Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 1 of 41
Go Back
Full Screen
Close
Quit
Introduction to
Condensed Matter Physics
Jin Guojun
Nanjing University
February 12,2004
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 2 of 41
Go Back
Full Screen
Close
Quit
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 3 of 41
Go Back
Full Screen
Close
Quit
Part II
Wave Behavior in
Various Structures
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 4 of 41
Go Back
Full Screen
Close
Quit
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 5 of 41
Go Back
Full Screen
Close
Quit
Solid State Physics,Revisit and Extension
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 6 of 41
Go Back
Full Screen
Close
Quit
Like as the waves make towards the pebbled shore,
So do our minutes hasten to their end,
Each changing place with that which goes before,
In sequent toil all forward to contend.
— William Shakespeare
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 7 of 41
Go Back
Full Screen
Close
Quit
Waves always behave in a similar way,whether
they are longitudinal or transverse,elastic or
electric,Scientists of last century always kept
this idea in mind ···,This general philosophy of
wave propagation,forgotten for a time,has been
strongly revived in the last decade ···
— L,Brillouin (1946)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 8 of 41
Go Back
Full Screen
Close
Quit
5,Wave Propagation in Periodic and
Quasiperiodic Structures
6,Dynamics of Bloch Electrons
7,Surface and Impurity Effects
8,Transport Properties
9,Wave Localization in Disordered Systems
10,Mesoscopic Quantum Transport
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 9 of 41
Go Back
Full Screen
Close
Quit
Contents
II Wave Behavior inVarious Structures 3
5 Wave Propagation in Periodic and Quasiperiodic Structures 3
5.1 Unity of the Concept for Wave Propagation,,,,,,5
5.1.1 Wave Equations and Periodic Potentials,,,,5
5.1.2 Bloch Waves,,,,,,,,,,,,,,,,,,,,8
5.1.3 Revival of the Study on Classical Waves,,,,11
5.2 Electrons in Crystals,,,,,,,,,,,,,,,,,,,14
5.2.1 Free Electron Gas Model,,,,,,,,,,,,,14
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 10 of 41
Go Back
Full Screen
Close
Quit
5.2.2 Nearly-Free Electron Model,,,,,,,,,,,17
5.2.3 Tight-Binding Electron Model,,,,,,,,,,23
5.2.4 Kronig-Penney Model for Superlattices,,,,,27
5.2.5 Density of States and Dimensionality,,,,,,35
5.3 Lattice Waves and Elastic Waves,,,,,,,,,,,,38
5.3.1 Dispersion Relation of Lattice Waves,,,,,,38
5.3.2 Frequency Spectrum of Lattice Waves,,,,,,38
5.3.3 Elastic Waves in Periodic Composites,,,,,,38
5.4 Electromagnetic Waves in PeriodicStructures,,,,,,39
5.4.1 Photonic Bandgaps in Layered PeriodicMedia,39
5.4.2 Dynamical Theory of X-Ray Diffraction,,,,39
5.4.3 Bandgaps in Three-DimensionalPhotonic Crystals 39
5.4.4 Quasi Phase Matching in NonlinearOptical Crystals 39
5.5 Quasiperiodic Structures,,,,,,,,,,,,,,,,,40
5.5.1 One-Dimensional Quasiperiodic Structure,,,40
5.5.2 Two-Dimensional Quasiperiodic Structures,,,40
5.5.3 Three-Dimensional Quasicrystals,,,,,,,,40
5.6 Waves in Quasiperiodic Structures,,,,,,,,,,,,41
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 1 of 41
Go Back
Full Screen
Close
Quit
5.6.1 Electronic Spectra in a One-DimensionalQuasilattice 41
5.6.2 Wave Transmission through ArtificialFibonacci Structures 41
5.6.3 Pseudogaps in Real Quasicrystals,,,,,,,,41
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 2 of 41
Go Back
Full Screen
Close
Quit
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 3 of 41
Go Back
Full Screen
Close
Quit
Chapter 5
Wave Propagation in Periodic and
Quasiperiodic Structures
Newton,speed of sound,one-dimensional lattice model
Beginning of the 20th century,Cambell,periodic LC circuit theory,fil-
ter electric waves,proposed cut-off frequency,pass band and forbidden
band
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 4 of 41
Go Back
Full Screen
Close
Quit
Conventional solid state physics:
electrons and lattice vibration
Recent years,classical waves:
electromagnetic wave and elastic wave
in periodic composites
In 1980s,quasicrystals
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 5 of 41
Go Back
Full Screen
Close
Quit
5.1,Unity of the Concept for Wave Prop-
agation
Formal analogy and similarity between three types of waves
5.1.1,Wave Equations and Periodic Potentials
An electron,λ = 2pi/k,p = planckover2pi1k
Schr¨odinger equation
iplanckover2pi1tψ =
bracketleftbigg
planckover2pi1
2
2m?
2 +V(r)
bracketrightbigg
ψ (5.1.1)
V(r+l) = V(r) (5.1.2)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 6 of 41
Go Back
Full Screen
Close
Quit
Thermal fluctuation at finite temperature
u—atomic displacement,Φ—potential energy
Newton equation
Ms?
2
t2ulsα =?
summationdisplay
lprimesprimeβ
Φlsα,lprimesprimeβulprimesprimeβ (5.1.3)
Force constant—Φlsα,lprimesprimeβ ≡?2Φ/?ulsα?ulprimesprimeβ|0,periodicity
Φlsα,lprimesprimeβ = Φ0sα,ˉlsprimeβ,(5.1.4)
with ˉl = lprime?l
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 7 of 41
Go Back
Full Screen
Close
Quit
Electromagnetic waves,Maxwell equations
×E =?1c?B?t,?·B = 0
×H = 1c?D?t + 4pic j,?·D = 4piρ
Four coefficients related to materials,epsilon1,μ,χ,χm
D = epsilon1E = E +4piP = (1+ 4piχ)E
B = μH = H + 4piM = (1 + 4piχm)H
In general,epsilon1,μ,χandχm,tensors; Strong fields,nonlinear polarization
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 7 of 41
Go Back
Full Screen
Close
Quit
Electromagnetic waves,Maxwell equations
×E =?1c?B?t,?·B = 0
×H = 1c?D?t + 4pic j,?·D = 4piρ
Four coefficients related to materials,epsilon1,μ,χ,χm
D = epsilon1E = E +4piP = (1+ 4piχ)E
B = μH = H + 4piM = (1 + 4piχm)H
In general,epsilon1,μ,χandχm,tensors; Strong fields,nonlinear polarization
Electric displacement vector D,wave equation
1
c2
2D
t2 +?×
parenleftbigg 1
μ(r)?×
D
epsilon1(r)
parenrightbigg
= 0 (5.1.5)
μ(r) and epsilon1(r),second-order tensors → scalars
μ(r+l) = μ(r),epsilon1(r+l) = epsilon1(r) (5.1.6)
Three other field quantities,E,B,H,equivalent
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 8 of 41
Go Back
Full Screen
Close
Quit
5.1.2,Bloch Waves
Some common traits for wave propagation in periodic structures
Tuning condition:
Lattice separation a and Characteristic wavelengths λ
Electrons:
λ = (planckover2pi12/2mE)1/2,ranges from lattice spacing to bulk size
Lattice vibrations:
acoustic branches and optical branches
Wavelengths ranges from lattice spacing to bulk size
Electromagnetic radiation:
γ-ray (< 0.4?A),X-ray (0.4 ~ 50?A),ultraviolet ray (50 ~ 4000?A),vis-
ible light (4000 ~ 7000?A),infrared ray (0.76 ~ 600μm),to microwave
and radio wave (> 0.1 mm)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 9 of 41
Go Back
Full Screen
Close
Quit
Periodic structures,Bloch waves,an electron stationary equation
bracketleftbigg
planckover2pi1
2
2m?
2 +V(r)
bracketrightbigg
ψ(r) = Eψ(r) (5.1.7)
ψk(r) = uk(r)fk(r) (5.1.8)
uk(r +l) = uk(r) (5.1.9)
To determine fk(r),consider |ψk(r)|2,note
|ψk(r)|2 = |ψk(r+l)|2
get
|fk(r+l)|2 = |fk(r)|2
Bloch function
ψk(r) = uk(r)eik·r (5.1.10)
Bloch theorem
ψk(r+l) = ψk(r)eik·l (5.1.11)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 10 of 41
Go Back
Full Screen
Close
Quit
Discussed above can be generalized to other cases of wave equations
with periodic potentials.
Periodicity → Fourier transformation→ Reciprocal lattice
Dispersion relation,Bandgaps,Separated bands
Brillouin zones (BZ)–Wigner-Seitz cells of the reciprocal lattice
Born-von Karman cyclic boundary conditions
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 11 of 41
Go Back
Full Screen
Close
Quit
5.1.3,Revival of the Study on Classical Waves
Classical waves—an old scientific problem:
Elastic waves and Electromagnetic waves
Waves in water—Solitons,Nonlinear physics
X-ray diffraction in crystals demonstrated:
wave property of the rays and periodic structures of crystals
Bragg equation,kinematical theory
2dsinθ = nλ (5.1.12)
wavelength λ and lattice parameter d
Can be used to X rays,electrons,and neutrons diffraction in crystals
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 12 of 41
Go Back
Full Screen
Close
Quit
Bandgaps for X rays in crystals?
Frequency-wavevector relation of electromagnetic waves
stationary equation for electric displacement vector D
2D×?×[χ(r)D] = ω
2
c2 D (5.1.13)
χ(r) = 1? 1epsilon1(r) (5.1.14)
Photonic bandgaps:
a window of frequencies,electromagnetic wave cannot propagate
Crucial step to find the propagation gaps
Theoretically,John,Yablonovitch,in 1987;
Experimentally,Yablonovitchand Gmitter,in 1989,microwaves,three-
dimensional dielectric structures,called photonic crystals,pushed in
the late 1990s to light waves,application in photonics
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 13 of 41
Go Back
Full Screen
Close
Quit
Renewed interests:
Classical waves in both Periodic and Aperiodic structures
Electronic wave,Band structure (Bloch,1928) → localization (Ander-
son,1958; Edwards,1958);
Classical wave,localization (John,1984; Anderson,1985) → band
structure (Yabolonovitch,1987; John,1987)
Electron and photon both have characteristics of waves
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 13 of 41
Go Back
Full Screen
Close
Quit
Renewed interests:
Classical waves in both Periodic and Aperiodic structures
Electronic wave,Band structure (Bloch,1928) → localization (Ander-
son,1958; Edwards,1958);
Classical wave,localization (John,1984; Anderson,1985) → band
structure (Yabolonovitch,1987; John,1987)
Electron and photon both have characteristics of waves
There are some basic differences:
Dispersion relation,electrons is parabolic,photons is linear;
Angular momentum,electrons is 1/2,scalar-wave,photons have spin
1,vector-wave;
Band theory,electrons,approximated,Coulomb interactions,photons,
exact,no interactions
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 14 of 41
Go Back
Full Screen
Close
Quit
5.2,Electrons in Crystals
A large number of electrons in a solid
Independent electron model
Periodic ionic potential exists
5.2.1,Free Electron Gas Model
For alkali metals,such as Li,Na,K,noble metals Cu,Ag,Au
V(r) = 0,
planckover2pi1
2
2m?
2ψ(r) = Eψ(r)
ψk(r) =1/2eik·r (5.2.1)
E(k) = planckover2pi12k2/2m (5.2.2)
Fermi surface
EF = E(kF),(5.2.3)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 15 of 41
Go Back
Full Screen
Close
Quit
Fermi wavevector kF
N =
summationdisplay
k
= 2?(2pi)3
integraldisplay
dk,(5.2.4)
integraltext dk = 4pik3
F/3
kF =
parenleftbigg
3pi2N?
parenrightbigg1/3
(5.2.5)
EF = planckover2pi1
2
2m
parenleftbigg
3pi2N?
parenrightbigg2/3
,(5.2.6)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 15 of 41
Go Back
Full Screen
Close
Quit
Fermi wavevector kF
N =
summationdisplay
k
= 2?(2pi)3
integraldisplay
dk,(5.2.4)
integraltext dk = 4pik3
F/3
kF =
parenleftbigg
3pi2N?
parenrightbigg1/3
(5.2.5)
EF = planckover2pi1
2
2m
parenleftbigg
3pi2N?
parenrightbigg2/3
,(5.2.6)
En(k),ψnk(r),?(pi/a) <k< (pi/a)
Fig,5.2.1
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 16 of 41
Go Back
Full Screen
Close
Quit
0 pi/a 2pi/a 3pi/a-pi/a-2pi/a-3pi/a k k
EE
pi/a-pi/a
Figure 5.2.1 Dispersion curves of one-dimensional free electron gas for (a)
extended-zone scheme,and (b) reduced-zone scheme.
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 17 of 41
Go Back
Full Screen
Close
Quit
5.2.2,Nearly-Free Electron Model
V(r) as a perturbation
ψ(0)nk,E(0)n (k)
En(k) = E(0)n (k) +
angbracketleftBig
ψ(0)nk |V|ψ(0)nk
angbracketrightBig
+
summationdisplay
nprimekprime
prime
vextendsinglevextendsingle
vextendsingle
angbracketleftBig
ψ(0)nprimekprime |V|ψ(0)nk
angbracketrightBigvextendsinglevextendsingle
vextendsingle
2
E(0)n (k)?E(0)nprime (kprime)
(5.2.7)
ψnk = ψ(0)nk +
summationdisplay
nprimekprime
prime
angbracketleftBig
ψ(0)nprimekprime |V|ψ(0)nk
angbracketrightBig
E(0)n (k)?E(0)nprime (kprime)
ψ(0)nprimekprime,(5.2.8)
one-dimensional case,n = 1,nprime = 2
E1(k) similarequalE(0)1 (k) + |V?2pi/a|
2
E(0)1 (k)?E(0)2 (k)
,(5.2.9)
V?2pi/a = 1L
integraldisplay
V(x)ei2pix/adx
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 18 of 41
Go Back
Full Screen
Close
Quit
In the case k similarequal pi/a,E(0)1 = planckover2pi12k2/2m,E(0)2 = planckover2pi12(k? 2pi/a)2/2m?→
E(0)1 similarequalE(0)2,
degenerate perturbation theory
E±(k) = 12
braceleftBigg
E(0)1 (k) +E(0)2 (k)±
bracketleftbiggparenleftBig
E(0)2 (k)?E(0)1 (k)
parenrightBig2
+ 4|V?2pi/a|2
bracketrightbigg1/2bracerightBigg
(5.2.10)
Eg = E+(k)?E?(k) = 2|V?2pi/a| (5.2.11)
Fig,5.2.2
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 19 of 41
Go Back
Full Screen
Close
Quit
0 pi/a 2pi/a 3pi/a-pi/a-2pi/a-3pi/a k 0 pi/a-pi/a k
E E
(a) (b)
Figure 5.2.2 Bands and gaps in one-dimensional nearly-free electron model for (a)
extended zone scheme,and (b) reduced zone scheme.
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 20 of 41
Go Back
Full Screen
Close
Quit
Bragg diffraction for?pi/a<k<pi/a
ψ1k = ψ(0)1k + V?2pi/a
E(0)1 (k)?E(0)2 (k)
ψ(0)2k,(5.2.12)
right travelling wave ψ(0)1k = L?1/2 exp(ikx)
left travelling wave ψ(0)2k = L?1/2 exp[i(k?2pi/a)x]
wavefunctions at BZ boundaries
ψ±(x) = 1√2L
bracketleftBig
ψ(0)1,pi/a(x)±ψ(0)2,pi/a(x)
bracketrightBig
= 1√2L
parenleftBig
eipix/a ±e?ipix/a
parenrightBig
(5.2.13)
standing waves ψ+ = (2/L)1/2cos(pix/a) and ψ? = (2/L)1/2sin(pix/a)
Fig,5.2.3.
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 21 of 41
Go Back
Full Screen
Close
Quit
V (x)
| |2ψ?| |2ψ+
x
Figure 5.2.3 Bragg Reflection of electron in a periodic structure.
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 22 of 41
Go Back
Full Screen
Close
Quit
viewpoint of scattering:
Periodic potential → Strong scattering at k = pi/a
Gaps open at BZ boundaries → electronic band structure
In high-dimensions,Bragg condition,energy gaps at BZ also create
Quantitative details depend on the specific periodical potential →
various energy band structures
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 23 of 41
Go Back
Full Screen
Close
Quit
5.2.3,Tight-Binding Electron Model
3d bands in transition metals
V(r) very strong
Wannier function
wn(r?l) = N?1/2
summationdisplay
k
e?ik·lψnk(r) (5.2.14)
ψnk(r) = N?1/2
summationdisplay
l
eik·lwn(r?l) (5.2.15)
Wannier functions,orthogonalized for different n and l,
wn(r?l) is a localized function
Take a Bloch function in a band
ψk(r) = N?1/2u(r)eik·r,(5.2.16)
assume same u(r)
For cubic lattice,a,Wannier function at the origin
w(r) = sin(pix/a)sin(piy/a)sin(piz/a)(pix/a)(piy/a)(piz/a) u(r) (5.2.17)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 24 of 41
Go Back
Full Screen
Close
Quit
decreasing oscillated
When a not small,to use atomic wavefunction
w(r?l) similarequalφa(r?l)
ψk(r) = N?1/2
summationdisplay
l
eik·lφa(r?l) (5.2.18)
E(k) =
integraltext ψ?
k
braceleftBig
planckover2pi122m?2 +V(r)
bracerightBig
ψkdr
integraltext ψ?
kψkdr
similarequal
summationdisplay
h
eik·hEh (5.2.19)
Eh = 1?
c
integraldisplay
φ?a(r+h)
braceleftbigg
planckover2pi1
2
2m?
2 +V(r)
bracerightbigg
φa(r)dr (5.2.20)
bracketleftbigg
planckover2pi1
2
2m?
2 +va(r)
bracketrightbigg
φa(r) = Eaφa(r) (5.2.21)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 24 of 41
Go Back
Full Screen
Close
Quit
decreasing oscillated
When a not small,to use atomic wavefunction
w(r?l) similarequalφa(r?l)
ψk(r) = N?1/2
summationdisplay
l
eik·lφa(r?l) (5.2.18)
E(k) =
integraltext ψ?
k
braceleftBig
planckover2pi122m?2 +V(r)
bracerightBig
ψkdr
integraltext ψ?
kψkdr
similarequal
summationdisplay
h
eik·hEh (5.2.19)
Eh = 1?
c
integraldisplay
φ?a(r+h)
braceleftbigg
planckover2pi1
2
2m?
2 +V(r)
bracerightbigg
φa(r)dr (5.2.20)
bracketleftbigg
planckover2pi1
2
2m?
2 +va(r)
bracketrightbigg
φa(r) = Eaφa(r) (5.2.21)
For a simple cubic lattice with h = (a,0,0),(0,a,0) and (0,0,a)
E(k) similarequalEa + 2E100(cosakx +cosaky +cosakz),(5.2.22)
BZ is a cube,bandwidth 12|E100|,lowest energy Ea + 6E100.
Fig,5.2.4.
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 25 of 41
Go Back
Full Screen
Close
Quit
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 26 of 41
Go Back
Full Screen
Close
Quit
atom solid
E
1/a
Figure 5.2.4 Atomic levels spreading into bands as lattice separation decreases.
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 27 of 41
Go Back
Full Screen
Close
Quit
5.2.4,Kronig-Penney Model for Superlattices
semiconductor superlattice,GaAs-Ga1?xAlxAs
An electron in the direction of superlattice
one-dimensional periodic rectangular well potential
Fig,5.2.5,lattice spacing d = d1 +d2,barrier height V0
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 28 of 41
Go Back
Full Screen
Close
Quit
V(z)
V0
0-d2
z
d1 d1+d2
Figure 5.2.5 One-dimensional superlattice potential.
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 29 of 41
Go Back
Full Screen
Close
Quit
d2
dz2ψ+
2m
planckover2pi12 Eψ = 0,for GaAs 0 <z <d1 (5.2.23)
d2
dz2ψ+
2m
planckover2pi12 [E?V0]ψ = 0,for AlGaAs?d2 <z < 0 (5.2.24)
For E <V0
α2 = 2mEplanckover2pi12,β2 = 2m(V0?E)planckover2pi12
d2
dz2ψ+α
2ψ = 0,for 0 <z <d1 (5.2.25)
d2
dz2ψ?β
2ψ = 0 for?d2 <z < 0 (5.2.26)
ψ(z) = uk(z)eikz (5.2.27)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 30 of 41
Go Back
Full Screen
Close
Quit
d2
dz2u+2ik
d
dzu+ (α
2?k2)u = 0,for 0 <z <d1,(5.2.28)
d2
dz2u+ 2ik
d
dzu?(β
2 +k2)u = 0,for?d2 <z < 0 (5.2.29)
u1 = Aei(α?k)z +Be?i(α+k)z,(5.2.30)
u2 = Ce(β?ik)z +De?(β+ik)z (5.2.31)
u1(z)|0 = u2(z)|0,du1(z)dz
vextendsinglevextendsingle
vextendsinglevextendsingle
0
= du2(z)dz
vextendsinglevextendsingle
vextendsinglevextendsingle
0
u1(z)|d1 = u2(z)|?d2,du1(z)dz
vextendsinglevextendsingle
vextendsinglevextendsingle
d1
= du2(z)dz
vextendsinglevextendsingle
vextendsinglevextendsingle
d2
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 31 of 41
Go Back
Full Screen
Close
Quit
β2?α2
2αβ sinhβd2 sinαd1 + coshβd2 cosαd1 = cosk(d1 +d2) (5.2.32)
Problem,to deduce this formula,numerical solution!!
1 ≤
parenleftbiggV
0
2E?1
parenrightbiggparenleftbiggV
0
E?1
parenrightbigg?1/2
sin
parenleftbiggd
1(2mE)1/2
planckover2pi1
parenrightbigg
×sinh
parenleftbiggd
2[2m(V0?E)]1/2
planckover2pi1
parenrightbigg
+cos
parenleftbiggd
1(2mE)1/2
planckover2pi1
parenrightbigg
cosh
parenleftbiggd
2[2m(V0?E)]1/2
planckover2pi1
parenrightbigg
≤ 1(5.2.33)
Fig,5.2.6
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 32 of 41
Go Back
Full Screen
Close
Quit
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 33 of 41
Go Back
Full Screen
Close
Quit
E4
0 1 2 3 4 5 6 7 8 9 10
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
Ener
gy
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 1 of 41
Go Back
Full Screen
Close
Quit
Introduction to
Condensed Matter Physics
Jin Guojun
Nanjing University
February 12,2004
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 2 of 41
Go Back
Full Screen
Close
Quit
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 3 of 41
Go Back
Full Screen
Close
Quit
Part II
Wave Behavior in
Various Structures
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 4 of 41
Go Back
Full Screen
Close
Quit
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 5 of 41
Go Back
Full Screen
Close
Quit
Solid State Physics,Revisit and Extension
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 6 of 41
Go Back
Full Screen
Close
Quit
Like as the waves make towards the pebbled shore,
So do our minutes hasten to their end,
Each changing place with that which goes before,
In sequent toil all forward to contend.
— William Shakespeare
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 7 of 41
Go Back
Full Screen
Close
Quit
Waves always behave in a similar way,whether
they are longitudinal or transverse,elastic or
electric,Scientists of last century always kept
this idea in mind ···,This general philosophy of
wave propagation,forgotten for a time,has been
strongly revived in the last decade ···
— L,Brillouin (1946)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 8 of 41
Go Back
Full Screen
Close
Quit
5,Wave Propagation in Periodic and
Quasiperiodic Structures
6,Dynamics of Bloch Electrons
7,Surface and Impurity Effects
8,Transport Properties
9,Wave Localization in Disordered Systems
10,Mesoscopic Quantum Transport
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 9 of 41
Go Back
Full Screen
Close
Quit
Contents
II Wave Behavior inVarious Structures 3
5 Wave Propagation in Periodic and Quasiperiodic Structures 3
5.1 Unity of the Concept for Wave Propagation,,,,,,5
5.1.1 Wave Equations and Periodic Potentials,,,,5
5.1.2 Bloch Waves,,,,,,,,,,,,,,,,,,,,8
5.1.3 Revival of the Study on Classical Waves,,,,11
5.2 Electrons in Crystals,,,,,,,,,,,,,,,,,,,14
5.2.1 Free Electron Gas Model,,,,,,,,,,,,,14
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 10 of 41
Go Back
Full Screen
Close
Quit
5.2.2 Nearly-Free Electron Model,,,,,,,,,,,17
5.2.3 Tight-Binding Electron Model,,,,,,,,,,23
5.2.4 Kronig-Penney Model for Superlattices,,,,,27
5.2.5 Density of States and Dimensionality,,,,,,35
5.3 Lattice Waves and Elastic Waves,,,,,,,,,,,,38
5.3.1 Dispersion Relation of Lattice Waves,,,,,,38
5.3.2 Frequency Spectrum of Lattice Waves,,,,,,38
5.3.3 Elastic Waves in Periodic Composites,,,,,,38
5.4 Electromagnetic Waves in PeriodicStructures,,,,,,39
5.4.1 Photonic Bandgaps in Layered PeriodicMedia,39
5.4.2 Dynamical Theory of X-Ray Diffraction,,,,39
5.4.3 Bandgaps in Three-DimensionalPhotonic Crystals 39
5.4.4 Quasi Phase Matching in NonlinearOptical Crystals 39
5.5 Quasiperiodic Structures,,,,,,,,,,,,,,,,,40
5.5.1 One-Dimensional Quasiperiodic Structure,,,40
5.5.2 Two-Dimensional Quasiperiodic Structures,,,40
5.5.3 Three-Dimensional Quasicrystals,,,,,,,,40
5.6 Waves in Quasiperiodic Structures,,,,,,,,,,,,41
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 1 of 41
Go Back
Full Screen
Close
Quit
5.6.1 Electronic Spectra in a One-DimensionalQuasilattice 41
5.6.2 Wave Transmission through ArtificialFibonacci Structures 41
5.6.3 Pseudogaps in Real Quasicrystals,,,,,,,,41
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 2 of 41
Go Back
Full Screen
Close
Quit
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 3 of 41
Go Back
Full Screen
Close
Quit
Chapter 5
Wave Propagation in Periodic and
Quasiperiodic Structures
Newton,speed of sound,one-dimensional lattice model
Beginning of the 20th century,Cambell,periodic LC circuit theory,fil-
ter electric waves,proposed cut-off frequency,pass band and forbidden
band
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 4 of 41
Go Back
Full Screen
Close
Quit
Conventional solid state physics:
electrons and lattice vibration
Recent years,classical waves:
electromagnetic wave and elastic wave
in periodic composites
In 1980s,quasicrystals
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 5 of 41
Go Back
Full Screen
Close
Quit
5.1,Unity of the Concept for Wave Prop-
agation
Formal analogy and similarity between three types of waves
5.1.1,Wave Equations and Periodic Potentials
An electron,λ = 2pi/k,p = planckover2pi1k
Schr¨odinger equation
iplanckover2pi1tψ =
bracketleftbigg
planckover2pi1
2
2m?
2 +V(r)
bracketrightbigg
ψ (5.1.1)
V(r+l) = V(r) (5.1.2)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 6 of 41
Go Back
Full Screen
Close
Quit
Thermal fluctuation at finite temperature
u—atomic displacement,Φ—potential energy
Newton equation
Ms?
2
t2ulsα =?
summationdisplay
lprimesprimeβ
Φlsα,lprimesprimeβulprimesprimeβ (5.1.3)
Force constant—Φlsα,lprimesprimeβ ≡?2Φ/?ulsα?ulprimesprimeβ|0,periodicity
Φlsα,lprimesprimeβ = Φ0sα,ˉlsprimeβ,(5.1.4)
with ˉl = lprime?l
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 7 of 41
Go Back
Full Screen
Close
Quit
Electromagnetic waves,Maxwell equations
×E =?1c?B?t,?·B = 0
×H = 1c?D?t + 4pic j,?·D = 4piρ
Four coefficients related to materials,epsilon1,μ,χ,χm
D = epsilon1E = E +4piP = (1+ 4piχ)E
B = μH = H + 4piM = (1 + 4piχm)H
In general,epsilon1,μ,χandχm,tensors; Strong fields,nonlinear polarization
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 7 of 41
Go Back
Full Screen
Close
Quit
Electromagnetic waves,Maxwell equations
×E =?1c?B?t,?·B = 0
×H = 1c?D?t + 4pic j,?·D = 4piρ
Four coefficients related to materials,epsilon1,μ,χ,χm
D = epsilon1E = E +4piP = (1+ 4piχ)E
B = μH = H + 4piM = (1 + 4piχm)H
In general,epsilon1,μ,χandχm,tensors; Strong fields,nonlinear polarization
Electric displacement vector D,wave equation
1
c2
2D
t2 +?×
parenleftbigg 1
μ(r)?×
D
epsilon1(r)
parenrightbigg
= 0 (5.1.5)
μ(r) and epsilon1(r),second-order tensors → scalars
μ(r+l) = μ(r),epsilon1(r+l) = epsilon1(r) (5.1.6)
Three other field quantities,E,B,H,equivalent
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 8 of 41
Go Back
Full Screen
Close
Quit
5.1.2,Bloch Waves
Some common traits for wave propagation in periodic structures
Tuning condition:
Lattice separation a and Characteristic wavelengths λ
Electrons:
λ = (planckover2pi12/2mE)1/2,ranges from lattice spacing to bulk size
Lattice vibrations:
acoustic branches and optical branches
Wavelengths ranges from lattice spacing to bulk size
Electromagnetic radiation:
γ-ray (< 0.4?A),X-ray (0.4 ~ 50?A),ultraviolet ray (50 ~ 4000?A),vis-
ible light (4000 ~ 7000?A),infrared ray (0.76 ~ 600μm),to microwave
and radio wave (> 0.1 mm)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 9 of 41
Go Back
Full Screen
Close
Quit
Periodic structures,Bloch waves,an electron stationary equation
bracketleftbigg
planckover2pi1
2
2m?
2 +V(r)
bracketrightbigg
ψ(r) = Eψ(r) (5.1.7)
ψk(r) = uk(r)fk(r) (5.1.8)
uk(r +l) = uk(r) (5.1.9)
To determine fk(r),consider |ψk(r)|2,note
|ψk(r)|2 = |ψk(r+l)|2
get
|fk(r+l)|2 = |fk(r)|2
Bloch function
ψk(r) = uk(r)eik·r (5.1.10)
Bloch theorem
ψk(r+l) = ψk(r)eik·l (5.1.11)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 10 of 41
Go Back
Full Screen
Close
Quit
Discussed above can be generalized to other cases of wave equations
with periodic potentials.
Periodicity → Fourier transformation→ Reciprocal lattice
Dispersion relation,Bandgaps,Separated bands
Brillouin zones (BZ)–Wigner-Seitz cells of the reciprocal lattice
Born-von Karman cyclic boundary conditions
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 11 of 41
Go Back
Full Screen
Close
Quit
5.1.3,Revival of the Study on Classical Waves
Classical waves—an old scientific problem:
Elastic waves and Electromagnetic waves
Waves in water—Solitons,Nonlinear physics
X-ray diffraction in crystals demonstrated:
wave property of the rays and periodic structures of crystals
Bragg equation,kinematical theory
2dsinθ = nλ (5.1.12)
wavelength λ and lattice parameter d
Can be used to X rays,electrons,and neutrons diffraction in crystals
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 12 of 41
Go Back
Full Screen
Close
Quit
Bandgaps for X rays in crystals?
Frequency-wavevector relation of electromagnetic waves
stationary equation for electric displacement vector D
2D×?×[χ(r)D] = ω
2
c2 D (5.1.13)
χ(r) = 1? 1epsilon1(r) (5.1.14)
Photonic bandgaps:
a window of frequencies,electromagnetic wave cannot propagate
Crucial step to find the propagation gaps
Theoretically,John,Yablonovitch,in 1987;
Experimentally,Yablonovitchand Gmitter,in 1989,microwaves,three-
dimensional dielectric structures,called photonic crystals,pushed in
the late 1990s to light waves,application in photonics
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 13 of 41
Go Back
Full Screen
Close
Quit
Renewed interests:
Classical waves in both Periodic and Aperiodic structures
Electronic wave,Band structure (Bloch,1928) → localization (Ander-
son,1958; Edwards,1958);
Classical wave,localization (John,1984; Anderson,1985) → band
structure (Yabolonovitch,1987; John,1987)
Electron and photon both have characteristics of waves
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 13 of 41
Go Back
Full Screen
Close
Quit
Renewed interests:
Classical waves in both Periodic and Aperiodic structures
Electronic wave,Band structure (Bloch,1928) → localization (Ander-
son,1958; Edwards,1958);
Classical wave,localization (John,1984; Anderson,1985) → band
structure (Yabolonovitch,1987; John,1987)
Electron and photon both have characteristics of waves
There are some basic differences:
Dispersion relation,electrons is parabolic,photons is linear;
Angular momentum,electrons is 1/2,scalar-wave,photons have spin
1,vector-wave;
Band theory,electrons,approximated,Coulomb interactions,photons,
exact,no interactions
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 14 of 41
Go Back
Full Screen
Close
Quit
5.2,Electrons in Crystals
A large number of electrons in a solid
Independent electron model
Periodic ionic potential exists
5.2.1,Free Electron Gas Model
For alkali metals,such as Li,Na,K,noble metals Cu,Ag,Au
V(r) = 0,
planckover2pi1
2
2m?
2ψ(r) = Eψ(r)
ψk(r) =1/2eik·r (5.2.1)
E(k) = planckover2pi12k2/2m (5.2.2)
Fermi surface
EF = E(kF),(5.2.3)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 15 of 41
Go Back
Full Screen
Close
Quit
Fermi wavevector kF
N =
summationdisplay
k
= 2?(2pi)3
integraldisplay
dk,(5.2.4)
integraltext dk = 4pik3
F/3
kF =
parenleftbigg
3pi2N?
parenrightbigg1/3
(5.2.5)
EF = planckover2pi1
2
2m
parenleftbigg
3pi2N?
parenrightbigg2/3
,(5.2.6)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 15 of 41
Go Back
Full Screen
Close
Quit
Fermi wavevector kF
N =
summationdisplay
k
= 2?(2pi)3
integraldisplay
dk,(5.2.4)
integraltext dk = 4pik3
F/3
kF =
parenleftbigg
3pi2N?
parenrightbigg1/3
(5.2.5)
EF = planckover2pi1
2
2m
parenleftbigg
3pi2N?
parenrightbigg2/3
,(5.2.6)
En(k),ψnk(r),?(pi/a) <k< (pi/a)
Fig,5.2.1
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 16 of 41
Go Back
Full Screen
Close
Quit
0 pi/a 2pi/a 3pi/a-pi/a-2pi/a-3pi/a k k
EE
pi/a-pi/a
Figure 5.2.1 Dispersion curves of one-dimensional free electron gas for (a)
extended-zone scheme,and (b) reduced-zone scheme.
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 17 of 41
Go Back
Full Screen
Close
Quit
5.2.2,Nearly-Free Electron Model
V(r) as a perturbation
ψ(0)nk,E(0)n (k)
En(k) = E(0)n (k) +
angbracketleftBig
ψ(0)nk |V|ψ(0)nk
angbracketrightBig
+
summationdisplay
nprimekprime
prime
vextendsinglevextendsingle
vextendsingle
angbracketleftBig
ψ(0)nprimekprime |V|ψ(0)nk
angbracketrightBigvextendsinglevextendsingle
vextendsingle
2
E(0)n (k)?E(0)nprime (kprime)
(5.2.7)
ψnk = ψ(0)nk +
summationdisplay
nprimekprime
prime
angbracketleftBig
ψ(0)nprimekprime |V|ψ(0)nk
angbracketrightBig
E(0)n (k)?E(0)nprime (kprime)
ψ(0)nprimekprime,(5.2.8)
one-dimensional case,n = 1,nprime = 2
E1(k) similarequalE(0)1 (k) + |V?2pi/a|
2
E(0)1 (k)?E(0)2 (k)
,(5.2.9)
V?2pi/a = 1L
integraldisplay
V(x)ei2pix/adx
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 18 of 41
Go Back
Full Screen
Close
Quit
In the case k similarequal pi/a,E(0)1 = planckover2pi12k2/2m,E(0)2 = planckover2pi12(k? 2pi/a)2/2m?→
E(0)1 similarequalE(0)2,
degenerate perturbation theory
E±(k) = 12
braceleftBigg
E(0)1 (k) +E(0)2 (k)±
bracketleftbiggparenleftBig
E(0)2 (k)?E(0)1 (k)
parenrightBig2
+ 4|V?2pi/a|2
bracketrightbigg1/2bracerightBigg
(5.2.10)
Eg = E+(k)?E?(k) = 2|V?2pi/a| (5.2.11)
Fig,5.2.2
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 19 of 41
Go Back
Full Screen
Close
Quit
0 pi/a 2pi/a 3pi/a-pi/a-2pi/a-3pi/a k 0 pi/a-pi/a k
E E
(a) (b)
Figure 5.2.2 Bands and gaps in one-dimensional nearly-free electron model for (a)
extended zone scheme,and (b) reduced zone scheme.
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 20 of 41
Go Back
Full Screen
Close
Quit
Bragg diffraction for?pi/a<k<pi/a
ψ1k = ψ(0)1k + V?2pi/a
E(0)1 (k)?E(0)2 (k)
ψ(0)2k,(5.2.12)
right travelling wave ψ(0)1k = L?1/2 exp(ikx)
left travelling wave ψ(0)2k = L?1/2 exp[i(k?2pi/a)x]
wavefunctions at BZ boundaries
ψ±(x) = 1√2L
bracketleftBig
ψ(0)1,pi/a(x)±ψ(0)2,pi/a(x)
bracketrightBig
= 1√2L
parenleftBig
eipix/a ±e?ipix/a
parenrightBig
(5.2.13)
standing waves ψ+ = (2/L)1/2cos(pix/a) and ψ? = (2/L)1/2sin(pix/a)
Fig,5.2.3.
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 21 of 41
Go Back
Full Screen
Close
Quit
V (x)
| |2ψ?| |2ψ+
x
Figure 5.2.3 Bragg Reflection of electron in a periodic structure.
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 22 of 41
Go Back
Full Screen
Close
Quit
viewpoint of scattering:
Periodic potential → Strong scattering at k = pi/a
Gaps open at BZ boundaries → electronic band structure
In high-dimensions,Bragg condition,energy gaps at BZ also create
Quantitative details depend on the specific periodical potential →
various energy band structures
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 23 of 41
Go Back
Full Screen
Close
Quit
5.2.3,Tight-Binding Electron Model
3d bands in transition metals
V(r) very strong
Wannier function
wn(r?l) = N?1/2
summationdisplay
k
e?ik·lψnk(r) (5.2.14)
ψnk(r) = N?1/2
summationdisplay
l
eik·lwn(r?l) (5.2.15)
Wannier functions,orthogonalized for different n and l,
wn(r?l) is a localized function
Take a Bloch function in a band
ψk(r) = N?1/2u(r)eik·r,(5.2.16)
assume same u(r)
For cubic lattice,a,Wannier function at the origin
w(r) = sin(pix/a)sin(piy/a)sin(piz/a)(pix/a)(piy/a)(piz/a) u(r) (5.2.17)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 24 of 41
Go Back
Full Screen
Close
Quit
decreasing oscillated
When a not small,to use atomic wavefunction
w(r?l) similarequalφa(r?l)
ψk(r) = N?1/2
summationdisplay
l
eik·lφa(r?l) (5.2.18)
E(k) =
integraltext ψ?
k
braceleftBig
planckover2pi122m?2 +V(r)
bracerightBig
ψkdr
integraltext ψ?
kψkdr
similarequal
summationdisplay
h
eik·hEh (5.2.19)
Eh = 1?
c
integraldisplay
φ?a(r+h)
braceleftbigg
planckover2pi1
2
2m?
2 +V(r)
bracerightbigg
φa(r)dr (5.2.20)
bracketleftbigg
planckover2pi1
2
2m?
2 +va(r)
bracketrightbigg
φa(r) = Eaφa(r) (5.2.21)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 24 of 41
Go Back
Full Screen
Close
Quit
decreasing oscillated
When a not small,to use atomic wavefunction
w(r?l) similarequalφa(r?l)
ψk(r) = N?1/2
summationdisplay
l
eik·lφa(r?l) (5.2.18)
E(k) =
integraltext ψ?
k
braceleftBig
planckover2pi122m?2 +V(r)
bracerightBig
ψkdr
integraltext ψ?
kψkdr
similarequal
summationdisplay
h
eik·hEh (5.2.19)
Eh = 1?
c
integraldisplay
φ?a(r+h)
braceleftbigg
planckover2pi1
2
2m?
2 +V(r)
bracerightbigg
φa(r)dr (5.2.20)
bracketleftbigg
planckover2pi1
2
2m?
2 +va(r)
bracketrightbigg
φa(r) = Eaφa(r) (5.2.21)
For a simple cubic lattice with h = (a,0,0),(0,a,0) and (0,0,a)
E(k) similarequalEa + 2E100(cosakx +cosaky +cosakz),(5.2.22)
BZ is a cube,bandwidth 12|E100|,lowest energy Ea + 6E100.
Fig,5.2.4.
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 25 of 41
Go Back
Full Screen
Close
Quit
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 26 of 41
Go Back
Full Screen
Close
Quit
atom solid
E
1/a
Figure 5.2.4 Atomic levels spreading into bands as lattice separation decreases.
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 27 of 41
Go Back
Full Screen
Close
Quit
5.2.4,Kronig-Penney Model for Superlattices
semiconductor superlattice,GaAs-Ga1?xAlxAs
An electron in the direction of superlattice
one-dimensional periodic rectangular well potential
Fig,5.2.5,lattice spacing d = d1 +d2,barrier height V0
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 28 of 41
Go Back
Full Screen
Close
Quit
V(z)
V0
0-d2
z
d1 d1+d2
Figure 5.2.5 One-dimensional superlattice potential.
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 29 of 41
Go Back
Full Screen
Close
Quit
d2
dz2ψ+
2m
planckover2pi12 Eψ = 0,for GaAs 0 <z <d1 (5.2.23)
d2
dz2ψ+
2m
planckover2pi12 [E?V0]ψ = 0,for AlGaAs?d2 <z < 0 (5.2.24)
For E <V0
α2 = 2mEplanckover2pi12,β2 = 2m(V0?E)planckover2pi12
d2
dz2ψ+α
2ψ = 0,for 0 <z <d1 (5.2.25)
d2
dz2ψ?β
2ψ = 0 for?d2 <z < 0 (5.2.26)
ψ(z) = uk(z)eikz (5.2.27)
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 30 of 41
Go Back
Full Screen
Close
Quit
d2
dz2u+2ik
d
dzu+ (α
2?k2)u = 0,for 0 <z <d1,(5.2.28)
d2
dz2u+ 2ik
d
dzu?(β
2 +k2)u = 0,for?d2 <z < 0 (5.2.29)
u1 = Aei(α?k)z +Be?i(α+k)z,(5.2.30)
u2 = Ce(β?ik)z +De?(β+ik)z (5.2.31)
u1(z)|0 = u2(z)|0,du1(z)dz
vextendsinglevextendsingle
vextendsinglevextendsingle
0
= du2(z)dz
vextendsinglevextendsingle
vextendsinglevextendsingle
0
u1(z)|d1 = u2(z)|?d2,du1(z)dz
vextendsinglevextendsingle
vextendsinglevextendsingle
d1
= du2(z)dz
vextendsinglevextendsingle
vextendsinglevextendsingle
d2
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 31 of 41
Go Back
Full Screen
Close
Quit
β2?α2
2αβ sinhβd2 sinαd1 + coshβd2 cosαd1 = cosk(d1 +d2) (5.2.32)
Problem,to deduce this formula,numerical solution!!
1 ≤
parenleftbiggV
0
2E?1
parenrightbiggparenleftbiggV
0
E?1
parenrightbigg?1/2
sin
parenleftbiggd
1(2mE)1/2
planckover2pi1
parenrightbigg
×sinh
parenleftbiggd
2[2m(V0?E)]1/2
planckover2pi1
parenrightbigg
+cos
parenleftbiggd
1(2mE)1/2
planckover2pi1
parenrightbigg
cosh
parenleftbiggd
2[2m(V0?E)]1/2
planckover2pi1
parenrightbigg
≤ 1(5.2.33)
Fig,5.2.6
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 32 of 41
Go Back
Full Screen
Close
Quit
Home Page
Title Page
Contents
triangleleftsldtriangleleftsld trianglerightsldtrianglerightsld
triangleleftsld trianglerightsld
Page 33 of 41
Go Back
Full Screen
Close
Quit
E4
0 1 2 3 4 5 6 7 8 9 10
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
Ener
gy