Matrix Experiments
Using Orthogonal Arrays
Robust System Design
16.881 MIT
Comments on HW#2 and Quiz #1
Questions on the Reading
Quiz
Brief Lecture
Paper Helicopter Experiment
Robust System Design
16.881 MIT
Learning Objectives
? Introduce the concept of matrix experiments
? Define the balancing property and
orthogonality
? Explain how to analyze data from matrix
experiments
? Get some practice conducting a matrix
experiment
Robust System Design
16.881 MIT
Static Parameter Design and the
P-Diagram
Noise Factors
Induce noise
Product / Process
Response
Signal Factor
Hold constant
Optimize
for a “static”
experiment
Control Factors
Vary according to
an experimental plan
Robust System Design
16.881 MIT
Parameter Design Problem
? Define a set of control factors (A,B,C…)
? Each factor has a set of discrete levels
? Some desired response η (A,B,C…) is to be
maximized
Robust System Design
16.881 MIT
Full Factorial Approach
? Try all combinations of all levels of the
factors (A
1
B
1
C
1
, A
1
B
1
C
2
,...)
? If no experimental error, it is guaranteed to
find maximum
? If there is experimental error, replications
will allow increased certainty
? BUT ... #experiments = #levels
#control factors
Robust System Design
16.881 MIT
Additive Model
? Assume each parameter affects the response
independently of the others
η( A
i
, B
j
, C
k
, D
i
) =μ+ a
i
+ b
j
+ c
k
+ d
i
+ e
? This is similar to a Taylor series expansion
?f ?f
f (x, y) = f (x
o
, y
o
) +
?x
? (x ? x
o
) +
?y
? ( y ? y
o
) + h.o.t
x= x
o
y = y
o
Robust System Design
16.881 MIT
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
One Factor at a Time
Control Factors
Expt.
No.
A C
2
η
1
η
3
η
B D
2 2 2
2 2 2
2 2 2
2
η
2
η
2
η
2 2 1
2 2 3
2 1 2
2
η
2
η
2
η
2 3 2
1 2 2
3 2 2
Robust System Design
16.881 MIT
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
Orthogonal Array
Control Factors
Expt.
No.
A C D
1 1 1
η
2 2 2
η
3 3 3
η
1 2 3
η
2 3 1
η
3 1 2
η
1 3 2
η
2 1 3
η
3 2 1
η
B
1
1
1
2
2
2
3
3
3
Robust System Design
16.881 MIT
Notation for Matrix Experiments
Number of
experiments
L
9
(3
4
)
Number of levels
Number of factors
9=(3-1)x4+1
Robust System Design
16.881 MIT
Why is this efficient?
? One factor at a time
– Estimated response at A
3
is η
3
=μ+a
3
+e
3
? Orthogonal array
– Estimated response at A
3
is
η
3
=μ+a
3
+1/3(e
7
+ e
7
+ e
7
)
– Variance sums for independent errors
– Error variance ~ 1/replication number
Robust System Design
16.881 MIT
Factor Effect Plots
?Which CF
levels will
you choose?
? What is your
scaling
factor?
Factor Effects on the Mean
A1
A2
A3
B1
B2
B3
C1
C2
C3
D1
D2
D3
0
5
10
15
20
A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3
T
i
me (
s
ec)
Factor Effects on the Variance
A1
A2
A3
B1
B2
B3
C1
C2
C3
D2
D3
D1
0
5
10
15
20
25
A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3
T
i
me (
sec
)
Robust System Design
16.881 MIT
Factor Effects on the Variance
A1
A2
A3
B1
B2
B3
C1
C2
C3
D2
D3
D1
0
5
10
15
20
25
A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3
T
i
me (
sec)
Prediction Equation
μ
η( A
i
, B
j
, C
k
, D
i
) =μ+ a
i
+ b
j
+ c
k
+ d
i
+ e
Robust System Design
16.881 MIT
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
Inducing Noise
1
η
1
η
1
η
1 1 1
2 2 2
3 3 3
Control Factors
Expt.
No.
A C
{
B D
Noise
Factor
Expt.
No.
N
1
2
1
2
2 1 2 2
η
2
η
2
η
1 3 2
2 1 3
3
η
3
η
3
η
3 3 1
3 1 2
1 2 1
Robust System Design
16.881 MIT
Analysis of Variance (ANOVA)
? ANOVA helps to resolve the relative
magnitude of the factor effects compared to
the error variance
? Are the factor effects real or just noise?
? I will cover it in Lecture 7
? You may want to try the Mathcad “resource
center” under the help menu
Robust System Design
16.881 MIT