
p,
ph
ys
ics
7
kvjviv zyx
222222 )()()(
dt
dz
dt
dy
dt
dxvvvvv
zyx
kdtdzjdtdyidtdxv
dt
ds?
v
v
v
v
v
v zyx c o s,c o s,c o s
)( dtdr?
De
p,
ph
ys
ics
8
dt
vda
kdtdvjdt
dv
idtdva zyx
k
dt
zdj
dt
ydi
dt
xd
2
2
2
2
2
2
kajaia zyx
222 zyx aaaaa
c o s aa x c o s aa y aa zco s
2
2
dt
rd?
De
p,
ph
ys
ics
9
(例 ) 以下为质点的位置矢量:
( c o s )r R t i tj ( 为正常数)R?、
求质点的速度、加速度,并分别求出速度、加速度的大小和方向。
解:
xy
d r d x d yv v i v j i j
d t d t d t
c o sx R t y t已知:,
2 2 2 2| | ( s i n ) 1 s i n 1v R t R t
( s i n )xyv v i v j R t i j
2 2 2 2 2 2
si n 1c os c os
si n 1 si n 1
Rt
R t R t
,
De
p,
ph
ys
ics
10
2
2
( sin ) 1
( c os )
| | | c os |
yx
xy
xy
dvdvdv
a a i a j i j
dt dt dt
v R t v
a R t i
a R t
据上知:,
方向为 x轴方向
De
p,
ph
ys
ics
11
3,Discussion of curve motion
Projectile motion
① The velocity of particle is:
② The displacement of particle is:
00
00
c os
si n
x
y
dx
vv
dt
dy
v v gt
dt
0 0 0 0
00
2
0 0 0 0
00
c o s c o s
1
( s in ) s in
2
tt
x
tt
y
x v d t v d t v t
y v d t v g t d t v t g t
0v
0? x
y
De
p,
ph
ys
ics
12
Circular motion
(1) the rotational variables
① angular velocity
② angular acceleration
0
l i m
t
t
d
t dt
2
20
l i m
t
t
dd
t d t d t
De
p,
ph
ys
ics
13
(2)relationship between linear and angular variables
00
2
2
l im l im
tt
n
t
l
v R R
tt
v
aR
R
dv d
a R R
dt dt
lR o
R
l
De
p,
ph
ys
ics
14
(3) Uniform circular motion
A limit,0
Direction of acceleration,normal
A replacing,lv
Rv?
Magnitude of acceleration:
l
o
R
Av
Bv
v
Av
Bv
o?
2
00
l im l imn
tt
v v l va
t R t R
(Centripetal acceleration)
De
p,
ph
ys
ics
15
(4) Variable circular motion
C
A
B
)(tv?
v
)( ttv
o?
x
)(tv?
s?
O
R
)( ttv
0 0 0
l im l im l im
t t t
v A C C Ba
t t t
2
0
l im n
t
A C v a
tR?
00
l i m l i m
tt
C B v d v a
t t d t
De
p,
ph
ys
ics
16
Summarizing:
Two kind of problem on kinematics of particle
1,Have known movement function,how can get
velocity and acceleration?
)( )( )( tatvtr
dtrddtvd
By derivative
De
p,
ph
ys
ics
17
〔 例 〕 平静的湖面上有一小船,一人在湖边处有一定高度的岸上以匀速率 v0收绳子,使小船向岸边靠拢,求小船的运动速度 。
x
0v
H
L
0解:选取坐标如图,O是固定点 。 有:
dtdxv? dt
dLv
0
( 这是本题的关键 )
22 HLx
022 vx
L
HL
dt
dLL
dt
dxv
3
2
0
2
3
2
0
22
0
2
0
2
0
2
00
x
vH
x
vL
x
v
x
vLv
x
v
dtx
dxLv
xd t
dLv
dt
dva
负号表示 v的方向与 x 轴的正方向相反 。
De
p,
ph
ys
ics
18
2,Have known acceleration,how can get velocity,
movement function?
ttvv dtavd 00
dt
vda
tt dtavv
0
0
ttrr dtvrd
00
dtrdv t
t dtvrr 00
By integral
De
p,
ph
ys
ics
19
解:
kvdxdvvdtdxdxdvdtdva
即 dv
k
1dx
积分得
dvk1dx 0vx0
0
m a x
k
vx 0
m a x?
〔 例 〕 列车沿一水平直线运动,刹车后列车的加速度 a = - kv,k为一正常数,刹车时的车速为 v0,求刹车后列车最多能行进多远?
De
p,
ph
ys
ics
20
4,Relative motion
Based on the classical theory:
① spatial coordinates are absolute and give
identical readings for all observers.
② time is a universal coordinate having identical
values for all observers.
De
p,
ph
ys
ics
21
r
iutR
x
y S
z
O x?
y? S?
z?
O?
P
r?
u?
rRr
kzjyixrS:
kzjyixrS,
turRrr
tt
utxx
yy
zz
tt
Coordinate commutation
动画
De
p,
ph
ys
ics
22
amFS
amFS
r
iutR
x
y S
z
O x?
y? S?
z?
O?
P
r?
u?
zz
yy
xx
aa
aa
aa
tt
uvv
tt
aa
tt
Velocity
commutation
Acceleration
commutation
tt
zz
yy
xx
vv
vv
uvv
动画
De
p,
ph
ys
ics
23
Summarizing:
a b s o l u t e c o n v e c t e d r e l a t i v er R r
a b s o lu te c o n v e c te d r e la ti v ev v v
ab sol ut e re l at i v eaa
De
p,
ph
ys
ics
24
〔 例 〕 一飞机驾驶员想往正北方向航行,而风以 60km/h的速度由东向西刮来,如果飞机的行速(在风中的速率)为 180km/h,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明。
解:因为在随风一起运动的坐标系中,空气为静止的,故飞机在静止空气中的行速即为飞机相对于风的速度。
风地机风机地 vvv
风地v
机风v
机地v
1a r c s i n a r c s i n 1 9,4 7
3
v
v
地机风风
2 2 2 2 1 8 0 6 0 1 7 0 /v v v k m h地机地 机 ()风 风
De
p,
ph
ys
ics
25
(例)一人划船渡江,江水的流速为 2.0km/h,船相对江水的速率为 4.0km/h,
江水宽 1.0km,若想用最短时间渡江,人应该按什么方向划行?要经过多长时间渡过江去?
解:如图所示建立坐标系设船对地的速度方向与江对地的速度方向夹角为,江对地的速度方向与船对江的速度方向为则:
1km
v船地
v船江
v江地
o
x
y
sinLS 其中 L为河的宽度,S为船的位移联立上两式,消除 得:sin?
si n( 18 0 ) si n
vv
船地 船江
si n( 18 0 )
LS t
vv船江 船地其中 t为渡江的时间
De
p,
ph
ys
ics
26
Chap.2 Kinetics of particles
1.NEWTON’S LAW
2,WORK and ENERGY
3,MOMENTUM
De
p,
ph
ys
ics
27
1.NEWTON’S LAW
Newton’s First Law
An object at rest remains at rest,and an object in
motion continues in motion with constant velocity (that
is,constant speed in a straight line) unless it experiences
a net external force.
Newton’s Third Law
If two bodies interact,the magnitude of the force
exerted on body 1 by body 2 is equal to the magnitude of
the force exerted on body 2 by body 1,and these two
forces are opposite in direction.
De
p,
ph
ys
ics
28
Newton’s Second Law
The acceleration of an object is directly proportional to the
resultant force acting on it and inversely proportional to its
mass,The direction of the acceleration is the direction of the
resultant force.
dt
dt vmd )(
amdtvdm?
dt
dmv
dt
vdm?
De
p,
ph
ys
ics
29
Note:Conditions of the law
1.Macroscopic system with low velocity
2.Inertial reference frame
2
2
d v d r
F m m
dt dt
De
p,
ph
ys
ics
30
(例 )一质量为 m 的物体,以 v 的初速度沿与水平方向成? 角的方向抛出,空气的阻力与物体的动量成正比,比例系数为 k,求物体的 运动轨迹。
gm?
vkm? mvkm gm,解,建立坐标系如图研究对象,m”受力运动方程,(矢量方程)
运动方程的分量式:
xk m vx,
yk m vmgy,
dt
dvm x
dt
dvm y
gm? vkm? dtvdm
动画
De
p,
ph
ys
ics
31
)1(kdtvdv
x
x
)2(dtkvg dv
y
y
dt
dvkvg y
y
dt
dvkv x
x
由( 2)
tvv
y
y dt
kvg
dv
y 0s i n
0
t kty dtgekvgkdy 0 00 ])s i n[(1
])s i n[(1 0 gekvgkv ktydtdy?
02
1 ( s in ) ( 1 )kt gty g k v e
kk?
由( 1)
t ktx dtevdx 000 c o s
co s0 ktx evv dtdx?
dtkvdv
x
x
0
t
co s0v
xv
0 c o s ( 1 )ktvxe
k
De
p,
ph
ys
ics
32
Summarizing:
Favr
dxdvmvdtdvmxF )(
m
dtdvmtF )( vvtt md vdttF 00 )( )(tv
dtdvmvF )( vvtt dvvF mdt 00 )()(tv
vvxx mv d vdxxF 00 )(
)(tv)( xv?
De
p,
ph
ys
ics
33
noninertial frames and pseudoforces 动画
a?
00 球对地a F
没问题!
a
De
p,
ph
ys
ics
34
How to resolve the problem?
(1) Select an inertial reference frame and consider only ‘real’ force.
(2) Select a noninertial reference frame and define pseudoforce.
Pseudoforce:
feel ‘real’
But violate the Newton’s third law.
It can reflect that noninertial have acceleration.
p n o n i n e r t i a lF m a
De
p,
ph
ys
ics
35
(例 )如图:一木块静止在一个水平匀速转动的转盘上,转盘相对地面以角速度?,求在转动参照系的惯性力。
解:地面参照系的观察者,木块作匀速圆周运动,
nmaf?向心静摩擦向心 ff? 2?mr
在转盘上,木块静止不动,即,0a?
amF 0? *fF 惯性力真实力
真实力惯性力 Ff * 静摩擦f rmr?2
namf*惯性力即,——惯性离心力惯性离心力 = – 向心力 作用与反作用?
NO!
mr
De
p,
ph
ys
ics
36
2 WORK and ENERGY
Work
How can we evaluate the work done by the force?
① By constant force
② By variable force
d W F d r?
W c osFrrF
dsFba c o s
abW rdF
c o sb
a rdF
ba F dr c os
Generally,work have relationship
with the path the object takes.
De
p,
ph
ys
ics
37
Conservative force and potential energy
Work of gravity
x
y
z
O
),,( 0000 zyxM
),,( zyxM
G?
()dW P dr m gk dx i dy j dzk m gd z
0
0()
z
z
W m g d z m g z m g z
F
x
z
x d W F d x k x i d x i k x d x
2
1
22
21
11()
22
x
x
W d W k x d x k x k x
Work of elastic force
De
p,
ph
ys
ics
38
① A force is conservative if the work it does on an object
moving between two points is independent of the path the
object takes between the point.
② The potential energy is energy associated with the
configuration of a system,Here configuration means how the
parts of a system are located or arranged with respect to one
another(for example,the height of the ball in the ball—earth
system)
0
l
W F d r
De
p,
ph
ys
ics
39
③ the relationship between conservative force and
potential energy:
)( kzEjyEixEF PPP
0
dMp ME F r
De
p,
ph
ys
ics
40
Kinetic Energy and theorem of kinetic energy
① Kinetic energy,We define the quantity
as the kinetic energy,It’s a scalar quantity,
212 mv
2
()
11
( ) ( ) ( )
22
d p d m v
dw F d r d r d r
dt dt
d m v v d m v v d mv
De
p,
ph
ys
ics
41
② Theorem of kinetic energy
the net work done by the forces acting on a body is equal to
the change in the kinetic energy of the body.
2 2 21 1 1()
2 2 2
bb
ba
aa
W F d r d m v m v m v
Note,energy theorem has the same form in all
inertial reference frames.
De
p,
ph
ys
ics
42
Work-energy theorem
The work done by the external force and nonconservative force
is equal to the increase of the mechanical energy of system.
o i kW W E
i c nW W W
cpWE
o n k pW W E E E
De
p,
ph
ys
ics
43
Law of conservation of mechanical
energy
In an isolated system in which only conservative forces act,the
total mechanical energy remains constant,
o n k pW W E E E
0
De
p,
ph
ys
ics
44
3 Momentum theorem
Impulse and Momentum theorem
2121 PPtt PddtF
1212 vmvmPP
PddtF
impulse
The impulse depends on the strength of force and on
its duration(time interval).
Momentum theorem,the impulse of the force acting on
an object equals the change in momentum of that
object.
De
p,
ph
ys
ics
45
Law of conservation of Momentum
when no external forces act on a system,the total
momentum of the system is not changed.
( ) ( )i i i iF f d t d m v
( ) ( )ii
i i iii
F f d t d m v
Based on Newton’s third law,0
i i
f
PddtF
Example,collisions
De
p,
ph
ys
ics
46
Angular momentum
r?
vm?
L?
12 smkg
s i nr m vL?
direction,perpendicular to the plane formed by pr,
vmrL
pr
De
p,
ph
ys
ics
47
时间累积效应
dtPdF
1221 PPdtFtt
1221 LLdttt
0F?
0
12
21 kk EErdF 122121 EErdfrdF 内非外动量守恒21 PP
角动量守恒21 LL
机械能守恒21 EE?
00 内非外 AA
空间累积效应牛二律,瞬时效应动量定理角动量定理动能定理
De
p,
ph
ys
ics
48
a
b
L?
bv
T
(例 )质量为 m 的小球系在线的 一端,线的另一端固定,线长 L,先拉动小球,使线水平张直,
然后松手让小 球落下,求:线摆下?角时,小球的速率 Vb和线的张力 T.
解法一,用牛顿第二定律
)1(co s?dtdvmmamg
)2(s i n
2
LvmmaTmg n
建立自然坐标如图
Tgm,受力分析,运动方程,a
b
L
d n?
gm?
T
研究对象:小球。
De
p,
ph
ys
ics
49
bv v d vLd g 00 c o s
2
2
1s i n
bvgL
s in2 gLv b
将上述结果代入( 2)
用 d S 乘方程( 1)的两边:
dvdtdSdSgco s
3 s inT m g
De
p,
ph
ys
ics
50
解法二,用动能定理解法三,用机械能守恒定律研究对象:小球、线、地球组成的系统。
只有重力作功,Ea = Eb,机械能守恒。 令 b 处势能为零
s in2 gLv b
2
2
1sin
bmvm g L
a
b
L
d n?
gm?
T?
ds
22
(
11
22 baabW m v m v合外力的功)
s in2 gLv b
2
2
1sin
bmvm g L
研究对象:小球。
De
p,
ph
ys
ics
51
(例 ) 在光滑的水平桌面上,固定着如图所示的半圆形屏障质量为 m 的滑块以初速 V1 沿屏障一端的切线方向进入屏障内滑块与屏障间的摩擦系数为
。 求:当滑块从屏障另一端滑出时,摩擦力对它所作的功
1v
俯视图联立,Rvmf
2
R
v
dt
dv 2即分析:变力作功,用动能定理必须先找出末态的 V2
解:研究对象,滑块,建立自然坐标,受力分析,Nf,
v
f
N
n
运动方程:
法向切向
nmaN?
maf
R
vm 2?
Ndtdvm
动画
De
p,
ph
ys
ics
52
v
f
N
设滑块进入屏障后,速度为 v 时,已沿屏障转动了,?”角,经过的时间为 t,则上式改为:
vddv 即
dvdvvv 0 2
1
1
2ln
v
v
evv 12
因合外力的功只有摩擦力的功
N 不作功,根据动能定理:
dt
dv
R
v 2
d
dv
R
v
dt
d
d
dv
W?
)1(21 221emv
2
1
2
2 2
1
2
1 mvmv?
De
p,
ph
ys
ics
53
Chap.3 Geostatics
1.Base Conception
2,Kinematics of rigid body
3,Dynamics of rigid body
De
p,
ph
ys
ics
54
1.Base conceptionof fixed-axis rotation of
rigid body
Rigid body,we call the body rigid body when there is no relative
motion in it,It is a ideal model.
Motion of the rigid body,the most general motion of a
rigid body includes rotational and translational motion,
Fixed-axis rotation of rigid body,the rigid body rotate
circling an immobile axis,
De
p,
ph
ys
ics
55
动画
De
p,
ph
ys
ics
56
2,kinematics of Fixed-axis rotation of rigid
body
Angular displacement,
Instantaneous angular velocity:
Instantaneous angular acceleration:
0
l im
t
d
t d t
0l i mt
d
t d t
Angular position,
d
vrDirection,right-hand rule
De
p,
ph
ys
ics
57
3,Dynamics of rigid body
Torque FrM
s inrFM?Magnitude:
Direction,right-hand rule?
r?
F?
M?
Newton’s second law for rotation
tJJM d
d
rotational inertia,depends on the mass of the object and on the
perpendicular distance between the object and the axis of rotation.
2J m r?
De
p,
ph
ys
ics
58
im?
—outside force
iF
—internal forceif?
Base on Newton’s second law:
iiii m afF
Argumentation:
ω
O
iF
if
i?i
im?
ir?
O’
iiiiiiii rmamfF s i ns i nTangential:
Normal:
2c o sc o s iiiniiiii rmamfF
Multiply tangential equation by
ir
2s i ns i n iiiiiiii rmrfrF
N
i ii
N
i iii
N
i iii
rmrfrF
1
2
11
)(s i ns i n
De
p,
ph
ys
ics
59
0s in
1
N
i iii
rf?
Base on Newton’s third law:
N
i ii
N
i iii
rmrF
1
2
1
)(s i n
t
JJM
d
d
22
ii
i
J m r r d m
De
p,
ph
ys
ics
60
L
m细棒
2
3
1 mLJ?
细棒 2121 mLJ?
薄圆环或薄圆筒
2mRJ?
圆盘或圆柱体薄球壳
2
2
1 mRJ?
R m
2
3
2 mRJ? 球体
2
5
2 mRJ?
m
L
R m R m
R m
De
p,
ph
ys
ics
61
(例 ) 计算质量为 M,长为 L 的均匀细杆的转动惯量
(1) 假定转轴通过杆中心并与杆垂直 ;
(2) 假定转轴通过杆的端点与杆垂直。
0 dm
xdxx
x
0 dm
dx
x
rotational inertia have relationship with the axis
解,dx
L
Mdm?
dmxdJ 2? dxx
L
M 2?
dxLMxJ L L 21
21
2 2
12
1 ML?
dxLMxJ L 0 2 231 ML? 42' LMJJ zz
De
p,
ph
ys
ics
62
Parallel axis theorem,
2MLJJ z'z
z
L
C
M
z'
Vertical distance between two axisL
Z is the axis pass the centre of masszJ
Z’is the arbitrary axis parallel to the Z'zJ
perpendicular axis theorem:
Axis x,y are in the board
Axis z is perpendicular to the board.
z
x y
yxz JJJ
De
p,
ph
ys
ics
63
(例 )圆环绕中心轴旋转的转动惯量,其质量为 m
(例 )圆盘绕中心轴旋转的转动惯量,其质量为 m
RL lRmRJ π20 20 2 dd?
23π2
0
2 π2π2d mRRmRlR R
rrs dπ2d?
sm dd
Rm RmrrR mmrJ 0 2320 2 2d2d
rRmrrrRm d2dπ2π 22
R
dl
O
m
mR
Or
dr
转动惯量与质量分布有关。
De
p,
ph
ys
ics
64
ddWFr
dsF 2c o s
()d s r d
0‘
0
d
r
F?
r?d
P
| | c o sF d r
dsF?s i n?
dFr s in?
Md?
2
1
dWM?
work of torque
De
p,
ph
ys
ics
65
kinetics energy of rotation of rigid body
im?
2
2
1
iiki mE v
22
2
1?
ii rm
2221?iikik rmEE
2221 ii rm
2
2
1?J?
m
2
2
1?JE
k?
De
p,
ph
ys
ics
66
2121 )21d(d 2JWW
2
1
2
2 2
1
2
1 JJ
kE
kEJJMdW
2
1
2
2 2
1
2
12
1
dd MW d
dt
dJ?
dt
dJd dJ? )2
1d( 2?J?
dt
dJM
dt
d
Kinetic theorem of rigid body
De
p,
ph
ys
ics
67
Potential energy of rigid body
iip ghmE Cii mg hm hmmg
Centre of mass
ch 0?
PE
C im
ih
PK EEE
Cm ghJ
2
2
1?
Mechanical energy
1 d
cr r mm
De
p,
ph
ys
ics
68
Angular momentum of rigid body
r?
vm?
L?
vmrL
2
i i i i i iL m v r m r
22 ()
i i i i
ii
L m r m r J
LJ
De
p,
ph
ys
ics
69
Law of conservation of angular momentum
)d(dd JLtM
Angular momentum theorem
2
1
2 1 2 1d
t
t M t L L J J
0
2
1
2 1 2 1d
t
t M t L L J J
De
p,
ph
ys
ics
70
刚体定轴转动与质点一维运动的对比位移 x? 角位移
速度 dtdxv? 角速度 dt
d
加速度
2
2
dt
xd
dt
dva 角加速度
2
2
dt
d
dt
d
质点一维运动 刚体定轴转动质量 m 转动惯量 dmrJ 2
力 F? 力矩 FrM
运动定律 amF 转动定律 JM?
动量 vmp 动量 质心vmp
角动量 prL 角动量 JL i
动量定理 1221 mvmvF d ttt 角动量定理 1221 JJM d ttt
动量守恒定律 时 0 F
恒量 ii vm
角动量守恒定律 时 0?M?
恒量J
质点一维运动 刚体定轴转动力的功 rdFA 力矩的功?
MdA
动能 221 mvE k? 转动动能 221 JE k
(平动动能 ) 221 质心mvE k?
动能定理
2
1
2
2 2
1
2
1 mvmvA
外 2122 2
1
2
1 JJA
外转动动能定理重力势能 mgh 重力势能 质心mg h
机械能守恒定律时非保内外 0 AA
恒量 pk EE
时非保内外 0 AA
机械能守恒定律恒量 pk EE
De
p,
ph
ys
ics
73
(例 )一根轻绳跨过一定滑轮(滑轮 视为圆盘),绳的两端分别 悬有质量为 m1 和 m2 的物体,m1 < m2,滑轮的质量为
m,半径为 R,所受的摩擦阻力矩为?r,绳与滑轮间无相对滑动。试求:物体的加速度和绳的张力。
已知,m1,m2,m,R,?r 求,21,,T T a
.
1m 2m
m R
动画解,研究对象 m1,m2,m
建立坐标,受力分析 如图对各隔离体写出运动方程,
gm1
1T
gm2
2T
y
0
'1T '2T
r?
对 m, JRTRT r'1'2
'22'112,,21,TTTTmRJRa
对 m1,amgmT 111
对 m2,amTgm 222
De
p,
ph
ys
ics
74
mmm
Rgmma
r
2
1
)(
21
12
mmm
Rgmmm
T
r
2
1
])
2
1
2[(
21
21
1
mmm
RgmmmT
r
2
1
])
2
12[(
21
12
2
De
p,
ph
ys
ics
75
u
r R
(例 )如图,质量为 M 半径为 R 的转台初始角速度为?0,有一质量为 m的人站在转台的中心,若他相对于转台以恒定的速度 u 沿半径向边缘走去,求人走了 t 时间后,转台转过的角度。(竖直轴所受摩擦阻力矩不计)
人与转台系统对轴 角动量守恒解:设 t 时刻人走到距转台中心 r = ut 处,转台的角速度为?.
)2(2 22202 tmuRMRM
2
22
0
21
MR
tmu?
dtd
dt
MR
tmudtd
tt
0
2
22
0
00 21
]
)2(
arc t an [
)2(
2
1
2
1
0
R
M
mut
M
mu
R
De
p,
ph
ys
ics
76
0vmvmdtF
)1(0 mvmvF d t
对棒,角动量定理
Jdt
00 JJLLdt
JdtlF )2( '
例 4,一根质量为 M,长为 l 的均匀细棒,可绕通过棒中心的垂直轴 Z,在 xy
平面内转动。开始时静止,今有质量为 m 的小球以速度 逆着轴的方向碰撞棒的端点,假设碰撞是弹性的,试求碰撞后小球的弹回速度 和棒的 角速度
0v? v?
)2(2 JF d tl
( 1)、( 2)联立:
)3()(2 0 Jmvmvl
x
y z
M l0v? m
v?F?
'F?
对小球,动量定理受力分析:小球 棒F? 'F?
解法一 研究对象:小球,棒球、棒、地系统机械能守恒,
220 2121 mvmv )4(21 2J
De
p,
ph
ys
ics
77
( 3)( 4)联立将 代入,舍弃 的解2121 MlJ? 0vv?
03
3 v
mM
mMv
方向:沿 y 正向
0)3(
12 v
lmM
m
方向:沿 z 正向
(内力矩很大,小球重力忽略)
解法二,应用角动量守恒和机械能守恒定律研究系统:小球、细棒
0 合外力矩?
碰撞前后,角动量守恒:
弹性碰撞,球、棒、地系统机械能守恒,
De
p,
ph
ys
ics
78
( 4)( 5)联立可求 v
)4(212121 2220 Jmvmv
0vmr
Z的负方向Z的正方向 Z的正方向
)5(22 0 J mvl mvl
vmrJ
De
p,
ph
ys
ics
79
Chapter 4 special relativity
1.The postulates of special relativity
2.The Lorentz transformation
3.Kinetics of special relativity
De
p,
ph
ys
ics
80
1,The postulates of special relativity
Troubles with classical physics
The postulates of special relativity
① The principle of relativity,The laws of physics are the
same in all inertial reference frames.
② The principle of the constancy of the speed of light,The
speed of light in free space has the same value c in all
inertial reference frames.
De
p,
ph
ys
ics
81
① the relativity of simultaneity
An experiment:
y'y
x
x'
A' B'M
v
o
Observed in S' frame:
Light can not reached
A' and B' at the same
time
Light reached A' and B'
at the same time
Observed in S frame:
动画动画
Some conclusion from postulates
De
p,
ph
ys
ics
82
② time dilation
Y Y'
A'
d
Observed in S' frame:
C'
duration:
Y
C C
L L
X'
X
X'
X
Observed in S frame:
cdt 2
cLt 2
22 2tvdL
21 ( / )
tt
vc
Obviously
21
2
cv
cd
Y'
d
A'
动画动画
Proper time
De
p,
ph
ys
ics
83
③ the relativity of length
Example,a car run along X axis
with velocity v,How long is it in
both frame?
L'
A' B'x
1 X
X'
y y'
o o'
Measured in S frame:
2)(1 cv
tt
2)(1
cvtt
v
21 cvtv21 cvL < L'L= v?t
L =v?t?t Proper time 动画动画
Measured in S' frame:
vLtDuration,
2)(1 cvLL
Proper length
De
p,
ph
ys
ics
84
y y'
v
o o'
X'
X
2,The Lorentz transformation
Lorentz transformation equations
2)(1
c
v
vtxx
yy
zz
2
2
)(1 cv
x
c
vt
t
Lorentz transformation
equations
De
p,
ph
ys
ics
85
vtxx
xcvtt 2?
yy
zz
vtxx
yy
zz
tt —— Galilean transformation equations
cv
21
1
)( vtxdtddtxd
r a cu u v
Lorentz
factor
2)(1
c
v
vtxx
yy
zz
2
2
)(1 cv
x
c
vt
t
v << C
discuss
Speed
parameter
De
p,
ph
ys
ics
86
Inverse Lorentz transformation equations
tvxx
yy
zz
)( 2 x
c
vtt
vtxx
xcvtt 2?
yy
zz
De
p,
ph
ys
ics
87
Consequence of the Lorentz transformation
① the relativity of length (Length contraction)
L' is rest in S’ frame
Measured inS‘ frame:
Measured in S frame:
Based on Lorentz transformation:
2
22
2
)(1 cv
vtxx
2
11
1
)(1 cv
vtxx
12 xxL
12 xxL
12 tt?
2
12
12
1 cv
xxxx
S'S
L'x1' x2'
x1 x2
v
21 cv
LL
Proper length
De
p,
ph
ys
ics
88
Evens in S frame corresponding,A (x1,0,0,t1) B (x2,0,0,t2)
2
121
1
)(1 cv
x
c
vt
t
2
222
2
)(1 cv
x
c
vt
t
2
12212
1
)()(
c
v
xx
c
vtt
t
Two evens in S‘ frame,A' (x'1,0,0,t'1) B' (x'2,0,0,t'2)
② the relativity of time (time dilation)
De
p,
ph
ys
ics
89
discuss2
12212
1
)()(
c
v
xx
c
vtt
t
12xx 12tt
⑴
2
2
1 cv
x
c
v
t
0? t1 ≠ t2 the relativity of simultaneity
If x'2 > x'1 Then
21tt?
De
p,
ph
ys
ics
90
2
12
)(1
)(
c
v
ttt
Proper time
⊿ t > ⊿ t'2)(1
cv
t
⑵ 12xx
12tt
t2 – t1=
>0 A is before B
=0 A and B are the same time
<0 A is after B
21tt 12xx
⑶ ( A’ is before B’)
2
12212
1
)()(
c
v
xx
c
vtt
t
De
p,
ph
ys
ics
91
⊿ t and ⊿ t' have the same sign
The law of causation in inertial
frame is absolute.
conclusio
n
22
22
( 1 )
1 ( ) 1 ( )
v v x
t x t
c c tt
vv
cc
2
2
( 1 )
1 ( )
v
tu
c
v
c
De
p,
ph
ys
ics
92
(例 )一高速列车 v=0.6c,沿平直轨道运动,车上 A,B两人相距 L=10m。
B在车前,A在车后,当列车通过一 站台时突然发生枪战事件,站台上的人看到 A先向 B开枪,过 12.5ns,B才向 A开枪。站台上的人作证,枪战是 A挑起。若你是法官你将如何判断?
C6.0
A BmL 10'?动画
De
p,
ph
ys
ics
93
2
2
)(1 cv
x
c
vt
t
解,已知 ⊿ t =12.5ns ⊿ x'=10m
xc vcvtt 221< 0s810
2
12212
1
)()(
c
v
xx
c
vtt
t
De
p,
ph
ys
ics
94
S frame
dtdxu x? td
xdu x
S' frame2
1 cv
vtxx
21
c
v
v
dt
dx
td
xd
21 cv
vuu x
x
Based on:
?
td
xdu x
dt
dx
c
v
v
dt
dx
2
1?
x
x
u
c
v
vu
21?
dt
dyu
y?
dt
dzuz?
td
ydu
y?
tdzduz?
td
dt
dt
xd
dt
td
dt
xd
vtxx
)( 2 xcvtt
③ the transformation of velocities
De
p,
ph
ys
ics
95
x
xx
ucv
vuu
21?
y
d y d y d tu
d t d t d t
2
2
1
1 c
v
ucv
uu
x
y
y
2
2
1
1 c
v
ucv
uu
x
zz?
tddtdtzdtd zdu z
note,yy udtdytd ydu
(1) when v <<c,
vuu xx
yy uu
zz uu
vuu
(2) a beam of light run along X axis in S frame ux=c uy=0 uz=0
In S' frame:
x
x
x
u
c
v
vuu
21?
0 yy uu
0 zz uu u'= Ccv
vc
1 c?
discuss
De
p,
ph
ys
ics
96
2
2
1
1 c
v
u
c
v
uu
x
z
z?
2
2
1
1 c
v
u
c
v
u
u
x
y
y?
x
x
x
u
c
v
vuu
21
x
x
x
u
c
v
vuu
21?
2
2
1
1 c
v
u
c
v
u
u
x
y
y?
2
2
1
1 c
v
u
c
v
u
u
x
z
z?
De
p,
ph
ys
ics
97
(例 )在地面测到两个飞船分别以 0.9C和 –0.9C的速度向相反方向飞行,求其中一飞船看另一飞船的速 度是多少?
甲乙
x
y
x'
y'
o'
0.9C-0.9C解:设 S系静止在乙飞船上,
S' 系静止在地面上。
S'系相对 S系的速度,v=0.9C
甲船相对 S' 系的速度,
< C0 yy uu 0 zz uu u=0.994475C
若按伽利略变换,u=u'+v=1.8C
甲船相对 S系(乙船)的速度:
x
x
x
u
c
v
vuu
21 9.09.01
9.09.0 CC C994 475.0?
Cu x 9.0
De
p,
ph
ys
ics
98
Relativistic mass
2
2
0
1
c
v
m
m
3,Kinetics of special relativity
0m
is the rest mass
Relativistic momentum
vmP
2
0
1
vm
t
PF
d
d
2
0
1d
d
vm
t
De
p,
ph
ys
ics
99
202 cmmc0EEE k
2
20
02
21
mc mc
v
c
Relativistic kinetic energy
Rest energy
Total relativistic
energy
Relationship of energy and momentum
420222 cmcPE
De
p,
ph
ys
ics
100
(例 ) 在参照系 S中,有两个静止质量都是 mo的粒子 A,B,分别以速度运动。相碰后合在一起,成为一个静止质量 为
Mo的粒子。求 Mo?
ivvivv BA,
解,设合成粒子的速度为 u?
由动量守恒,uMvmvm BBAA
粒子是一维运动:
∵ mA=mB,vA=vB
由能量守恒,M0C2= mAC2+mBC2
则得,BAo mmM
显然,Mo? 2mo,且 Mo > 2mo
mAvA-mBvB=Mu
2
0
1
2
c
v
m
∴ u= 0 即合成粒子是静止的
De
p,
ph
ys
ics
101
附:广义相对论( general relativity)
研究问题,相对作非匀速运动的两个观察者所进行的时空测量定律。
数学工具,弯曲空间几何学 ——黎曼几何学
De
p,
ph
ys
ics
102
De
p,
ph
ys
ics
103
测试:
1.在水平面上做圆周运动的小球,运动半径为 R,t时刻的速率为 v,求该时刻小球加速度的大小?( 3分)
2.一单摆在作圆周摆运动,摆角 θ,绳长 L,求该球向心加速度? ( 3分)
3.质量分别为 m,2m的两个木块 A,B中间连一轻弹簧,放在光滑水平桌面上,紧压弹簧后放手,问放手瞬间两木块速度大小的比值?
( 3分)
/ABvv
2
22( ) ( )d v v
d t R?
tannag
/ 2 / 1ABvv?
De
p,
ph
ys
ics
104
S
h
A
4.斜抛运动的初速度为 v0,抛出的角度与水平成 θ,问最高位置的曲率半径 R?
( 3分)
5.一人乘雪橇,从高度为 h的点 A滑下,滑到距 A水平距离 S的地方停止,问雪地的摩擦系数 μ。 ( 3分)
6.一根质量为 M,长为 l 的均匀细棒,可绕通过棒中心的垂直轴 Z,在 xy 平面内转动。开始时静止,今有质量为 m 的小球以速度 v0逆着轴的方向碰撞棒的端点,假设碰撞是完全弹性的,试求碰撞后小球的弹回速度和棒的 角速度 。 ( 5
分)
x
y z
M l0v? m
v?
2( co s )vR
g
h
s
答案