Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson Day 1 Introduction to Algorithms L1.2 Welcome to Introduction to Algorithms, Fall 2001 Handouts 1. Course Information 2. Calendar 3. Registration (MIT students only) 4. References 5. Objectives and Outcomes 6. Diagnostic Survey Day 1 Introduction to Algorithms L1.3 Course information 1. Staff 2. Distance learning 3. Prerequisites 4. Lectures 5. Recitations 6. Handouts 7. Textbook (CLRS) 8. Website 9. Extra help 10.Registration (MIT only) 11.Problem sets 12.Describing algorithms 13.Grading policy 14.Collaboration policy ? Course information handout Day 1 Introduction to Algorithms L1.4 Analysis of algorithms The theoretical study of computer-program performance and resource usage. What’s more important than performance? ? modularity ? correctness ? maintainability ? functionality ? robustness ? user-friendliness ? programmer time ? simplicity ? extensibility ? reliability Day 1 Introduction to Algorithms L1.5 Why study algorithms and performance? ? Algorithms help us to understand scalability. ? Performance often draws the line between what is feasible and what is impossible. ? Algorithmic mathematics provides a language for talking about program behavior. ? The lessons of program performance generalize to other computing resources. ? Speed is fun! Day 1 Introduction to Algorithms L1.6 The problem of sorting Input: sequence ?a 1 , a 2 , …, a n ? of numbers. Example: Input: 8 2 4 9 3 6 Output: 2 3 4 6 8 9 Output: permutation ?a' 1 , a' 2 , …, a' n ? such that a' 1 ≤ a' 2 ≤ … ≤ a' n . Day 1 Introduction to Algorithms L1.7 Insertion sort INSERTION-SORT (A, n) ? A[1 . . n] for j ← 2 to n do key ←A[ j] i ←j – 1 while i > 0 and A[i] > key do A[i+1] ← A[i] i ←i – 1 A[i+1] = key “pseudocode” ij key sorted A: 1 n Day 1 Introduction to Algorithms L1.8 Example of insertion sort 824936 Day 1 Introduction to Algorithms L1.9 Example of insertion sort 824936 Day 1 Introduction to Algorithms L1.10 Example of insertion sort 824936 284936 Day 1 Introduction to Algorithms L1.11 Example of insertion sort 824936 284936 Day 1 Introduction to Algorithms L1.12 Example of insertion sort 824936 284936 248936 Day 1 Introduction to Algorithms L1.13 Example of insertion sort 824936 284936 248936 Day 1 Introduction to Algorithms L1.14 Example of insertion sort 824936 284936 248936 248936 Day 1 Introduction to Algorithms L1.15 Example of insertion sort 824936 284936 248936 248936 Day 1 Introduction to Algorithms L1.16 Example of insertion sort 824936 284936 248936 248936 234896 Day 1 Introduction to Algorithms L1.17 Example of insertion sort 824936 284936 248936 248936 234896 Day 1 Introduction to Algorithms L1.18 Example of insertion sort 824936 284936 248936 248936 234896 234689done Day 1 Introduction to Algorithms L1.19 Running time ? The running time depends on the input: an already sorted sequence is easier to sort. ? Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones. ? Generally, we seek upper bounds on the running time, because everybody likes a guarantee. Day 1 Introduction to Algorithms L1.20 Kinds of analyses Worst-case: (usually) ? T(n) = maximum time of algorithm on any input of size n. Average-case: (sometimes) ? T(n) = expected time of algorithm over all inputs of size n. ? Need assumption of statistical distribution of inputs. Best-case: (bogus) ? Cheat with a slow algorithm that works fast on some input. Day 1 Introduction to Algorithms L1.21 Machine-independent time What is insertion sort’s worst-case time? ? It depends on the speed of our computer: ? relative speed (on the same machine), ? absolute speed (on different machines). BIG IDEA: ? Ignore machine-dependent constants. ? Look at growth of T(n) as n →∞ . “Asymptotic Analysis” Day 1 Introduction to Algorithms L1.22 Θ-notation ? Drop low-order terms; ignore leading constants. ? Example: 3n 3 + 90n 2 –5n + 6046 = Θ(n 3 ) Math: Θ(g(n)) = { f (n):there exist positive constants c 1 , c 2 , and n 0 such that 0 ≤ c 1 g(n) ≤ f (n) ≤ c 2 g(n) for all n ≥ n 0 } Engineering: Day 1 Introduction to Algorithms L1.23 Asymptotic performance n T(n) n 0 ? We shouldn’t ignore asymptotically slower algorithms, however. ? Real-world design situations often call for a careful balancing of engineering objectives. ? Asymptotic analysis is a useful tool to help to structure our thinking. When n gets large enough, a Θ(n 2 ) algorithm always beats a Θ(n 3 ) algorithm. Day 1 Introduction to Algorithms L1.24 Insertion sort analysis Worst case: Input reverse sorted. () ∑ = Θ=Θ= n j njnT 2 2 )()( Average case: All permutations equally likely. ( ) ∑ = Θ=Θ= n j njnT 2 2 )2/()( Is insertion sort a fast sorting algorithm? ? Moderately so, for small n. ? Not at all, for large n. [arithmetic series] Day 1 Introduction to Algorithms L1.25 Merge sort MERGE-SORT A[1 . . n] 1. If n = 1, done. 2. Recursively sort A[ 1 . . ?n/2? ] and A[ ?n/2?+1 . . n ] . 3. “Merge” the 2 sorted lists. Key subroutine: MERGE Day 1 Introduction to Algorithms L1.26 Merging two sorted arrays 20 13 7 2 12 11 9 1 Day 1 Introduction to Algorithms L1.27 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 Day 1 Introduction to Algorithms L1.28 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 Day 1 Introduction to Algorithms L1.29 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 Day 1 Introduction to Algorithms L1.30 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 Day 1 Introduction to Algorithms L1.31 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 Day 1 Introduction to Algorithms L1.32 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 Day 1 Introduction to Algorithms L1.33 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 Day 1 Introduction to Algorithms L1.34 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 20 13 12 11 Day 1 Introduction to Algorithms L1.35 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 20 13 12 11 11 Day 1 Introduction to Algorithms L1.36 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 20 13 12 11 11 20 13 12 Day 1 Introduction to Algorithms L1.37 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 20 13 12 11 11 20 13 12 12 Day 1 Introduction to Algorithms L1.38 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 20 13 12 11 11 20 13 12 12 Time = Θ(n) to merge a total of n elements (linear time). Day 1 Introduction to Algorithms L1.39 Analyzing merge sort MERGE-SORT A[1 . . n] 1. If n = 1, done. 2. Recursively sort A[ 1 . . ?n/2? ] and A[ ?n/2?+1 . . n ] . 3. “Merge” the 2 sorted lists T(n) Θ(1) 2T(n/2) Θ(n) Abuse Sloppiness: Should be T( ?n/2? ) + T( ?n/2? ) , but it turns out not to matter asymptotically. Day 1 Introduction to Algorithms L1.40 Recurrence for merge sort T(n) = Θ(1) if n = 1; 2T(n/2) + Θ(n) if n > 1. ? We shall usually omit stating the base case when T(n) = Θ(1) for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence. ? CLRS and Lecture 2 provide several ways to find a good upper bound on T(n). Day 1 Introduction to Algorithms L1.41 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. Day 1 Introduction to Algorithms L1.42 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. T(n) Day 1 Introduction to Algorithms L1.43 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. T(n/2) T(n/2) cn Day 1 Introduction to Algorithms L1.44 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn T(n/4) T(n/4) T(n/4) T(n/4) cn/2 cn/2 Day 1 Introduction to Algorithms L1.45 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 Θ(1) … Day 1 Introduction to Algorithms L1.46 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 Θ(1) … h = lg n Day 1 Introduction to Algorithms L1.47 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 Θ(1) … h = lg n cn Day 1 Introduction to Algorithms L1.48 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 Θ(1) … h = lg n cn cn Day 1 Introduction to Algorithms L1.49 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 Θ(1) … h = lg n cn cn cn … Day 1 Introduction to Algorithms L1.50 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 Θ(1) … h = lg n cn cn cn #leaves = n Θ(n) … Day 1 Introduction to Algorithms L1.51 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 Θ(1) … h = lg n cn cn cn #leaves = n Θ(n) Total = Θ(n lg n) … Day 1 Introduction to Algorithms L1.52 Conclusions ? Θ(n lg n) grows more slowly than Θ(n 2 ). ? Therefore, merge sort asymptotically beats insertion sort in the worst case. ? In practice, merge sort beats insertion sort for n > 30 or so. ? Go test it out for yourself!