Lecture 3:
The Sampling Theorem
Eytan Modiano
AA Dept.
Eytan
Modiano
Slide 1
Sampling
?
Given a continuous time waveform, can we represent it using discrete samples?
–
How often should we sample?
–
Can we reproduce the original waveform?
?
?
?
?
?
?
?
?
?
?
Eytan
Modiano
Slide 2
The Fourier Transform
?
Frequency representation of signals
∞
()
=
∫
?∞
x
(
t
)
e
?
jf
t
d
t
?
Definition:
Xf
2
π
∞
2
π
xt
()
=
∫
?∞
X
(
f
)
e
jf
t
d
f
?
Notation:
X(f) = F[x(t)] X(t) = F-1 [X(f)] x(t)
?
X(f)
Eytan
Modiano
Slide 3
δδδ
Unit impulse
δ
(t)
t
0
,
δ
()
=?
t
≠
0
∞ δ
()
=
1
∫
?∞
t
∞
δ
()
()
=
x
(
0
)
∫
?∞
tx
t
∫
∞
δ
(
t
?
τ
)
x
(
τ
)
=
x
(
t
)
?∞
δ
∞
2
π
t
F
[(
t
)
]
δ
F
[(
t
)
]
=
∫
?∞
δ
(
t
)
e
?
jf
t
dt
=
e
0
=
1
δ
()
t
δ
()
?
1
0
Eytan
Modiano
Slide 4
1
jt
jf
Rectangle pulse
t
?
1
||
<
1
/
2
?
t
/
/
Π
()
=
?
12
|
t
|
=
12
??
0
otherwise
12
Π
∞
2
π
/
F
[(
t
)
]
=
∫
?∞
Π
(
t
)
e
?
jf
t
d
t
=
∫
?
12
e
?
j
2
π
f
t
d
t
/
e
?
π
?
e
π
π
f
=
=
Sin
()
=
Sinc
f
?
jf
π
f
2
π
()
Π
()
t
1
1/2
1/2
Eytan
Modiano
Slide 5
ααα
βββ
ααα
βββ
τττ
πππ
τττ
Properties of the Fourier transform
?
Linearity
–
x1(t) <=> X1(f), x2(t) <=>X2(f) =>
α
x1(t) +
β
x2(t) <=>
α
X1(f) +
β
X2(f)
?
Duality
–
X(f) <=> x(t) => x(f) <=> X(-t) and x(-f)<=> X(t)
?
Time-shifting:
x(t-
τ
) <=> X(f)e
-j2
π
f
τ
?
Scaling:
F[(x(at)] = 1/|a| X(f/a)
?
Convolution:
x(t) <=> X(f), y(t) <=> Y(f) then,
–
F[x(t)*y(t)] = X(f)Y(f)
–
Convolution in time corresponds to multiplication in frequency and visa versa
∞
xt
xt
?
τ
)
y
(
τ
)
d
τ
()
*
y
(
t
)
=
∫
?∞
(
Eytan
Modiano
Slide 6
ΠΠΠ
πππ
ΠΠΠ
ΠΠΠ
Fourier transform properties (Modulation)
2
π
xt
e
jf
o
t
?
X
(
f
?
f
o
)
()
e
jx
+
e
?
jx
Now
,
cos(
x
)
=
2
xt
e
jf
o
t
+
x
t
e
?
j
2
π
f
o
t
xt
()
cos(
2
π
f
o
t
)
=
()
2
π
()
2
(
x
t
Hence
,(
)
cos(
2
π
f
o
t
)
?
Xf
?
f
o
)
+
X
(
f
+
f
o
)
2
?
Example:
x(t)=
sinc
(t), F[sinc
(t)] =
Π
(f)
?
Y(t) =
sinc
(t)cos(2
π
f
o
t) <=> (
Π
(f-f
o
)+
Π
(f+f
o
))/2
1/2
Eytan
Modiano
-f
o
+f
o
Slide 7
|(
More properties
?
Power content of signal
?
Autocorrelation
?
Sampling
Eytan
Modiano
Slide 8
∫
∞
∞
xt
?∞
|(
)
|
2
d
t
=
∫
?∞
Xf
)
|
2
d
f
∞
*
R
x
()
=
∫
?∞
x
(
t
)
x
(
t
?
τ
)
d
t
τ
R
x
()
?
|
X
(
f
)
|
2
τ
xt
o
(
)
δ
(
t
?
t
o
)
()
=
xt
∞
xt
()
∑
δ
(
t
?
n
t
o
)
=
sampled version of x(t)
n
=?
∞
∞
∞
F
[
∑
δ
(
t
?
n
t
o
)
]
=
1
∑
δ
(
f
?
n
)
]
t
t
n
=?
∞
o
n
=?
∞
o
The Sampling Theorem
Xf
()
()
=
0
,
for
all
f
,
|
f
|
≥
W
?
Band-limited signal
Xf
–
Bandwidth < W
-w
w
Sampling Theorem: If we sample the signal at intervals Ts where
Ts <= 1/ 2W then signal can be completely reconstructed from its samples using the formula
∞
xt
()
=
∑
2
W
?
T
s
x
(
n
T
s
)
sin
c
[
2
W
?
(
t
?
n
T
s
)]
n
=?
∞
Where
,
W
≤
W
?
≤
1
?
W
T
s
∞
1
t
With
T
=
=
>
xt
s
()
=
∑
x
(
n
T
s
)
sin
c
[(
?
n
)]
2
W
T
n
=?
∞
s
∞
n
n
()
=
∑
x
(
)
sin
[
2
xt
cW
(
t
?
)]
2
W
2
W
n
=?
∞
Eytan
Modiano
Slide 9
Proof
∞
xt
()
∑
δ
(
t
?
n
T
s
)
δ
()
=
x
t
n
=?
∞
∞
Xf
()
*
F
[
∑
δ
(
t
?
n
T
s
)
]
δ
()
=
X
f
n
=?
∞
∞
∞
F
[
∑
δ
(
t
?
n
T
s
)
]
=
1
∑
δ
(
f
?
n
)
n
=?
∞
T
s
n
=?
∞
T
s
1
∞
n
δ
()
=
∑
Xf
?
)
Xf
(
Ts
n
=?
∞
T
s
?
The Fourier transform of the sampled signal is a replication of the Fourier transform of the original separated by 1/Ts intervals
-1/Ts
-w
w
1/Ts
2/Ts
Eytan
Modiano
Slide 1
0
Proof, continued
?
If 1/Ts > 2W then the replicas of X(f) will not overlap and can be recovered
?
How can we reconstruct the original signal?
–
Low pass filter the sampled signal
f
?
Ideal low pass filter is a rectangular pulse
Hf
T
()
=Π
(
)
s
2
W
?
Now the recovered signal after low pass filtering
f
Xf
f
T
()
=
X
δ
()
s
Π
(
)
2
W
f
xt
()
=
F
?
1
[
X
δ
(
f
)
T
s
Π
(
)
]
2
W
∞
t
()
=
∑
xn
T
s
)
Sinc
(
?
n
)
xt
(
n
=?
∞
T
s
Eytan
Modiano
Slide 1
1
Notes about Sampling Theorem
?
When sampling at rate 2W the reconstruction filter must be a rectangular pulse
–
Such a filter is not realizable
–
For perfect reconstruction must look at samples in the infinite future and past
?
In practice we can sample at a rate somewhat greater than 2W which makes reconstruction filters that are easier to realize
?
Given any set of arbitrary sample points that are 1/2W apart, can construct a continuous time signal band-limited to W
Eytan
Modiano
Slide 1
2