Trajectory Design For A Visible
Geosynchronous Earth Imager
Edmund M. C. Kong
SSL Graduate Research Assistant
Prof David W. Miller
Director, MIT Space Systems Lab
Dr. Raymond J. Sedwick
Postdoctoral Associate, MIT Space Systems Lab
AIAA Space Technology Conference & Exposition
Albuquerque, New Mexico
30 September, 1999
Space Systems Laboratory Massachusetts Institute of Technology
Introduction
Objective : To compare the different imaging configurations for a
Separated Spacecraft Interferometer operating from an
Earth’s orbit
Outline :
– Interferometric requirements & Orbit
Selection
– Equations of Motions (Hill’s Equations)
– Steered Planar Array
– Propellant Free Array: Collector S/C
– Results
– Summary
Space Systems Laboratory Massachusetts Institute of Technology
Interferometric Requirements & Orbit Selection
Interferometric Requirements:
Reqt 1. Equal science light pathlength
for visible imaging
Reqt 2. Axi-symmetric angular
resolution about LOS
Far-field assumption
? Array sees planar wavefronts from
targets
y
x
z
Orbit Selection: Geosynchronous
? Higher altitude, lower perturbative effects (eg. J
2
)
Space Systems Laboratory Massachusetts Institute of Technology
Equations of Motions
Assumption : First order perturbation about natural circular Keplerian orbit
(
c
r
o
s
s
-
r
a
n
g
e
)
z
x
N
y
(
ze
n
i
t
h
-
n
a
d
i
r
)
(
v
e
l
o
c
i
t
y
v
e
c
t
o
r
)
S
znza
xnya
ynxnxa
z
y
x
2
2
2
23
+=
+=
??=
&&
&&&
&&&
dtaaa
life
T
zyx
∫
++=?
0
222
V
Hill’s Equations :
Total Spacecraft Velocity Increment :
Example : ?V required to hold a spacecraft stationary
at (x,y,z)
222
9nV zxT
life
+=?
?V required :Spacecraft instantaneous acceleration :
0=
y
a zna
z
2
=xna
x
2
3?=
Space Systems Laboratory Massachusetts Institute of Technology
DSS Architecture 1
Constraint collector spacecraft to a local horizontal circular trajectory with
combiner spacecraft at the center (Reqts. 1 & 2)
55.1/V
2
=?
lifeo
TRn
()
()?
?
?
?
?
?
?
?
?
?
α+
α+±=
?
?
?
?
?
?
?
?
?
?
′
′
′
ntR
ntR
z
y
x
o
o
cos
sin
0x, a
z
y
L
O
S
ψ
φ
x'
b
c, z'
y
'
?No ?V for stationary combiner spacecraft at (0,y,0)
? ?V for collector spacecraft
?V Requirement
Average collector s/c ?V
at GEO altitude :
?
?
?
?
?
?
?
?
?
?
′
′
′
?
?
?
?
?
?
?
?
?
?
ψψ
ψ?ψ
?
?
?
?
?
?
?
?
?
?
φφ
φ?φ=
?
?
?
?
?
?
?
?
?
?
z
y
x
z
y
x
Hill
100
0cossin
0sincos
sinsin0
sincos0
001
Space Systems Laboratory Massachusetts Institute of Technology
DSS Architecture 2
-1.5
0
1.5
-1.5
0
1.5
-1.5
0
1.5
Velocity Vector (y/R
o
)
R
z
= R
o
Cross Axis (z/R
o
)
Z
e
n
i
th
(x
/R
o
)
-180 -90 0 90 180
0
30
60
90
120
150
180
(R
z
= R
o
)
R
z
= 0
(R
z
= ∞)
R
z
= R
o
(R
z
= 0)
[R
z
= -0.87R
o
]
R
z
= ∞
(R
z
= -∞)
[R
z
= 0.87R
o
]
(R
z
= -R
o
)
R
z
= -R
o
R
z
= -∞
LEO
GEO
ψ
(
degr
ees
)
φ (degrees)
()( )
?
?
?
?
?
?
?
?
?
?
±
?
=
?
?
?
?
?
?
?
?
?
?
4
0
16316
22
p
ppR
z
y
x
o
Focus
()
?
?
?
?
?
?
?
?
?
?
±
=
?
?
?
?
?
?
?
?
?
?
ntR
ntR
ntR
z
y
x
z
o
o
Collector
cos
sin
cos2
m
Constraint the projection of the collector
spacecraft’s trajectory to circular (Reqt. 2)
? Propellant free trajectories - (Project 2 x 1
ellipse in velocity plane)
Intersection between a plane and a circular
paraboloid results in an ellipse
? Placed combiner spacecraft placed at focus
for equal pathlength (Reqt. 1)
?for R
z
= R
o
Vary R
z
: (-∞,∞)
Space Systems Laboratory Massachusetts Institute of Technology
0 0.5 1 1.5 2 2.5 3 3.5 4
0
1
2
3
4
5
6
7
8
9
10
p/R
o
?
V/
n
2
R
o
T
lif
e
(2.2076,0.5642)
Optimum focus :
o
Rp 2076.2=
lifeo
TRn
2
5642.0V =?
DSS Architecture 2 (cont.)
A family of paraboloids can fit onto the free elliptical trajectories
? Locus of foci maps out a hyperbola
?for R
z
= R
o
-1.5
-1
-0.5
0
0.5
1
1.5
-1.5
-1
-0.5
0
0.5
1
1.5
-1
-0.5
0
0.5
1
y/R
o
(velocity vector)
Circular Paraboloid
Ellipse
← Optimal Focus (p/R
o
=2.2076)
Projected Circle
z/R
o
(Cross axis)
Hyperbola (Foci)
x/
R
o
(
Z
en
i
t
h
N
a
di
r
)
z
zR
x
o
4
3
22
±
?
=
?V requirement:
?No ?V required for collector spacecraft
? Only need ?V to hold combiner
spacecraft at paraboloid’s focus
Space Systems Laboratory Massachusetts Institute of Technology
Optical Delay Lines
-1.2 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2
-0.6
-0.3
0
0.3
0.6
x
1
"
x
2
"
Imaginary Paraboloid
Elliptical Trajectory
D
1
D
2
Delay/R
o
= |D
1
- D
2
|
φ
= 0
o
,
ψ
= 162
o
Combiner (Focus)
d
target
Cross Range (z/R
o
)
Z
e
n
i
th
(
x
/
R
o
)
180900?90?180
180
90
0
GEO
LEO
φ (degrees)
ψ
(degrees)
Delay/R
o
0 1 2 3 4
Steering with optical delay lines
? Collector s/c follow R
z
= R
o
elliptical trajectory
from Architecture 2
? Delay lines to image off-nadir targets (Reqt. 1)
Hill
z
y
x
z
y
x
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?=
?
?
?
?
?
?
?
?
?
?
′
′
′
φφ
φφψψ
ψψ
sinsin0
sincos0
001
100
0cossin
0sincos
2
2
2
1
256
25
8
5
cos
16
51
4
)(cos
n
nn
n
o
P
PntP
P
nt
R
D +++
?
?
?
?
?
?
?
?
++=
At GEO
? Maximum delay length from GEO (x’,D)
= 0.310R
o
? Minimum semi-minor axis projection
(y’,z’) = 0.914R
o
Collector s/c trajectory in propagation
vector’s (x’) frame:
Collector-Combiner s/c distance:
Space Systems Laboratory Massachusetts Institute of Technology
Mission Parameters
Components Steered Planar ODL
Combiner S/C 182.1 kg 182.1 kg
Combiner Propellant - ?V/(n
2
R
o
T
life
) = 0.56
Collector S/C 87.1 kg 87.1 kg
Collector Delay Lines - 0.34R
o
Collector Propellant ?V/(n
2
R
o
T
life
) = 1.55 -
Spacecraft Mass estimates from
initial Deep Space 3 (DS3) design
?T
life
= 5 years
?R
o
= 500 m (DS3 - 1000 m baseline)
For each spacecraft
? Determine ?V
? Propellant mass from Rocket equation
1
V
exp ?
?
?
?
?
?
?
?
?
?
=
gIm
m
spd
p
m
p
- Propellant Mass (kg)
m
d
- Spacecraft Dry Mass (kg)
I
sp
- Specific impulse (sec)
Place ODL on Collector S/C
? Ease of operation
? Lower overall dry mass and
therefore, lower system mass
g - Earth’s gravity (9.81 m/sec)
Space Systems Laboratory Massachusetts Institute of Technology
Impact of ODL
General Observations
? Relatively insensitive to the number of
collector s/c (> 4 collector)
? Trading between propellant and ODL
mass
R
o
= 500 m
? Break even point I
sp
= 250 s
(DLC = 0. 1 kg/m)
? Arch 1 : m
comb
= 182.1, m
coll
= 114.1
? Arch 2 : m
comb
= 200.4, m
coll
= 104.1
R
o
= 50 m
? Break even point I
sp
= 220 s
(DLC = 0.1 kg/m)
? Arch 1 : m
comb
= 182.1, m
coll
= 89.7
? Arch 2 : m
comb
= 184.1, m
coll
= 88.8
100 200 300 400 500 600 700 800 900 1000
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Specific Impulse (secs)
D
e
l
a
y
Lengt
h C
onv
er
s
i
on (
k
g/
m
)
R
o
= 500 m
R
o
= 50 m
(exp( / ) 1)
0.34
coll sp
o
mVIg
DLC
R
? ?
≈
Space Systems Laboratory Massachusetts Institute of Technology
Summary (1)
? Interferometric Requirements
y
x
z
? Equations of Motions
– Hill’s Equations
– ?V Calculation
? DSS Architecture 1
– ?V for collector spacecraft only
Space Systems Laboratory Massachusetts Institute of Technology
Summary (2)
? DSS Architecture 2
– Free ?V trajectories for collector spacecraft
– Minimum ?V combiner spacecraft location
– Exploitation of conic sections
? Results
– Delay Length vs Specific Impulse cross
over point
? Optical Delay Lines
– Delay lines to steer array’s LOS
100 200 300 400 500 600 700 800 900 1000
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Specific Impulse (secs)
D
e
l
a
y
L
engt
h C
onv
er
s
i
on
(
k
g/
m
)
R
o
= 500 m
R
o
= 50 m
-1.2 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2
-0.6
-0.3
0
0.3
0.6
x
1
"
x
2
"
Imaginary Paraboloid
Elliptical Trajectory
D
1
D
2
Delay/R
o
= |D
1
- D
2
|
φ = 0
o
, ψ = 162
o
Combiner (Focus)
d
target
Cross Range (z/R
o
)
Z
eni
t
h
(x
/
R
o
)
-180 -90 0 90 180
0
30
60
90
120
150
180
(R
z
= R
o
)
R
z
= 0
(R
z
= ∞)
R
z
= R
o
(R
z
= 0)
[R
z
= -0.87R
o
]
R
z
= ∞
(R
z
= -∞)
[R
z
= 0.87R
o
]
(R
z
= -R
o
)
R
z
= -R
o
R
z
= -∞
LEO
GEO
ψ
(
deg
r
e
es
)
φ (degrees)
-1.5
-1
-0.5
0
0.5
1
1.5
-1.5
-1
-0.5
0
0.5
1
1.5
-1
-0.5
0
0.5
1
y/R
o
(velocity vector)
Circular Paraboloid
Ellipse
← Optimal Focus (p/R
o
=2.2076)
Projected Circle
z/R
o
(Cross axis)
Hyperbola (Foci)
x/
R
o
(Z
e
n
i
t
h
Na
d
i
r
)