PART 2
POWER AND PROPULSION CYCLES
2A-1
PART 2 – POWER AND PROPULSION CYCLES
2A – Gas Power and Propulsion Cycles
[SB&VW - 11.8, 11.9, 11.10, 11.11, 11.12, 11.13, 11.14]
In this section we analyze several gas cycles used in practical applications for propulsion
and power generation, using the air standard cycle. The air standard cycle is an approximation to
the actual cycle behavior, and the term specifically refers to analysis using the following
assumptions:
? Air is the working fluid (the presence of combustion products is neglected)
? Combustion is represented by heat transfer from an external heat source
? The cycle is ‘completed’ by heat transfer to the surroundings
? All processes are internally reversible
? Air is a perfect gas with constant specific heats
2.A.1 The Internal combustion engine (Otto Cycle)
The different processes of an idealized Otto cycle (internal combustion engine) are shown
in Figure 2A-1:
P
V
P
0
V
2
= V
3
V
1
= V
4
5
2
3
4
1
Q
H
Q
L
Adiabatic reversible
Figure 2A-1: Ideal Otto cycle
i. Intake stroke, gasoline vapor and air drawn into engine (5 -> 1)
ii. Compression stroke, P, T increase (1->2)
iii. Combustion (spark), short time, essentially constant volume (2->3)
Model: heat absorbed from a series of reservoir at temperatures T
2
to T
3
iv. Power stroke: expansion (3 ->4)
v. Valve exhaust: valve opens, gas escapes
vi. (4->1) Model: rejection of heat to series of reservoirs at temperatures T
4
to T
1
vii. Exhaust stroke, piston pushes remaining combustion products out of chamber 1->5
2A-2
The actual cycle does not have these sharp transitions between the different processes and might be
as sketched in Figure 2A-2
Spark
Exhaust
valve
opens
Not
isentropic
Exhaust valve
closes
P
P
0
V
Figure 2A-2: Sketch of actual Otto cycle
Efficiency of an ideal Otto cycle
The starting point is the general expression for the thermal efficiency of a cycle:
η ==
+
=+
work
heat input
QQ
Q
Q
Q
HL
H
L
H
1.
The convention, as previously, is that heat exchange is positive if heat is flowing into the system or
engine, so Q
L
is negative. The heat absorbed occurs during combustion when the spark occurs,
roughly at constant volume. The heat absorbed can be related to the temperature change from state
2 to state 3 as:
QQ U W
CdT C T T
H
v
T
T
v
== =
()
=
∫
=?
()
23 23 23
2
3
32
0?
The heat rejected is given by (for a perfect gas with constant specific heats)
QQ U CTT
Lv
== = ?()
41 41 1 4
?
Substituting the expressions for the heat absorbed and rejected in the expression for thermal
efficiency yields
η =?
?
?
1
41
32
TT
TT
2A-3
We can simplify the above expression using the fact that the processes from 1 to 2 and from 3 to
4 are isentropic:
TV TV TV TV
TTV TTV
TT
TT
V
V
41
1
32
1
11
1
22
1
411
1
322
1
41
32
2
1
1
γγ γγ
γγ
γ
?? ??
??
?
==
?()=?
()
?
?
=
?
?
?
?
?
?
,
The quantity
V
V
r
1
2
=
is called the compression ratio. In terms of compression ratio, the
efficiency of an ideal Otto cycle is:
η
γγ
Otto
V
V
r
=? =?
?
?
?
?
??
1
1
1
1
1
2
11
.
The ideal Otto cycle efficiency is shown at
the right, as a function of the compression ratio.
As the compression ratio, r, increases,
η
Otto
increases, but so does
T
2
. If
T
2
is
too high, the mixture will ignite without a
spark (at the wrong location in the cycle).
Ideal Otto cycle thermal efficiency
Engine work, rate of work per unit enthalpy flux:
The non-dimensional ratio of work done (the power) to the enthalpy flux through the
engine is given by
Power
Enthalpy flux
==
˙
˙
˙
˙
W
mc T
Q
mc T
p
Otto
p1
23
1
η
There is often a desire to increase this quantity, because it means a smaller engine for the same
power. The heat input is given by
˙
˙Qm h
fuel fuel23
=
()
?
,
where
?
?h
fuel
is the heat of reaction, ie the chemical energy liberated per unit mass of fuel
? ˙
m
fuel
is the fuel mass flow rate
.
The non-dimensional power is
˙
˙
˙
˙
W
mc T
m
m
h
cT r
p
fuel fuel
p11
1
1
1
=?
?
?
?
?
?
?
γ
.
0
0
10
20
30
40
50
60
70
2468
Compression ratio, r
v
Thermal ef
f
icienc
y
,
η
th
10 121416
2A-4
The quantities in this equation, evaluated at stoichiometric conditions are:
˙
˙
,
m
m
1
15
h
cT
410
10 288
fuel fuel
p1
7
3
≈≈
×
×
?
so,
˙
˙
W
mc T r
p1
1
91
1
≈?
?
?
?
?
?γ
.
Muddy points
How is ? h
fuel
calculated? (MP 2A.1)
What are "stoichiometric conditions"? (MP 2A.2)
2.A.2. Diesel Cycle
The Diesel cycle is a compression ignition (rather than spark ignition) engine. Fuel is sprayed
into the cylinder at P
2
(high pressure) when the compression is complete, and there is ignition
without a spark. An idealized Diesel engine cycle is shown in Figure 2A-3.
Q
H
P
V
2
V
V
3
V
4
= V
1
Q
L
Adiabatic
reversible
2 3
4
1
Figure 2A-3 Ideal Diesel cycle
The thermal efficiency is given by:
η
η
γ
Diesel
L
H
v
p
Diesel
T
T
T
T
Q
Q
CT T
CT T
T
T
=+ =+
?()
?
()
=?
?
()
?
()
11
1
1
1
14
32
1
4
1
2
3
2
This cycle can operate with a higher compression ratio than Otto cycle because only air is
compressed and there is no risk of auto-ignition of the fuel. Although for a given compression
ratio the Otto cycle has higher efficiency, because the Diesel engine can be operated to higher
compression ratio, the engine can actually have higher efficiency than an Otto cycle when both
are operated at compression ratios that might be achieved in practice.
2A-5
Muddy points
When and where do we use c
v
and c
p
? Some definitions use dU=c
v
dT. Is it ever
dU=c
p
dT? (MP 2A.3)
Explanation of the above comparison between Diesel and Otto. (MP 2A.4)
2.A.3 Brayton Cycle
The Brayton cycle is the cycle that represents the operation of a gas turbine engine. The
“simple gas turbine” can be operated in open cycle or closed cycle (recirculating working fluid)
modes, as shown below.
Fuel
Q
H
w
netw
net
ProductsAir
Q
L
Combustion
chamber
Compressor
Turbine
Heat
exchanger
Heat
exchanger
Compressor Turbine
(a)
(b)
Figure 2A-4: Gas turbine engine operating on the Brayton cycle – (a) open cycle operation, (b)
closed cycle operation
Efficiency of the Brayton cycle:
We derived the ideal Brayton cycle efficiency in Section 1.A:
η
γγ
Brayton
inlet
compressorexit
T
T PR
=? =?
?
11
1
1()/
.
Net work per unit mass flow in a Brayton cycle:
The net mechanical work of the cycle is given by:
Net mechanical work/unit mass =?ww
turbine compressor
,
where
whh
whh
compressor comp
turbine turb
=? =?
=? =?
??
??
12
34
If kinetic energy changes across the compressor and turbine are neglected, the temperature ratio,
TR, across the compressor and turbine is related to the enthalpy changes:
TR
h
h
h
h
comp turb
?= =1
14
? ?
,
2A-6
??hh
h
h
turb comp
=?
4
1
The net work is thus
net work =?
?
?
?
?
?
?
?h
h
h
comp
4
1
1
The turbine work is greater than the work needed to drive the compressor. The thermodynamic
states in an enthalpy-entropy (h,s) diagram, and the work of the compressor and turbine, are
shown below for an ideal Brayton cycle.
h
4
T
4
=T
max
w
turb
q
R
s
0T
0
=T
inlet
5
P
0
w
comp
q
A
P
3
3
Figure 2A-5: Brayton cycle in enthalpy-entropy (h-s) representation showing compressor
and turbine work
Muddy points
What is shaft work? (MP 2A.5)
2.A.4 Brayton Cycle for Jet Propulsion: the Ideal Ramjet
A schematic of a ramjet is given in Figure 2A-6 below.
0 1 34
5
inlet
streamtube
c
θ
p
0 T
0
c
3
p
3 T
3
diffuser
π
d
burner
τ
d
π
d
nozzle
Station Numbers
fuel, m
f
. exhaust
streamtube
T
4
c
5
p
5 T
5
Figure 2A-6: Ideal ramjet [adapted from J. L. Kerrebrock, Aircraft Engines and Gas Turbines]
2A-7
In the ramjet there are “no moving parts”. The processes that occur in this propulsion device are:
0->3 isentropic diffusion (slowing down) and compression, with a decrease in Mach
number,
MM
03
1→<<
3->4 Constant pressure combustion,
4->5 Isentropic expansion through the nozzle.
Thrust of an ideal engine ramjet
The coordinate system and control volume are chosen to be fixed to the ramjet. The
thrust, F, is given by:
Fcc=?()˙m
50
,
where c
5
and c
o
are the inlet and exit flow velocities. The thrust can be put in terms of non-
dimensional parameters as follows:
F
a
c
a
a
a
c
a˙m
0
5
5
5
0
0
0
=?
, where
aRT= γ
is the speed of sound.
F
a
M
a
a
MM
T
T
M
˙m
0
5
5
0
05
5
0
0
=?= ?
Using
MM
3
2
4
2
1, <<
in the expression for stagnation pressure,
P
P
M
T
=+
?
?
?
?
?
?
?
?
1
1
2
2
1
γ
γ
γ
,
PP PPP PPP
TT TT3
30
4
45
43
≈= ≈= ≈;;
The ratios of stagnation pressure to static pressure at inlet and exit of the ramjet are:
P
P
P
P
P
P
P
P
T
M
T
e
e
M
e
0
0
3
0
0
4
0
===
determines determines
1243412434
The ratios of stagnation to static pressure at exit and at inlet are the same, with the consequence
that the inlet and exit Mach numbers are also the same.
MM
50
=
.
To find the thrust we need to find the ratio of the temperature at exit and the temperature at inlet.
This is given by:
T
T
T
M
M
T
T
T
T
T
TT
T
T
T
b
5
0
5
5
2
0
2
0
5
0
4
3
1
1
2
1
1
2
=
+
?
+
?
===
γ
γ
τ
,
2A-8
where
τ
b
is the stagnation temperature ratio across the combustor (burner). The thrust is thus:
F
a
M
b
˙m
0
0
1=?
()
τ
Cycle efficiency in terms of aerodynamic parameters:
η
Brayton
compressor exit T
T
T
T
T
T
T
=? =? =?111
00
3
0
0
, and
T
T
M
T
0
0
0
2
1
1
1
2
=
+
?γ
, so:
η
γ
γ
Brayton
M
M
=
?
+
?
1
2
1
1
2
0
2
0
2
: Ramjet thermodynamic cycle efficiency in terms of flight
Mach number, M
0
.
For propulsion engines, the figures of merit includes more than thrust and
η
Brayton
.
The specific impulse,
I
sp
measures how effectively fuel is used:
I
F
g
F
fg
sp
f
==
˙˙mm
; Specific Impulse,
where ˙˙
mm
f
f=
is the fuel mass flow rate.
To find the fuel-air ratio, f, we employ a control volume around the combustor and carry out an
energy balance. Before doing this, however, it is useful to examine the way in which I
sp
appears
in expressions for range.
Muddy points
What exactly is the specific impulse, Isp, a measure of? (MP 2A.6)
How is Isp found for rockets in space where g ~ 0? (MP 2A.7)
Why does industry use TSCP rather than Isp? Is there an advantage to this? (MP
2A.8)
Why isn't mechanical efficiency an issue with ramjets? (MP 2A.9)
How is thrust created in a ramjet? (MP 2A.10)
Why don't we like the numbers 1 and 2 for the stations? Why do we go 0-3? (MP
2A.11)
For the Brayton cycle efficiency, why does T
3
=T
t0
? (MP 2A.12)
2.A.5 The Breguet Range Equation
[See Waitz Unified Propulsion Notes, No. IV (see the 16.050 Web site)]
Consider an aircraft in level flight, with weight W. The rate of change of the gross weight
of the vehicle is equal to the fuel weight flow:
2A-9
L
D
F
W
g
dW
dt
F
Isp
f
˙m =? =?
WLD
L
D
F
L
D
==
()
=
()
The rate of change of aircraft gross weight is thus
dW
dt
W
L
D
I
sp
=?
()
.
Suppose L/D and I
sp
remain constant along flight path:
dW
W
dt
L
D
I
sp
=?
()
.
We can integrate this equation for the change in aircraft weight to yield a relation between the
weight change and the time of flight:
ln
W
W
t
L
D
I
i
sp
=?
()
, where W
i
is the initial weight.
If W
f
is the final weight of vehicle and t
initial
=0, the relation between vehicle parameters and flight
time, t
f
, is
L
D
I
W
W
t
sp
i
f
f
ln =
.
The range is the flight time multiplied by the flight speed, or,
Range c t
L
D
cI
W
W
f sp
i
f
==
?
?
?
?
××
()
×
?
?
?
?
?
?
00
aircraft designer
propulsion system
designer
structural designer
ln
{
{
123
2A-10
The above equation is known as the Breguet range equation. It shows the influence of aircraft,
propulsion system, and structural design parameters.
Relation of overall efficiency, I
sp
, and thermal efficiency
Suppose
?h
fuel
is the heating value (‘heat of combustion’) of fuel (i.e., the energy per unit
of fuel mass), in J/kg. The rate of energy release is ˙
m
f fuel
h?
, so
cI c
F
g
h
h
Fc
h
h
g
sp
f
fuel
fuel f fuel
fuel
00
0
==
˙˙mm
?
??
?
and
Fc
h
f fuel
overall
0
˙m ?
=
()
=
Thrust power usefulwork
Ideal available energy
η
(overall propulsion system efficiency)
η
overall
fuel
sp
g
h
cI=
?
0
and
Range =
?h
g
L
D
W
W
fuel
overall
i
f
η ln
ηηηη
overall thermal propulsive combustion
=
The Propulsion Energy Conversion Chain
The above concepts can be depicted as parts of the propulsion energy conversion train
mentioned in Part 0, which shows the process from chemical energy contained in the fuel to
energy useful to the vehicle.
Figure 2A-7: The propulsion energy conversion chain.
The combustion efficiency is near unity unless conditions are far off design and we can regard the
two main drivers as the thermal and propulsive
1
efficiencies. The evolution of the overall
efficiency of aircraft engines in terms of these quantities is shown below in Figure 2A-8.
1
The transmission efficiency represents the ratio between compressor and turbine power, which is less than unity due to
parasitic frictional effects. As with the combustion efficiency, however, this is very close to one and the horizontal axis
can thus be regarded essentially as propulsive efficiency.
Chemical
1 energy
mh
f
fuel
?
?
Heat
Mechanical
work
Useful work:
Thrust power
η
combustion
1?
η
thermal
η
propulsive
exit
cc
=
+
2
1
0
/
m
ccexit
?
?
2
0
2
22
2A-11
0.1 0.2
0.2
0.3
0.3
0.3
0.4
0.4
0.4
0.5
0.5
0.5
0.6
0.6
0.6
0.8
0.8
0.7
0.7
0.60.50.4 0.3
0.8
0.7
SFCFuture
trend
Advanced
UDF
'777'
Engines
CF6-80C2
Low BPR
Turbojets
Current
High BPR
UDF
Engine
Core Thermal
Ef
ficiency
Propulsive x Transmission Efficiency
Whittle
Overall Efficiency
Figure 2A-8: Overall efficiency of aircraft engines as functions of thermal and propulsive
efficiencies [data from Koff].
Muddy points
How can we idealize fuel addition as heat addition? (MP 2A.13)
2.A.6 Performance of the Ideal Ramjet
We now return to finding the ramjet fuel-air ratio, f. Using a control volume around the
burner, we get:
Heat given to the fluid:
˙
˙˙Qh fh
f fuel fuel
==mm??
From the steady flow energy equation:
˙˙˙mmm
433
43
hh fh
tt fuel
?=?
The exit mass flow is not greatly different from the
inlet mass flow, ˙˙ ˙
mm fm
43 3
1=+()≈
, because the
fuel-air ratio is much less than unity (generally several percent). We thus neglect the difference
between the mass flows and obtain
hhcTT fh
tt ptt fuel
43 43
?= ?
()
= ?
Tc f h
tpb fuel
3
1τ ?
()
= ? , with
TTT M
tt
30
0
1
2 0
2
0
1== +
()
?γ
Θ
12434
Q
34
.
2A-12
Fuel-air ratio, f:
f
h
cT
b
fuel
p
=
?τ 1
00
?
Θ
,
The fuel-air ratio, f, depends on the fuel properties (
?h
fuel
), the desired flight parameters (
Θ
0
),
the ramjet performance (
τ
b
), and the temperature of the atmosphere (
T
0
).
Specific impulse, I
sp
:
The specific impulse for the ramjet is given by
I
F
fgg
ch
cT
sp
fuel
p
b
b
==
?
?
?
?
?
()
?()˙m
1
1
1
0
0
0
?
Θ
τ
τ
The specific impulse can be written in terms of fuel properties and flight and vehicle
characteristics as,
I
ah
gc T
M
sp
fuel
p b
=×
+
()
0
0
0
0
1
?
Θ
fuel properties
flight characteristics,ramjet temp increase
12434
1244344
τ
.
We wish to explore the parameter dependency of the above expression, which is a complicated
formula. How can we do this? What are the important effects of the different parameters? How
do we best capture the ramjet performance behavior?
To make effective comparisons, we need to add some additional information concerning the
operational behavior. An important case to examine is when f is such that all the fuel burns, i.e.
when we have stoichiometric conditions. What happens in this situation as the flight Mach
number, M
0
, increases? T
0
is fixed so T
t
3
increases, but the maximum temperature does not increase
much because of dissociation: the reaction does not go to completion at high temperature. A useful
approximation is therefore to take
T
t
4
constant for stoichiometric operation. In the stratosphere,
from 10 to 30 km,
TK
0
212≈≈constant
. The maximum temperature ratio is
τ
max
max
===
T
T
T
T
T
0
4
0
const
,
τ
τ
b
T
T
T
T
T
T
T
T
T
T
== =
4
3
4
0
3
0
0
max
Θ
For the stoichiometric ramjet:
I
F
fg
F
a
a
fg
M
a
fg
sp
stoich
b
stoich
== = ?
()
˙˙mm
0
0
0
0
1τ
2A-13
Using the expression for
τ
b
, the specific impulse is
IM
a
fg
sp
stoich
=?
?
?
?
?
?
?
0
0
0
1
τ
max
Θ
Representative performance values:
A plot of the performance of the stoichiometric ramjet is shown in Figure 2A-9.
1 2 3 4 5 6 7
0.5
1
1.5
2
2.5
F
m a
I g f
a
f = f
0
stoic
0
stoic
q = 10
b
.
F
m a
0
.
I
sp
gf
stoich
a
0
M
0
τ
max
= 10
f = f
stoich
Figure 2A-9: Thrust per unit mass flow and specific impulse for ideal ramjet with
stoichiometric combustion [adapted from Kerrebrock]
The figure shows that for the parameters used, the best operating range of a hydrocarbon-fueled
ramjet is
24
0
≤≤M
. The parameters used are
τ
max
= 10
,
ams
0
1
300≈
?
in the stratosphere,
f
stoich
= 0 067.
for hydrocarbons
a
gf
s
stoich
0
450≈
.
Recapitulation:
In this section we have:
Examined the Brayton Cycle for propulsion
Found
η
Brayton
as a function of M
0
Found
η
overall
and the relation between
η
overall
and
η
Brayton
Examined
F
a˙m
0
and I
sp
as a function of M
0
for the ideal ramjet.
Muddy points
What is the relation between
hhfh
t4 t3 f
?=? and the existence of the maximum value
of T
t4
? (MP 2A.14a)
Why didn’t we have a 2s point for the Brayton cycle with non-ideal components ? (MP
2A.14b)
What is the variable f
stoich
? (MP 2A.15)
2A-14
2.A.7 Effect of Departures from Ideal Behavior - Real Cycle behavior
[See also charts 69-82 in 16.050: Gas Turbine Engine Cycles]
What are the sources of non-ideal performance and departures from reversibility?
- Losses (entropy production) in the compressor and the turbine
- Stagnation pressure decrease in the combustor
- Heat transfer
We take into account here only irreversibility in the compressor and in the turbine. Because of
these irreversibilities, we need more work,
?h
comp
(the changes in kinetic energy from inlet to exit
of the compressor are neglected), to drive the compressor than in the ideal situation. We also get
less work,
?h
turb
, back from the turbine. The consequence, as can be inferred from Figure 2A-10
below, is that the net work from the engine is less than in the cycle with ideal components.
h
4
5
5s
3
0
3s
s
q
R
q
A
w
turb
T
4
= T
max
T
0
= T
inlet
P
3
P
0
w
comp
Figure 2A-10: Gas turbine engine (Brayton) cycle showing effect of departure from ideal
behavior in compressor and turbine
To develop a quantitative description of the effect of these departures from reversible
behavior, consider a perfect gas with constant specific heats and neglect kinetic energy at the
inlet and exit of the turbine and compressor. We define the turbine adiabatic efficiency as:
η
turb
turb
actual
turb
ideal
S
w
w
hh
hh
==
?
?
4 5
4 5
where
w
turb
actual
is specified to be at the same pressure ratio as
w
turb
ideal
. (See charts 69-76 in 16.050
Gas Turbine Cycles.)
There is a similar metric for the compressor, the compressor adiabatic efficiency:
2A-15
η
comp
comp
ideal
comp
actual
S
w
w
hh
hh
==
?
?
30
30
again for the same pressure ratio. Note that the ratio is the actual work delivered divided by the
ideal work for the turbine, whereas the ratio is the ideal work needed divided by the actual work
required for the compressor. These are not thermal efficiencies, but rather measures of the
degree to which the compression and expansion approach the ideal processes.
We now wish to find the net work done in the cycle and the efficiency. The net work is given
either by the difference between the heat received and rejected or the work of the compressor
and turbine, where the convention is that heat received is positive and heat rejected is negative
and work done is positive and work absorbed is negative.
Net work =
H
heat in heat out
turb comp
qqhhhh
ww hhhh
L
{ {
+=?
()
??
()
+=?
()
??
()
?
?
?
?
?
43 5 0
4 5 30
The thermal efficiency is:
η
thermal
=
Net work
Heat input
We need to calculate T
3
, T
5
From the definition of
η
comp
,
TT
TT
T
S
c
T
S
T
c
30
30
0
3
0
1
?=
?
()
=
?
()
ηη
With
T
S
T
comp
comp
3
0
1
1
()
=
?
?
?
?
?
?
=
?
?
isentropic temperature ratio =
P
P
exit
inlet
γ
γ
γ
γ
Π
TT T
comp
comp
30
1
0
1
=
?
?
?
?
?
?
?
+
?
Π
γ
γ
η
Similarly, by the definition of
η
turb
ext
inlet
P
P
=
actual work received
ideal work for same
, we can find T
5
:
TT TT T
T
T
T
turb
S
turb
S
turb Turb4 5 4 5 4
5
4
4
1
11?= ?
()
=?
?
?
?
?
?
?
=?
?
?
?
?
?
?
?
?
?
ηη η
γ
γ
Π
TT T
turb turb5 44
1
1=? ?
?
?
?
?
?
?
?
?
?
η
γ
γ
Π
2A-16
The thermal efficiency can now be found:
η
thermal
L
H
Q
Q
TT
TT
=+ =?
?
?
11
5 0
43
with
Π
Π
Π
c
t
==
1
, and
τ
γ
γ
S
=
?
Π
1
the isentropic cycle temperature ratio,
η
η
τ
η
τ
thermal
turb
S
comp
S
TT
TT
=?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
??
()
+
?
?
?
?
?
?
?
?
1
11
1
1
11
40
40
or,
η
τ
ηη τ
ητ
thermal
S
comp turb S
cS
T
T
T
T
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+?
?
?
?
?
?
?
?
1
1
11
4
0
4
0
There are several non-dimensional parameters that appear in this expression for thermal
efficiency. We list these just below and show their effects in subsequent figures:
Parameters reflecting design choices
τ
γ
γ
S
=
?
Π
1
: cycle pressure ratio
T
T
4
0
: maximum turbine inlet temperature
Parameters reflecting the ability to design and execute efficient components
η
comp
: compressor efficiency
η
turb
: turbine efficiency
In addition to efficiency, net rate of work is a quantity we need to examine,
˙˙ ˙
WW W
net turbine compressor
=?
Putting this in a non-dimensional form:
˙
˙
W
m
work to drive compressor
work extracted from flow by turbine
net
p comp
S turb
S
cT
T
T
0
4
0
1
11
1
=? ?()+?
?
?
?
?
?
?
η
τη
τ
1244 344
1244 344
˙
˙
W
cT
T
T
net
p
S
T
S comp
m
0
4
0
1
1
=?() ?
?
?
?
?
?
?
?
?
τ
η
τη
2A-17
Trends in net power and efficiency are shown in Figure 2A-11 for parameters typical of
advanced civil engines. Some points to note in the figure:
? For any
ηη
comp turb
, ≠ 1
, the optimum pressure ratio (
Π
) for maximum
η
th
is not the
highest that can be achieved, as it is for the ideal Brayton cycle. The ideal analysis is too
idealized in this regard. The highest efficiency also occurs closer to the pressure ratio for
maximum power than in the case of an ideal cycle. Choosing this as a design criterion will
therefore not lead to the efficiency penalty inferred from ideal cycle analysis.
? There is a strong sensitivity to the component efficiencies. For example, for
ηη
turb comp
==085.
, the cycle efficiency is roughly two-thirds of the ideal value.
? The maximum power occurs at a value of
τ
S
or pressure ratio (
Π
) less than that for
max
η
. (this trend is captured by ideal analysis).
? The maximum power and maximum
η
thermal
are strongly dependent on the maximum
temperature,
T
T
4
0
.
Muddy points
How can
T
T
4
0
be the maximum turbine inlet temperature? (MP 2A.16)
When there are losses in the turbine that shift the expansion in T-s diagram to the
right, does this mean there is more work than ideal since the area is greater? (MP
2A.17)
2A-18
Figure 2A-11: Non-dimensional power and efficiency for a non-ideal gas turbine engine - (a)
Non-dimensional work as a function of cycle pressure ratio for different values of turbine entry
temperature divided by compressor entry temperature, (b) Overall cycle efficiency as a function
of pressure ratio for different values of turbine entry temperature divided by compressor entry
temperature, (c) Overall cycle efficiency as a function of cycle pressure ratio for different
component efficiencies. [from Cumpsty, Jet Propulsion]
2A-19
A scale diagram of a Brayton cycle with non-ideal compressor and turbine behaviors, in terms of
temperature-entropy (h-s) and pressure-volume (P-v) coordinates is given below as Figure 2A-
12.
Figure 2A-12: Scale diagram of non-ideal gas turbine cycle. Nomenclature is shown in the figure.
Pressure ratio 40, T
0
= 288, T
4
=1700, compressor and turbine efficiencies = 0.9 [adapted from
Cumpsty, Jet Propulsion]
Muddy points
For an afterburning engine, why must the nozzle throat area increase if the
temperature of the fluid is increased? (MP 2A.18a)
Why doesn’t the pressure in the afterburner go up if heat is added? (MP 2A.18b)
Why is the flow in the nozzle choked? (MP 2A.18c)
What’s the point of having a throat if it creates a retarding force? (MP 2A.18d)
Why isn’t the stagnation temperature conserved in this steady flow? (MP 2A.18e)
Muddiest points on part 2A
2A.1 How is ?h
fuel
calculated?
For now, we rely on tabulated values. In the lectures accompanying Section 2.C of the
notes, we will see how one can calculate the heat ,
fuel
h? , liberated in a given reaction.
2A.2 What are "stoichiometric conditions"?
Stoechiometric conditions are those in which the proportions of fuel and air are such that
there is not an excess of each one--all the fuel is burned, and all the air (oxidizer) is used
up doing it. See Notes Sections 2.C.
2A.3 When and where do we use c
v
and c
p
? Some definitions use dU=c
v
dT. Is it ever
dU=c
p
dT?
The answer is no. The definitions of c
p
and c
v
are derived in the notes on page 0-6. c
p
is
the specific heat at constant pressure and for an ideal gas dh = c
p
dT always holds.
Similarly c
v
is the specific heat at constant volume and for an ideal gas du = c
v
dT always
holds. A discussion on this is also given in the notes on pages 0-6 and 0-7. If you think
about how you would measure the specific heat c = q/(T
final
– T
initial
) for a certain known
change of state you could do the following experiments.
For a process during which heat ?q is transferred (reversibly) and the volume stays
constant (e.g. a rigid, closed container filled with a substance, or the heat transfer in an
Otto engine during combustion – the piston is near the top-dead-center and the volume is
approximately constant for the heat transfer) the first law is du = dq since v = const.
Using the definition du = c
v
dT we obtain for the specific heat at constant volume
c
v
= ?q/ ?T ,
where both the heat transferred ?q and the temperature difference ?T can be measured.
Similarly we can do an experiment involving a process where the pressure is kept
constant during the reversible heat transfer ?q (e.g. a rigid container filled with a
substance that is closed by a lid with a certain weight, or the heat transfer in a jet engine
combustor where the pressure is approximately constant during heat addition). The first
law can be written in terms of enthalpy as dh – vdp = dq, and since p = const we obtain
dh = dq. Using the definition dh = c
p
dT we obtain for the specific heat at constant
pressure
c
p
= ?q/ ?T .
2A.4 Explanation of the above comparison between Diesel and Otto.
Basically we can operate the diesel cycle at much higher compression ratio than the Otto
cycle because only air is compressed and we don't run into the auto-ignition problem
(knocking problem). Because of the higher compression ratios in the diesel engine we get
higher efficiencies.
2A.5 What is shaft work?
I am not sure how best to answer, but it appears that the difficulty people are having
might be associated with being able to know when one can say that shaft work occurs.
There are several features of a process that produces (or absorbs) shaft work. First of all
the view taken of the process is one of control volume, rather than control mass (see the
discussion of control volumes in Section 0 or in IAW). Second, there needs to be a shaft
or equivalent device (a moving belt, a row of blades) that can be identified as the work
carrier. Third, the shaft work is work over and above the “flow work” that is done by (or
received by) the streams that exit and enter the control volume.
2A.6 What exactly is the specific impulse, Isp, a measure of?
The specific impulse is a measure of how well the fuel is used in creating thrust. For a
rocket engine, the specific impulse is the effective exit velocity divided by the
acceleration of gravity, g. In terms of relating the specific impulse to some characteristic
time, we can write the definition of I
sp
as
FgmI
sp
=& .
From this, one can regard the specific impulse as the time that it would take to flow a
quantity of fuel that has a weight equal to the thrust force
2A.7 How is Isp found for rockets in space where g ~ 0?
The impulse I given to a rocket is the thrust force integrated over the burn time.
Traditionally, for the case of constant exhaust velocity c
ex
, the specific impulse has been
used I
sp
= I /(m
p
g) = c
ex
/ g
0
, where m
p
is the propellant mass and g
0
is the Earth's surface
gravity. Thus I
sp
is measured in seconds and is a force per weight flow. Often today,
however, specific impulse is measured in units meters/second [m/s], recognizing that
force per mass flow is more logical. The specific impulse is then simply equal to the
exhaust velocity I
sp
= c
ex
.
2A.8 Why does industry use TSCP rather than Isp? Is there an advantage to this?
I am not sure why Thrust*Specific Fuel Consumption was originally used. The gas
turbine industry uses TSFC; the rocket propulsion industry uses essentially its inverse,
Specific Impulse. Perhaps an advantage is that TSFC is a number of magnitude unity,
whereas specific impulse is not.
2A.9 Why isn't mechanical efficiency an issue with ramjets?
As defined, the mechanical efficiency represents bearing friction, and other parasitic
torques on the rotating shaft in a gas turbine. The work associated with this needs to be
provided by the turbine, but does not go into driving the compressor. The ramjet has no
shaft, and hence does not encounter this.
2A.10 How is thrust created in a ramjet?
You can look at thrust in several ways. One is through the integral form of the
momentum equation, which relates thrust to the difference between exit and inlet
velocities, multiplied by the mass flow. Another way, however, is to look at the forces on
the ramjet structure, basically the summation of pressure forces on all the surfaces. I
attempted to do this in class using the turbojet with an afterburner. For the ramjet, from
the same considerations, we would have an exit nozzle that was larger in diameter than
the inlet so that the structural area on which there is a force in the retarding direction is
smaller than the area on which there is a force in the thrust direction.
2A.11 Why don't we like the numbers 1 and 2 for the stations? Why do we go 0-3?
A common convention in the industry is that station 0 is far upstream, station 1 is after
the shock in the inlet (if there is one), station 2 is at inlet to the compressor (after the
inlet/diffuser) and station 3 is after the compressor. In class, when we examined the
ramjet we considered no changes in stagnation pressure between 0 and 2, so I have used 0
as the initial state for the compression process. It would be more precise to differentiate
between stations 0 and 2, and I will do this where appropriate.
2A.12 For the Brayton cycle efficiency, why does T
3
=T
t0
?
The ramjet is operating as a Brayton cycle where η
b
= 1 – T
inlet
/ T
compressor exit
. For the
ramjet discussed in class the inlet temperature is T
0
and since there is no compressor (no
moving parts) the only compression we get is from diffusion. We assumed isentropic
diffusion in the diffuser and found for very low Mach numbers that the diffuser exit or
combustor inlet temperature T
3
is T
t3
. From first law we know that for a steady, adiabatic
flow where no work is done the stagnation enthalpy stays constant. Assuming perfect gas
we thus get T
t0
= T
t3
= T
3
. So we can write for the ramjet thermal efficiency
η
b
= 1 – T
0
/ T
t0
.
2A.13 How can we idealize fuel addition as heat addition?
The validity of an approximation rests on what the answer is going to be used for. We
are seeking basically only one item concerning combustor exit conditions, namely the
exit temperature or the exit enthalpy. The final state is independent of how we add the
heat, and depends only on whether we add the heat. If it is done from an electrical heater
or from combustion, and if we neglect the change in the constitution of the gas due to the
combustion products (most of the gas is nitrogen) the enthalpy rise is the same no matter
how the temperature rise is achieved.
2A.14a What is the relation between hhfh
t4 t3 f
?=?and the existence of the maximum
value of T
t4
?
The two are very different physical statements. The first is the SFEE (steady flow energy
equation) plus the approximation that inlet and exit mass flows to the control volume are
the same. The heat received within the volume is represented by the quantity fh
f
? ,
where ?h
f
is the heat liberated per kilogram of fuel. The second statement is a
representation of the fact that the degree of completion of the reaction in the combustor
depends on temperature, so that even though the inlet temperature increases strongly as
the Mach number increases, the combustor exit temperature does not change greatly.
This is an attempt to represent a complex physical process (or set of processes) in an
approximate manner, not a law of nature.
2A.14b Why didn’t we have a 2s point for the Brayton cycle with non-ideal components?
If we didn’t, we should have, or I should at least have marked the point at which the
compressor exit would be if the compression process was isentropic.
2A.15 What is the variable f
stoich
?
f
stoich
is the fuel-to-air ratio for stoichiometric combustion, or in other words the fuel-to-
air ratio for a chemically correct combustion process during which all fuel is burnt.
2A.16 How can
T
T
4
0
be the maximum turbine inlet temperature?
I agree that the T
4
/T
0
is a temperature ratio. If we assume constant ambient temperature
then this ratio reflects the maximum cycle temperature. The main point was to emphasize
that the higher your turbine inlet temperature the higher your power and efficiency levels.
2A.17 When there are losses in the turbine that shift the expansion in T-s diagram to
the right, does this mean there is more work than ideal since the area is
greater?
We have to be careful when looking at the area enclosed by a cycle or underneath a path
in the T-s diagram. Only for a reversible cycle, the area enclosed is the work done by the
cycle (see notes page 1C-5). Looking at the Brayton cycle with losses in compressor and
turbine the net work is the difference between the heat absorbed and the heat rejected
(from 1
st
law). The heat absorbed can be found by integrating TdS = dQ along the heat
addition process. The heat rejected during the cycle with losses in compressor and turbine
is larger than in the ideal cycle (look at the area underneath the path where heat is
rejected, this area is larger than when there are no losses ds
irrev
= 0 – see also muddy point
1C.1). So we get less net work if irreversibilities are present. It is sometimes easier to
look at work and heat (especially shaft work for turbines and compressors) in the h-s
diagram because the enthalpy difference between two states directly reflects the shaft
work (remember, enthalpy includes the flow work!) and / or heat transfer.
2A.18a For an afterburning engine, why must the nozzle throat area increase if the
temperature of the fluid is increased?
The Mach number of the flow is unity at the throat with and without the afterburner
lit. The ratio of static pressure to stagnation pressure at the throat is thus the same
with and without the afterburner lit. The ratio of static temperature to stagnation
temperature at the throat is thus the same with and without the afterburner lit.
T
T
M
P
P
M
tt
=+
?
=+
?
?
?
?
?
?
()
1
1
2
1
1
2
22
1
γγ
γ
γ
;
/
The flow through the throat is
˙mcA aA
P
RT
RTA
throat throat throat
===ρρ γ.
The flow through the throat thus scales as
˙
˙
/
/
/
/
m
m
P
T
A
P
T
A
AB
noA B
throat
AB
throat
noA B
=
?
?
?
?
?
?
?
?
?
?
?
?
From what we have said, however, the pressure at the throat is the same in both cases.
Also, we wish to have the mass flow the same in both cases in order to have the
engine operate at near design conditions. Putting these all together, plus use of the
idea that the ratio of stagnation to static temperature at the throat is the same for both
cases gives the relation
A
A
T
T
throat
AB
throat
noA B
t
AB
t
noA B
/
/
/
/
=
The necessary area to pass the flow is proportional to the square root of the stagnation
temperature.
If too much fuel is put into the afterburner, the increase in area cannot be met and the
flow will decrease. This can stall the engine, a serious consequence for a single
engine fighter.
2A.18b Why doesn’t the pressure in the afterburner go up if heat is added?
From discussions after lecture, the main point here seems to be that the process of
heat addition in the afterburner, or the combustor, is not the same as heat addition to a
gas in a box. In that case the density (mass/volume) would be constant and, from
PRT=ρ , increasing the temperature would increase the pressure. In a combustor,
the geometry is such that the pressure is approximately constant; this happens because
the fluid has the freedom to expand so the density decreases. From the equation
PRT=ρ if the temperature goes up, the density must go down.
2A.18c Why is the flow in the nozzle choked?
As seen in Unified, choking occurs when the stagnation to static pressure
ratio PP
t
/
()
gets to a certain value, 1.89 for gas with γ of 1.4. Almost all jet aircraft
operate at flight conditions such that this is achieved. If you are not comfortable with
the way in which the concepts of choking are laid out in the Unified notes, please see
me and I can give some references.
2A.18d What’s the point of having a throat if it creates a retarding force?
As shown in Unified, to accelerate the flow from subsonic to supersonic, i.e., to
create the high velocities associated with high thrust, one must have a converging-
diverging nozzle, and hence a throat.
2A.18e Why isn’t the stagnation temperature conserved in this steady flow?
Heat is added in the afterburner, so the stagnation temperature increases.