ASBBB8BVC1
B2DADJ BIDBBKCUBVC1
1.1 APC2A3CR
AHCNCDA3C8D1AGDAC2B1AGDBATCZBMA1BKCOCRBJ
C2BMDEB1AGDBATA1CXA9CPBBC2CRCLBPAUA2BZA2AI
AGBZB9DED3ABBFBQCRAIA2
CB 1.1.1(CFAV) 20 CABDBEA1 Heaviside CIC3C9
A0CWBAC3A1D6BFDDBMDBCGCWCWCSA1B6CZA5CWABBH
CWA2CRD3CWCSBKBCCLBRAIAHCN
h(x)=
?
?
?
?
?
1,x≥ 0,
0,x<0,
BCBYA1ARA7BYCNBBA5 δ(x). BUA5CPCAC8D1AGC2D0
A4A1 h(x) ARAUCQBYA1BUBL δ(x) AUCQARCDAYDBBS
BTAIC2AHCNA1D0BGDDANA5BMDEBBAIC7B1B0C8BHCW
DIA1CICNBBBXCDABC1BSBTC2A2BUCDA1δ(x)CIC5BC
DABICDC1BSBTC2A1C3BRAPBMDBD0APAUC2 “CQC3”BT
A8A7BCA2
CB 1.1.2(Dirac BCBL) CIA2A8CAC4DAA1A7CQA8
B0BZC2?D9C2A7D1BZASAHCNCWAHCLA1AKBLBTC2AS
AHCNCHC1B0C8 e
iλx
(x ∈ (?∞, +∞)), λ CDC5AZCNA1
ARCOA1BRAIB0C8C2B2D1
1
2π
integraldisplay
2π
?2π
e
iλx
dx.
CRDBB2D1A5CauchyB2D1CWCCBTA1B7
1
2π
integraldisplay
2π
?2π
e
iλx
dx= lim
n→∞
integraldisplay
n
?n
e
iλx
dx= lim
n→∞
1
π
sin nλ
λ
.
AKBKA1CRDEB4AMCIAYDBBSBTAIAUBOCIA2BKCOA1?
D0BBBEBOA5CRDEB4AMCDB5AGCYD6BZC2 δ(λ), ARBO
A5CD DiracD2AIA2D4AQA1CIDCABD5BBDAA1C7BMAVCR
CLDDB5CNA7C4 δ(λ)C2CGCWCSCJA1ARABCVC5C6BZA2
CB 1.1.3(BIDBD1CQ) CICNBBAGC1C2CRCLDAA1BL
C3B3BKBCBCAXCAC8D1AGDACLBMAUB1AGCGCWC6BZCU
A3CYBFC2AMD8A220CABD30ASBRA1SobolevA5DDBJ
1
CCA2D1CWBAC3C2BOCIB2A0A4BMB2AAD7A1DBAFD1AW
B2D1A0C8A1DFABDDAHCNCQA2B2C2DBATA1BPD4DDAB
BTA2BWD0A4A1B0B7DDSobolevCSBJD0A4A2CRAOD4A9
ALBRA2D1CWBAD0A4C2BVC2A2
B1C4BXCLCBBUA1CUBBAHCNDBATA1A5ABBTAHCNBC
COBIC5C2CNBBB1BHA1CLCNBBBED6BFDDAXC2D9CMA2
20 CABD 40 ASBRA1Schwartz A0B7DDCRBMBKCGC2BN
AFA1BJD4DDABBTAHCNC2AHDDD0A4A1ARBUBLCOAZC1
1950ASCNBBAKDCBR —CZCPAABRA2
1.2 BPAQBKCUC6BU
C0 ? CD R
n
C2C1C4CMB5A1BZ x =(x
1
,x
2
,···,x
n
)
APC9R
n
DAC2C7A2
CEAW L
p
CSBJCCBTA5
L
p
loc
(?) =
intersectiondisplay
{L
p
(?
prime
): ?
prime
?? ?},
AZDA ?
prime
?? ?BSA7A9 ?
prime
? ?,B9 d(??
prime
,??) > 0. CL
BNBM ? BXCCBTC2AHCNA1B6B5AL{x ∈ ?| f(x) negationslash=0}
C2AJABA5 f C2A2BS, BBA5 suppf.
COA1 ?BXCHC1CXB5AGC4 ?C2ACBBCQA2AHCNCS
BJ
C
∞
0
(?) = {u ∈ C
∞
(?) : suppu ? ?}.
AB?C1BQAIDCBKCCD0A2
B4C91.2.1 C
∞
0
(?)CD L
p
(?)(1 <p<∞)C2BDAF
ABB5A2
CIAJBVC7BBAIA3
D
α
= D
α
1
1
···D
α
n
n
,D
i
=
?
?x
i
,α=(α
1
,···,α
n
),
APC9|α|BYC2A2D1CWABA1AZDA |α| =
n
summationtext
i=1
α
i
.
CID2A4SobolevCSBJDAC2AHCNC2ANAUB2D9C3A1
A1A1AJCLAAATAHCNCWAID9B2D9A1BKAPD2BZBDAFB2
AFCHBZB4AMA1CRCDB3BKBZAAATAHCNCIANDBBSBTAI
AHC8DGCCC2AHCNA1A5BLAJBVC7ALAACWABA2
C0 ρ(x)A8AG
(1) ρ ∈ C
∞
(R
n
),
2
(2) suppρ ? B
1
(0),
(3)
integraldisplay
R
n
ρ(x) dx=1,
B6D0A5BHBNAC. AKBKCRBJC2AAATABCDBOCIC2A1D3
BR
ρ(x)=
?
?
?
?
?
c exp(|x|
2
? 1)
?1
, BT|x| < 1,
0, BT |x| > 1,
AZDAcA5B3CNA1A8AGDABO
integraldisplay
R
n
ρ(x) dx=1.
BTBFh>0,h<d(x, ??), AOAA{h
?n
ρ(xh
?1
)}CDA1B7
BMDEAAATABAHA2CL u ∈ L
1
loc
(?),ANCJB2
(J
h
u)(x)=h
?n
integraldisplay
?
ρ(
x ? y
h
)u(y) dy,
B6D0A5 u C2CHBHCWAC, BLB6 u
h
(x)=(J
h
u)(x) A5 u
C2C4A5BKCU (A0DIBOBKCU). CWAB J
h
C2ANBZCDA7
AHCNuALAAA2BTCI ?C2C5B5BXATBBCCBT u(x) ≡ 0,
CJCQBQCWAI u
h
(x) ∈ C
∞
(R
n
),B9BX suppuA5C1C4B5
C3A1u
h
∈ C
∞
0
(R
n
).
CIB5ALC
∞
0
(?)BXCCBTCHD8B2BRAIA3
B4DB1.2.2 C0 {?
m
}?C
∞
0
(?),?
0
∈ C
∞
0
(?),BR?
(1) BOCIBMDEAOCLC4 ? C2C5ABB5 K ? ?, C6C1
supp?
m
? K(m =1, 2,···);
(2) CLC4BNBSD2AO α =(α
1
,···,α
n
)AOC1
max
x∈K
|D
α
?
m
(x) ?D
α
?
0
(x)|→0(m →∞),
B7 {D
α
?
m
}CI K BXBMD6CHD8C4 D
α
?
0
,
CJB6B6DE {?
m
}CI C
∞
0
(?) DACSCCC4 ?
0
. D5C6BX
CLCHD8B2C2ANB2CSBJC
∞
0
(?), B6A5BPAQBKCUC6BU
D(?).
1.3 BIDBBKCUB0B4DBBMBPAQD9A6
B4DB1.3.1 D(?) BXC2BMB8D7B7ANB2CVAHCEB6
A5BIDBBKCU,B7ABBTAHCNCDCRBJC2CVAHf : D(?) →
R
1
,A8AG
3
(1) ANB2A3
〈f,λ
1
?
1
+ λ
2
?
2
〉 = λ
1
〈f,?
1
〉 + λ
2
〈f,?
2
〉,
??
1
,?
2
∈D(?),?λ
1
,λ
2
∈ R
1
;
(2) CLC4BNBSC2 {?
m
}∈D(?), BX ?
m
→ ?
0
C3A1AO
C1
〈f,?
m
〉→〈f,?
0
〉(m →∞).
BMB8ABBTAHCN f CYAJB7C2B5ALBBAND
prime
(?). f CIC7
?BIC2D1 f(?)BBA5〈f,?〉,C4CD〈f,?〉 = f(?).
BTCLC4BNBSC2C1C4CQB0B5 E ? ?, f(x)CI E BX
A5 Lebesgue BSBTCDCQB2C2A1CJB6 f(x) CI ? BXCD
C3ATC5BQB0,BBCRDBAHCNBHD8A5L
1
loc
(?). f(x)CLBX
A9BMDEABBTAHCN
〈f,?〉 =
integraldisplay
?
f(x)?(x) dx, ?? ∈D(?).
A9A3ABBTAHCNCDCEAWCQB2AHCNC2DFABA2ACDE
CEAWCQB2AHCNCLBXBMDEABBTAHCNA2ARAUCDCYC1C2
AHCNCECDABBTAHCNA2CBC5BXA1AYDBC2AUCQB0AHCN
ARAUARCNB7CDABBTAHCNA2
CB 1.3.2 δ-AHCNA2C0 θ ∈ ?,CCBT
〈δ, ?〉 = ?(θ), ?? ∈D(?).
δ AHCNCDBMDEABBTAHCNA2
B4DB 1.3.3 C0 {f
m
}?D
prime
(?),f
0
∈D
prime
(?). BR?
CLBMB8 ? ∈D(?),C1
lim
m→∞
〈f
m
,?〉 = 〈f,?〉,
CJB6{f
m
}CI D
prime
(?)DACSCCC4 f.
CB 1.3.4 CI R
1
BX
f
m
(x)=
1
π
sin mx
x
,m=1, 2,···
CDBMDE L
1
loc
(R
1
) AHCNA1BNCOCQBQCNANCDABBTAHCN
DEA2AB?C1 f
m
→ δ(m →∞).
1.4 BIDBAZCUBTCMD9A6
4
ABBTAHCNBCBYC2APCSCWCDC4A3C8D1AGDAC2D1
AWB2D1A2A5BLAB?AJAYA5BMAID1AWB2D1C2B1AGCS
APA2C0f AJ?CECDCCBTCIRBXC2D7B7CQA2AHCNA1
?CHC1C5CXB5A2C0D1AWB2D1A0C8A1C1
integraldisplay
∞
?∞
f
prime
(x)?(x) dx= ?
integraldisplay
∞
?∞
f(x)?
prime
(x) dx.
CRDEC3C8APAID2BZD1AWB2D1CQBQCLBMDEAHCNC2BC
BYCGCWA5AUA5CLDIBMDEAHCNC2BCBYA2CRBMBLBTCO
C3DCBKC2CBC5B2CRAB?A5BQAICWC8BVC7ABBTAHCN
C2BYCNA2
B4DB1.4.1(CEAWCQB2AHCNC2ABBTBYCN) C0 u,v
A5 ?BXCEAWCQB2AHCNA1BT
integraldisplay
?
uD
α
?dx=(?1)
α
integraldisplay
?
v?dx, ?? ∈ C
∞
0
(?)
B7D4A1CJB6 v A5 uC2 αBYBIDBAZCU.
B4DB1.4.2(ABBTAHCNC2ABBTBYCN) C0f,g ∈D
prime
(?)
CDABBTAHCNA1A8AG
〈f,D
α
?〉 =(?1)
α
〈g,?〉, ?? ∈D(?).
CJ g B6A5f C2 αBYBIDBAZCU.
B4C9 1.4.3 BNBMABBTAHCNC2CYC1BYABBTBYCN
CEBOCICOB9CECDABBTAHCNA2
CB 1.4.4 C0 Heaviside AHCNhCYCCBTC2AHCN
h(x)=
?
?
?
?
?
1,x≥ 0,
0,x<0
C2ABBTBYCN h
prime
= δ.
A1CGA3CLC4BNBSC2 ? ∈D(R),C1
h
prime
(?)=?h(?
prime
)=?
integraldisplay
∞
0
?
prime
dx= ?(0) = δ(?),
BUBLh
prime
= δ.
CB 1.4.5 |x|
primeprime
=2δ.
A1CGA3CLC4BNBSC2 ? ∈D(R), BF a>0, C6C1
5
supp? ? (?a, a),CJC1
|x|
primeprime
(?)=|x|(?
primeprime
)=
integraldisplay
∞
?∞
|x|?
primeprime
(x) dx
= ?
integraldisplay
0
?a
x?
primeprime
(x) dx+
integraldisplay
a
0
x?
primeprime
(x) dx
=
integraldisplay
0
?a
?
prime
(x) dx?
integraldisplay
a
0
?
prime
(x) dx
= ?(0) + ?(0) = 2δ(?),
BUBL|x|
primeprime
=2δ(?).
B4C91.4.6 C0AHCNu ∈ L
p
(?),CJ uCHC1B2D1C2
CUD8D7B7B2A1B7CLC4BNBSC2 ε>0,BOCI δ>0,BX
|h| <δC3
bardblu(x + h) ?u(x)bardbl
p
<ε.
B4C91.4.7 C0 u ∈ L
p
(?),CJ
bardblJ
h
ubardbl
p
≤bardblubardbl
p
, lim
h→0
bardblJ
h
u ? ubardbl
p
=0.
A9A3BXD
α
u ∈ L
p
(?)C3A1C1 lim
h→0
bardblD
α
u
h
?D
α
ubardbl
p
=
0.
B4C91.4.8(AND1CSB1AGBVD0) BR?u ∈ L
p
(?)A8
AG
integraldisplay
?
u(x)?(x) dx=0, ?? ∈ C
∞
0
(?),
CJ u =0CI ?BXB9AQBIBIB7D4 (BBA5u =0a.e.C4
?,B0 u = 0 p. p. C4 ?).
CEAWCQB2AHCNC2ABBTBYCNC3BHC4BQAICCBTA2
B4DB1.4.9 C0 u,v ∈ L
p
loc
(?),BTCLC4BNBS ?
prime
??
?,BOCIAHCNDE u
n
∈ C
∞
(?
prime
)A8AG
bardblu
n
? ubardbl
p
→ 0, bardblD
α
u
n
? vbardbl
p
→ 0(n →∞),
CJB6v CD uC2 αBYBIDBAZCU.
A9A3ABBTBYCWABCDCDCAC8BYCWABCI L
1
loc
C2AJ
CUCNA1BUBLBTAHCNC1CAC8 αBYBYCNBOCIA1CJD0C7
ABBT αBYBYCNBMD6A2BUCDCQCQBLC1BDAQA3CAC8BY
CNC0C4BYCCBTDCBYA1COABBT αBYBYCNCDD0BWDGBF
CCBTA1BUBLDCBYABBTBYCNBOCIAUARDFBFC4BYBYCN
BLBOCIA2
CEAWCQB2AHCNC2ABBTBYCNCHC1BRAIBEC3B2D9
6
(1) D
α
(au + bv)=aD
α
u + bD
α
v.
(2) D
α+β
u = D
α
(D
β
u).
(3) BT D
α
u =0CLBMB8 |α| = m B7D4C2BBD1AKBK
DABOCD uB9AQBIBIC3C4BMDE (m ? 1)BMCNAQ
C8A2
1.5 SobolevC6BU
B4DB 1.5.1 C0 k A5D0D7CUCNA1 p ≥ 1, CCBT
Sobolev C6BUBRAI
W
k
p
(?) = {u ∈ L
p
(?)| D
α
u ∈ L
p
(?),?|α|≤k}.
W
k
p
(?)DAC2CUCNCCBTA5
bardblubardbl
k,p,?
=(
summationdisplay
|α|≤k
bardblD
α
ubardbl
p
p
)
1/p
.
SobolevCSBJBBAN W
k
p
(?)B0 W
k,p
(?).
? W
k
p
(?)CDA0?C2CSBJA2
? BX k =0C3A1AKBK W
0
p
(?) = L
p
(?).
? BX p =2C3A1W
k
2
(?)CD HilbertCSBJA1BMA9BL
BBA5 H
k
(?). CRCDC0C4CIH
k
(?) DACQBQCCBT
AQB2
〈u,v〉 =
summationdisplay
|α|≤k
〈D
α
u,D
α
v〉 =
summationdisplay
|α|≤k
integraldisplay
?
D
α
uD
α
vdx.
? BX 1 <p<+∞C3A1CSBJW
k
p
(?) CDACCTCQD1
C2BanachCSBJA2
? C
∞
(?)CD W
k
p
(?)C2BDAFB5A2
B4DB1.5.2 B6 C
∞
0
(?)CI W
k
p
(?)CUCNAIC2A0?
AUCSBJA5 SobolevCSBJW
k,p
0
(?).
BX 1 <p<+∞C3A1C0C4C
∞
0
(?) CD L
p
(?) C2BD
AFABB5A1BUBL W
k,p
0
(?) = L
p
(?) = W
0
p
(?),BUCDA1BX
k>0, ? negationslash= R
n
C3A1W
k,p
0
(?)CDW
k
p
(?)C2CSABCSBJA2
7
BDCC W
k,p
0
(?) C2CWAMCZBICD W
k,p
0
(?) DAC2BNAK
AHCNCEuCQBQD7B7BEDHBZ W
k
p
(R
n
). A5BLA1D3BKBL
ˉu(x)=
?
?
?
?
?
u(x),x∈ ?,
0,x/∈ ?.
u → ˉuA1B7W
k,p
0
(?) → W
k
p
(R
n
)C2D7B7BEDHA2
C0X
1
,X
2
CDDBDED5CUANB2CSBJA1D0?C2CUCND1
AQA5bardbl·bardbl
1
,bardbl·bardbl
2
,BR?A8AGDABO
(1) X
1
? X
2
;
(2) BOCIB3CN c,C6C1bardblubardbl
2
≤ cbardblubardbl
1
,?u ∈ X
1
,
CJB6CSBJX
1
B6BSBZCSBJX
2
,BBANX
1
arrowhookleft→ X
2
. BR?
B6BSAVA8AGAOC3CWABI : X
1
→ X
2
CDC5C2A1CJB6CR
DEB6BSCDC5C2A2
B4C91.5.3 B7D4
W
1,p
0
arrowhookleft→
?
?
?
?
?
?
?
?
?
?
?
?
?
C(
ˉ
?),p>n,
L
q
(?),p= n, 1 ≤ q<∞,
L
np/(n?p)
(?),p<n,
AZDABBAIarrowhookleft→BGAPC9ABAGA7AHCZDIA1AVAPC9B6BS
CWABCDD7B7C2A2BLDIA1CLBNBS u ∈ W
1,p
0
(?)C1AUC3
C8
sup
?
|u|≤C(n, p)|?|
1/n?1/p
bardblDubardbl
p
,p>n,
bardblubardbl
q
≤ C(n, q)|?|
1/q
bardblDubardbl
n
,p= n, 1 ≤ q<∞,
bardblubardbl
np/(n?p)
≤ CbardblDubardbl
p
,p<n,
AZDAbardblDubardbl
p
=
summationtext
|α|=1
bardblD
α
ubardbl
p
.
D0CE1.5.4 A7C4W
k,p
0
(?)(k>1)C2BAB0C1B6BS
W
k,p
0
arrowhookleft→
?
?
?
?
?
?
?
?
?
?
?
?
?
W
l,s
0
(?),s=
np
n ? (k ?l)p
, (k ? l)p<n,
W
l,q
0
(?), (k ?l)p = n, 1 ≤ q<∞,
C
l
(
ˉ
?), 0 ≤ l ≤ k ?
n
p
.
D0CE 1.5.5 W
k,p
0
(?) DACQBQCCBTBRAIC2C3BHCU
CN
bardblubardbl
W
k,p
0
(?)
=
summationdisplay
|α|=k
bardblD
α
ubardbl
p
.
8
B4DB1.5.6 BR?BOCIBMDEA6CCA8K
?
,C6ACDEC7
x ∈ ??BXC1BQxA5CBC7C7K
?
BHC3C2A8K
?
(x) ? ?,
CJB6??A8AGCIATAACZBW.
B4C91.5.7 BR???A8AGAQAWA8DABOA1CJ
W
k
p
(?) arrowhookleft→
?
?
?
?
?
L
(np)/(n?kp)
(?),kp<n,
C
l
(?), 0 ≤ l<k?
n
p
,
W
k
p
(?) arrowhookleft→ W
l
s
(?),s=
np
n ? (k ?l)p
, 0 < (k ? l)p<n.
B6BSCCD0AVCQBQCI H¨older CSBJC1BZDIC9AFC2
AHCLA2
B4DB1.5.8 H¨olderCSBJC
k,α
(
ˉ
?)(C
k,α
(?))CDC
k
(
ˉ
?)(C
k
(?))
C2ABCSBJA1AZ k BYBYCNCHC1D2AO α(0 <α≤ 1)C2
H¨olderD7B7B2A2CYA9AHCN f CHC1D2CN αC2 H¨older
D7B7B2A1BSD2
[f]
α,?
=sup
x,y∈?,xnegationslash=y
|f(x) ? f(y)|
|x ? y|
α
< ∞, 0 <α≤ 1.
CL C
k,α
(?)BXC2AHCN f,CQBQA6?CUCN
bardblfbardbl
C
k,α
(?)
= bardblfbardbl
k,∞,?
+max
0≤|β|≤k
[D
β
f]
α,?
COA1B7 BanachCSBJA2
B4C91.5.9 BR???A8AGAQAWA8DABOA1kp > n,
CJC1H¨olderCSBJB6BS
W
k
p
(?) arrowhookleft→
?
?
?
?
?
C
k?1,n/p
(?), BX k ?
n
p
CDD0CUCN
C
k?n/p?1,1
(?), BX k ?
n
p
CDCUCN.
B4C91.5.10 BR???A8AGAQAWA8DABOA1CJC1
W
k
p
(?) arrowhookleft→
?
?
?
?
?
C
l
(?),kp>n,l<k?
n
p
L
s
(?),s=
np
n ? kp
?ε,kp < n,ε <
np
n ? kp
.
A8AGBQBXDABOC2B6BSBYBZCDC5BYBZA2
A9A3CCD0B0CCD0CEBKBC??A8AGAQAWA8DABOA1
BUCDCLC4W
k,p
0
(?),BLDABOCJAUAKBKA2CRCDCDW
k,p
0
(?)
AJ W
k
p
(?)C2DCBKBDAQA2
B4C91.5.11(FriedrichsAUC3C8A1Poincar′eAUC3C8)
BR?u ∈ W
1
2
(?),CJBOCIB3CN M>0,C6C1
(
integraldisplay
?
|u|
2
dx)
1/2
≤ M[
integraldisplay
?
n
summationdisplay
i=1
(
?u
?x
i
)
2
+ |
integraldisplay
??
uds|
2
]
1/2
.
9
D0CE1.5.12 CLAHCNB5AL
B
1
0
= {u ∈ C
1
(?)
intersectiondisplay
C
0
(
ˉ
?)| u =0CI ??BX}
C1AIAGC2AUC3C8
integraldisplay
?
u
2
dx≤ C
integraldisplay
?
|Du|
2
dx, ?u ∈ B
1
0
,
B7
bardblubardbl
2
≤ CbardblDubardbl
2
, ?u ∈ B
1
0
,
AZDAC CDC7uACA7COD3C7?C1A7C2B3CNA2
10
B2B7DJ ASBBC9CEDED6D9D1BBBAAUARA5D3CY
2.1 ASBBD3CY
CLCVAHBCB4D1C2AAD7B6A5ASBBD3CY,C6CVAHBF
B4D1C2AHCNB6A5ASBBD3CYB0BZ,BLB6A5BRA5BKCU
B0BRA5B3. A4ADBDCCAND1AAD7C2BBCPB6A5ASBB
B8.
AKCVBSANAAD7CDA3C0 O C7 ACDDCCGAUDCB9AU
CIDCBMB4BKANBXC2DBCCC7A1BR?ABC1AMAXAJCSB3
AID5A1BMD9C7CIDCD5ANBZAIBNOC7BGBMBEANBSA6
D5AC7A1AABEANB8AKDBB0A7C3A1D9C7BSA6C2C3BJ
AKCJA4
C0CAAF O C7 A C2B4BKAWAGA5 XOY, OX A5CP
AWDEA1 OY DEB4BKARAIA1 A C7C2AOAOA5 (a, b),B9
b>0. D9C7BNOCMC7CGCDA1D0C2CVCG v C7D0C2AF
AOAOC1A7AHA3
v
2
=2gy, (2.1.1)
AZDAg CDDCD5BFCVCGA2
C0D9C7BSA6BEANC2CWBAA5y = y(x),CJC0(2.1.1)
C1
ds
dt
= v =
radicalBig
2gy,
C0BLC1
dt =
ds
√
2gy
=
radicalBig
1+y
prime
2
√
2gy
dx.
CLBLC8B2D1A1C1BFD9C7BGBEAN y = y(x)C0 OBSD5
ACYB3C2C3BJA5
t = t[y(x)] =
integraldisplay
a
0
radicalBig
1+y
prime
2
√
2gy
dx. (2.1.2)
CRCDCRAIA1D9C7C0 OBSD5ACYB3C2C3BJtCDAHCN
y(x)C2AHCNA1B6 tCDAHCNy(x)C2CVAHA1AKCVBSAN
AAD7CDCDCIA8AGALC4DABO
y(0) = 0,y(a)=b (2.1.3)
C2CYC1D7B7AHCNy(x)DABCBFBMDEAHCNC6CVAH(2.1.2)
BFAKATD1A2
11
A5DDBCBFAKCVBSANAAD7C2C3A1BQ (2.1.2)DAC2AF
B2AHCNBBA5
F(y,y
prime
)=
radicalBig
1+y
prime
2
√
2gy
. (2.1.4)
C0y(x)CDAKCVBSANAAD7C2C3A1B7y(x)A8AGALC4DA
BO(2.1.3)B9C6
t[y(t)] =
integraldisplay
a
0
F(y,y
prime
) dx=min. (2.1.5)
CLC4A8AGALC4DABO
?(0) = ?(a)=0 (2.1.6)
C2BNBSD7B7AHCN ?(x)B6BNBSC5CNε,AHCN
y(x)+ε?(x)
CLA8AGALC4DABO (2.1.3). BUBLA1CVAH
t[y(x)+ε?(x)]
BX ε =0C3BFAKATD1t[y(x)],BNCOC1
d
dε
t[y(x)+ε?(x)]|
ε=0
=0. (2.1.7)
C0 (2.1.5)B6D1AWB2D1C1BF
d
dε
t[y(x)+ε?(x)]
=
d
dε
integraldisplay
a
0
F(y + ε?, y
prime
+ ε?
prime
) dx
=
integraldisplay
a
0
[F
y
(y + ε?, y
prime
+ ε?
prime
)?
+F
y
prime(y + ε?, y
prime
+ ε?
prime
)?
prime
] dx
=
integraldisplay
a
0
[F
y
(y + ε?, y
prime
+ ε?
prime
)
?
d
dx
F
y
prime(y + ε?, y
prime
+ ε?
prime
)]?dx.
BQBLC8BRBS (2.1.7)C1BF
integraldisplay
a
0
[F
y
(y,y
prime
) ?
d
dx
F
y
prime(y,y
prime
)]?dx=0.
DHCFAND1CSB1AGBVD0A1C0BXC8C1BF
F
y
(y,y
prime
) ?
d
dx
F
y
prime(y,y
prime
)=0. (2.1.8)
12
BNAND1AAD7BFCRBYBFC2A2D1CWBAB6A5D9AND1AAD7
C2CKC8BAAU. BUBLA1B3A2D1CWBA (2.1.8)CDAND1AA
D7(2.1.5)C2AUCVCWBAA2C0 (2.1.8)CQC1
d
dx
[F(y,y
prime
) ? y
prime
F
y
prime(y,y
prime
)]
= F
y
(y,y
prime
)y
prime
+ F
y
prime(y,y
prime
)y
primeprime
?y
primeprime
F
y
prime(y,y
prime
) ?y
prime d
dx
F
y
prime(y,y
prime
)
=0.
BUBLC1
F(y,y
prime
) ? y
prime
F
y
prime(y,y
prime
)=c =B3CN. (2.1.9)
CLC4AKCVBSANAAD7A1BQ (2.1.4)BRBSBXC8C1BF
1
radicalBig
2gy(1 + y
prime
2
)
= c.
C0BLC1
y(1 + y
prime
2
)=
1
2gc
2
=2r. (2.1.10)
BVC7ANCNBRAW x = x(θ),ARC0
y
prime
=cot
θ
2
, (2.1.11)
CJC0(2.1.10)C1
y =2r sin
2
θ
2
= r(1 ? cos θ).
BLC8CL θ A2D1C1BF
y
prime
dx
dθ
= r sin θ.
BQ(2.1.11)BRBSBXC8C1
cot
θ
2
dx
dθ
= r sin θ,
C0BLC1BF
dx
dθ
=2r sin
2
θ
2
= r(1? cos θ).
B2D1BLC8A1AB?C1BFA2D1CWBA (2.1.10) C2DBC3C2
AZCNAPC9
x = r(θ ? sin θ)+x
0
,
y = r(1 ? cos θ),
13
AZDA r C7 x
0
A5BNBSC5CNA2DHCFALC4DABO (2.1.3),
B7C0BEANCAAFAOAOCBC7 O C1BFx
0
=0,CHC0BEAN
CAAFA(a, b)CQBQBJCC rC2D1A2BUBLA1AKCVBSANCD
B9A3ANC2BMCKA1D0CDBQ r A5AACBC2CCDDA3
x
2
+(y ?r)
2
= r
2
(2.1.12)
BG XDEB9A5C3A1CCDDBXC2C7(0, 0)CGCDC2ADB3A2
BWB2D8C2AWANAAD7CDBMCYDCBKC2AND1AAD7A2
BWB2D8CJDID5ANBZCRC2ANB0A1ANB0DACRD3AQD5
(BWB2D8DFD9C7BJC2CECMAQD5) CYAMC2DJA1ANA5AR
DCA1BOCIBWB2D8AQAWA1B6A5BWB2CCARB0ANB0ARA2
CIBGBGDID5COBWB2D8AXD6CBCWC2B0A7C3A1ANB0AR
CDAYBFCLDIC4AMDJC2CWC8APALBFCWA2BWB2D5BBDA
C2AKATCCARCBD0D2BFA3BWB2D8CIDID5ANBZAIA1CI
CEALBPCYDABOC2BMB8A8BODAA1C6BWB2D8BIC4AWAN
A7D1C2A8BOC6?CCAR
E =ANB0AR -DID5CYAMC2DJ
A5AKATA2
D3BRA1AB?BDCCAWAGBXALC4A6CCC2CLCFACAK
(AUBAACDC)CJDID5ANBZAPC2AWANA8BOA2C5BICWAIA1
BWB2ACAKC2ANB0ARC7ACAKC2AGB2C2CKBFB7CVAIA1
CRDEAID3B3CNBVAMACAKC2CND5A2C0ACAKCYCIAWAG
BDC8A5?, ALC4A5 ??. CIDID5ANBZAIA1ACAKCIC7
(x, y) ∈ ?BIC2BKD0A8BOBZu(x, y)APC9A1CJACAKC2
ANB0ARA5
T(
integraldisplay
?
integraldisplay
radicalBig
1+u
2
x
+ u
2
y
dxdy?|?|), (2.1.13)
AZDAT A5ACAKC2CND5A1|?|A5BDC8 ?C2AGB2A2BU
A5BWB2ANB0A5ATANB0A1BX u
2
x
+ u
2
y
BBD1ATC3A1D2BZ
C8CUA0C8
√
1+ε ≈ 1+
ε
2
,
ANB0AR (2.1.13)CQBQDAAWB7
T
2
integraldisplay
?
integraldisplay
(u
2
x
+ u
2
y
) dxdy, (2.1.14)
14
CHC0ACAKCIBTA8AGB2BXCYCJC2D5A5 f(x, y), CJBL
DID5CYAMC2DJA5
integraldisplay
?
integraldisplay
f(x, y)u(x, y) dxdy.
C4CDACAKC2?CCARA5
E(u)=
T
2
integraldisplay
?
integraldisplay
(u
2
x
+ u
2
y
) dxdy?
integraldisplay
?
integraldisplay
fudxdy, (2.1.15)
D0CDAHCNu(x, y)C2CVAHA2C0C4ACAKC2ALC4CDA6CC
C2A1CYBQC1ALC4DABO
u =0, CI ??BX. (2.1.16)
AKATCCARCBD0CRAIA1ACAKCJDID5 f(x, y)ANBZAPA1
CIA8AGALC4DABO (2.1.16) C2AHCNCYDAA1C6?CCAR
(2.1.15) BFAKATD1C2A8BO u(x, y) CDCDACAKBPBZAW
ANA8D7C3C2A8BOA2
CRBJBMCWA1BWB2ACAKAWANAAD7C2A8BOCDCDCIAL
C4DABO (2.1.16)AIA1AND1AAD7
E(u)=
T
2
integraldisplay
?
integraldisplay
(u
2
x
+ u
2
y
) dxdy?
integraldisplay
?
integraldisplay
fudxdy =min
(2.1.17)
C2C3A2CYCPAKCVBSANAAD7C1BFCRDEAND1AAD7C2AU
CVCWBACD PoissonCWBA
?triangleu = ?
?
2
u
?x
2
?
?
2
u
?y
2
=
f
T
, CI ?DA. (2.1.18)
CRCDCRAIA1CIALC4DABO(2.1.16)AIA1AND1AAD7(2.1.17)
C2C3CD PoissonCWBA(2.1.18)C2C3A2
CIBMCCBSBTAIA1ALD1AAD7 (2.1.18), (2.1.16)C3BH
C4AND1AAD7 (2.1.17), (2.1.16).
2.2 ASBBBDCJ
B4DB 2.2.1 C0 J[y(x)] CDCCBTCIAHCNB5AL Y =
{y(x)}BXC2CVAHA1BX y(x),y
0
(x) ∈ Y C3A1B6
δy = δy(x)=y(x)? y
0
(x)
A5ACANDC y(x)C2AND1A2
15
B4DB 2.2.2 BR? max|y(x) ? y
0
(x)|AMATA1CJB6
y(x)C7 y
0
(x)CHC1DHBYBWC8A2AHCNB5AL
{y(x): |y(x) ?y
0
(x)| <δ}
B6A5y
0
(x)C2DHBYδ-DGC8A2C0 k CDCVCUCNA1BR?
max{|y(x)?y
0
(x)|,|y
prime
(x) ?y
prime
0
(x)|,···,|y
(k)
(x) ? y
(k)
0
|}
AMATA1CJB6 y(x)C7 y
0
(x)C1 k BYBWC8A2AHCNB5AL
{y(x): max{|y(x)?y
0
(x)|,|y
prime
(x)?y
prime
0
(x)|,···,|y
(k)
(x)?y
(k)
0
|} <δ}
B6A5y
0
(x)C2 k BY δ-DGC8A2
B4DB2.2.3 BR?CLC4BNBSC2 ε>0, CL y
0
(x) C2
k BY δ-DGC8DAC2BNAK y(x),AOC1
|J[y(x)]? J[y
0
(x)]| <ε,
CJB6 J[y(x)]CDCI y
0
(x) BICHC1 k BYBWC8CGC2D7B7
CVAHA2
B4DB2.2.4 C0F(x, y, y
prime
)CDA7C4BVDEANCAx, y, y
prime
C2CQBYD7B7CQA2C2AHCNA1C0 xBNBSA6CCA1η(x) CD
BNBSCQA2AHCNA1ε CDATAZCNA1CJF(x, y, y
prime
)C2CKDC
A5
?F = F(x, y + εη,y
prime
+ εη
prime
) ?F(x, y, y
prime
).
C0 Taylor A0C8A1C1
?F =
?F
?y
εη +
?F
?y
prime
εη
prime
+ R,
AZDARCD ε → 0C2DCBYC2ACBBATA2B6
δF =
?F
?y
εη +
?F
?y
prime
εη
prime
A5AHCN F(x, y, y
prime
)C2AND1A2
B4DB2.2.5 BR?CVAHJ[y(x)]C2CKDC?J = J[y +
δy]? J[y]CQBQAPC9A5
?J = J[y,δy]+β(y,δy)max|δy|,
AZDA J[y,δy]CL δyCOBFCDANB2C2A1ARB9BX δy → 0
C3A1 β(y,δy) → 0, CJB6 J[y,δy] A5CVAH J[y] C2AN
D1A1BBAN δJ,B7
δJ = J[y,δy].
16
AIAGCHDGBFBMDBBUBUC2AND1C2CCBTA2COA1AGAZ
CNαC2BMAHDEBQB5BEANy(x)+αδy,BQy(x),δyBNBS
A6CCA1COA7CVAH J[y + αδy] CNB7AZCN α C2AHCNA1
BBAN Φ(α)=J[y + αδy].
B4DB2.2.6 BR?Φ
prime
(0) =
?
?α
J[y +αδy]|
α=0
BOCIA1
CJB6 Φ
prime
(0)A5CVAH J[y]C2AND1A1BLBBAN δJ,B7
δJ =Φ
prime
(0) =
?
?α
J[y + αδy]|
α=0
.
B4DB2.2.7 C0 y
0
(x)CDCVAHJ[y]C2BQB5BEANB5
Y DAC2ANBMAHCNA1BTCLC4BNBSC2 y ∈ Y ,CEC1
J[y(x)] ≤ J[y
0
(x)](B0 J[y(x)] ≥ J[y
0
(x)]),
CJB6CVAH J[y] CI y
0
(x) BIBPBZB4BQ (AT) D1A1ARB6
y
0
(x)A5 J[y]C2B4BQ (AT)D1BEANA2
BTCLC4y
0
(x)C2DHBYδ-DGC8AQC2CYC1AHCNy(x),
CEC1
J[y(x)] ≤ J[y
0
(x)](B0J[y(x) ≥ J[y
0
(x)]),
CJB6CVAH J[y]CI y
0
(x)BIBPBZB7B4BQ (AT)D1A2
BTCLC4y
0
(x)C2BMBYδ-DGC8AQC2CYC1AHCNy(x),
CEC1
J[y(x)] ≤ J[y
0
(x)](B0J[y(x)] ≥ J[y
0
(x)]),
CJB6CVAH J[y]CI y
0
(x)BIBPBZBUB4BQ (AT)D1A2
2.3 ASBBB8BPAQDCC9
BPAQDCC92.3.1 C0φ(x) ∈ C[a, b],BR?CLC4BNBS
C2η(x) ∈ C
1
[a, b], η(a)=η(b)=0,AOC1
integraldisplay
b
a
φ(x)η(x) dx=0,
CJCIBDBJ [a, b]BXA1φ(x) ≡ 0.
A1CGA3BZCTCWCSA2BGC0 φ(x)CI [a, b]DAC2ANC7
x
0
BIAUC3C4DHA1AUCXC0 φ(x
0
) > 0. C0 φ(x)C2D7B7
B2CYA1AKCCBOCIBDBJ [x
1
,x
2
],C6x
0
∈ [x
1
,x
2
] ? [a, b],
COB9BX x ∈ [x
1
,x
2
]C3 φ(x) > 0. BF
η(x)=
?
?
?
?
?
?
?
?
?
?
?
?
?
0,a≤ x ≤ x
1
(x ?x
1
)
2
(x ? x
2
)
2
,x
1
<x<x
2
0,x
1
≤ x ≤ x
1
17
CJ η(x
1
)=η(x
2
)=0,η
prime
(x)CI [x
1
,x
2
] BXD7B7A1BLCD
CDCRη(x)CEALBVD0 1C2DABOA2BUCD
integraldisplay
b
a
φ(x)η(x) dx=
integraldisplay
x
2
x
1
φ(x)(x ?x
1
)
2
(x ? x
2
)
2
dx>0,
CRC7BVD0C2BGC0A9CMA1A4 φ(x) ≡ 0.
BPAQDCC9 2.3.2 C0 ? A5AWAGBDC8A1 ? C2ALC4
A5Γ, φ(x, y) ∈ C(?),BTCLBNBMCI?+ΓBXD7B7CQA2
B9CI ΓBXBFDHD1C2AHCN η(x, y),AOC1
integraldisplay
?
integraldisplay
φ(x, y)η(x, y) dxdy=0,
CJCI?BX φ(x, y) ≡ 0.
A1CGA3BZCTCWCSA2BGC0 φ(x, y)CI ?DAC2ANC7
(x
0
,y
0
) ∈ ? BIAUC3C4DHA1AUCXC0 φ(x
0
,y
0
) > 0. C0
φ(x, y)C2D7B7B2CYA1AKCCBOCI r>0, C6 φ(x, y)CI
CC S
r
:(x ? x
0
)
2
+(y ? y
0
)
2
<r
2
AQBPA5CVA1COB9
S
r
? ?. BF
η(x, y)=
?
?
?
?
?
0, (x ? x
0
)
2
+(y ? y
0
)
2
≥ r
2
,
((x ?x
0
)
2
+(y ? y
0
)
2
? r
2
)
2
, (x ?x
0
)
2
+(y ? y
0
)
2
<r
2
,
CJ η(x, y) ∈ C
1
(?),B9 η(x, y)|
Γ
=0.BUCD
integraldisplay
?
integraldisplay
φ(x, y)η(x, y) dxdy
=
integraldisplay
?
integraldisplay
φ(x, y)[(x? x
0
)
2
+(y ? y
0
)
2
?r
2
]
2
dxdy>0,
CRC7BVD0C2BGC0A9CMA1A4 φ(x, y) ≡ 0.
18
B2CPDJ BGB4ARC0B0ASBBD3CY
3.1 ?BVAYCNC7D5B0 EulerBAAU
AJD2A4AKB1AGC2CVAH
J[y(x)] =
integraldisplay
x
1
x
0
F(x, y, y
prime
) dx (3.1.1)
C2B4D1AAD7A1AZDA F ∈ C
2
, y(x) ∈ C
2
([x
0
,x
1
]),B9A8
AGALC4DABO
y(x
0
)=y
0
,y(x
1
)=y
1
. (3.1.2)
C0 y(x)C6 J BPBZB4D1A1ALDFBY y(x)BXA8AGC2
DABOA2COA1BQC5CN α A5AZCNC2BMAHDEBQB5BEAN
ˉy = y(x)+αδy,AZDAδyA5 y(x)C2AND1A1B7
δy|
x=x
0
= δy|
x=x
1
=0.
AKBKˉy|
x=x
0
= y
0
, ˉy|
x=x
1
= y
1
, ˉy ∈ C
2
([x
0
,x
1
]),BXα =0
C3A1 ˉy = y(x)CDC6CVAH (3.1.1)BPBZB4D1C2BEANA2
BQ ˉy BRBSC8(3.1.1),AMC1
?(α)=J[y + αδy]=
integraldisplay
x
1
x
0
F(x, y + αδy,y
prime
+ αδy
prime
) dx.
?(α)CI α =0C3BFC1B4D1A1C0B4D1C2AKBKDABOA1
C1
?
prime
(0) =
?
?α
J[y + αδy]|
α=0
=
integraldisplay
x
1
x
0
(F
y
δy + F
y
primeδy
prime
) dx=0.
(3.1.3)
C0D1AWB2D1CSA1ARA3BSBZ
δy|
x=x
0
= δy|
x=x
1
=0,
C1
integraldisplay
x
1
x
0
F
y
primeδy
prime
dx =
integraldisplay
x
1
x
0
F
y
primed(δy)
= F
y
primeδy|
x
1
x
0
?
integraldisplay
x
1
x
0
δy
d
dx
F
y
prime dx
= ?
integraldisplay
x
1
x
0
δy
d
dx
F
y
prime dx.
BQBXC8BRBS (3.1.3)C8A1C1
?
prime
(0) = δJ =
integraldisplay
x
1
x
0
[F
y
?
d
dx
F
y
prime]δy dx =0.
19
C0B1AGBVD0CYA1C6CVAH J[y]BPBZB4D1C2AHCN y(x)
AKA8AGA2D1CWBA
F
y
?
d
dx
F
y
prime =0, (3.1.4)
B0
F
y
prime
y
primey
primeprime
+ F
yy
primey
prime
+ F
xy
prime ? F
y
=0. (3.1.5)
CWBA(3.1.4)B0(3.1.5)B6A5CVAHJ[y]C2EulerCWBAA2
ADBXCYCLANC1A3
B4C93.1.1 CVAH
J[y]=
integraldisplay
x
1
x
0
F(x, y, y
prime
) dx
CI y(x) BPBZB4D1C2AKBKDABOCD y(x) A8AGCWBAC8
(3.1.4)B0 (3.1.5)C8A2
CB 3.1.2 CWAIEulerCWBA(3.1.5)CHC1B0C8
d
dx
(F ? y
prime
F
y
prime) ? F
x
=0. (3.1.6)
A1CGA3
dF
dx
= F
x
+ F
y
y
prime
+ F
y
primey
primeprime
,
d
dx
(y
prime
F
y
prime)=y
primeprime
F
y
prime + y
prime
(F
xy
prime + F
yy
primey
prime
+ F
y
prime
y
primey
primeprime
),
DBC8AOBMA1C1
d
x
(F ? y
prime
F
y
prime)=F
x
? y
prime
(F
y
prime
y
primey
primeprime
+ F
yy
primey
prime
+ F
xy
prime ? F
y
).
CHC0(3.1.5)AMC1BZCWAIA2
CB 3.1.3 BCCVAH
J[y(x)] =
integraldisplay
1
0
(y
prime2
+12xy) dx
C2B4D1BEANA2
BZ F(x, y, y
prime
)=y
prime2
+12xy,AZ EulerCWBAA5
12x ? 2y
primeprime
=0.
C3BLCWBAA1C1
y = x
3
+ c
1
x + c
2
.
C0 y(0) = 0,y(1) = 1 C1A3 c
1
= c
2
=0,BUBL J[y(x)]
C2B4D1BEANA5
y = x
3
.
20
CB 3.1.4 BCCVAH
J[y(x)] =
integraldisplay
1
0
(y
prime2
? y
2
? 2xy) dx
A8AGALC4DABO y(0) = y(1) = 0C2B4D1BEANA2
BZ
F(x, y, y
prime
)=y
prime2
? y
2
? 2xy,
AZ EulerCWBAA5
?2y ? 2x ? 2y
primeprime
=0.
C3BLCWBAA1C1
y = c
1
cos x + c
2
sin x ?x.
C0ALC4DABO y(0) = y(1) = 0,C1
c
1
=0,c
2
=
1
sin 1
,
C4CDJ[y(x)]C2B4D1BEANA5
y =
sin x
sin 1
? x.
CB3.1.5 CID7BWDBC7A(x
0
,y
0
),B(x
1
,y
1
)C2CYC1
AWAGBEANDAA1BCB4CGAKCJC2BEANA2
BZ AAD7CQBQA5AUA5CIALC4DABOy(x
0
)=y
0
,y(x
1
)=
y
1
AIBCCVAH
J[y]=
integraldisplay
x
1
x
0
radicalBig
1+y
prime2
dx
C2B4ATD1A2
B4D1BEANA5D0ANy = c
1
x + c
2
,BRBSALC4DABOBJ
CCc
1
,c
2
,C1
y = y
0
+
y
1
?y
0
x
1
?x
0
(x ?x
0
).
CB 3.1.6 BCCVAH
J[y]=
integraldisplay
x
1
x
0
√
1+y
prime2
x
dx,y(x
0
)=y
0
,y(x
1
)=y
1
C2B4D1BEANA2
BZ
F(x, y, y
prime
)=
√
1+y
prime2
x
21
AUAKAG y,A4 EulerCWBAA5
d
dx
y
prime
x
√
1+y
prime2
=0,
BEB2D1A5
y
prime
x
√
1+y
prime2
= c
B0
x =
y
prime
c
√
1+y
prime2
.
BVC7AZCNA1DJ y
prime
=tant,CJ
x =
tant
c
√
1+tan
2
t
=
1
c
sin t = c
1
sin t, c
1
=
1
c
,
dy = y
prime
dx =tantc
1
cos tdt = c
1
sin tdt,
y = ?c
1
cos t + c
2
.
A4C1
?
?
?
?
?
x = c
1
sin t,
y = ?c
1
cos t + c
2
.
ASBGAZCN t,C1
x
2
+(y ? c
2
)
2
= c
2
1
.
CB3.1.7 BCC1ANAAD7C2C3A1B7BC
J[y]=
integraldisplay
a
0
√
1+y
prime2
√
2gy
dx,y(0) = 0,y(a)=b
C2B4D1BEANA2
BZ
F(x, y, y
prime
)=
√
1+y
prime2
√
2gy
AUAKAG x,EulerCWBAA5
d
dx
(y
prime
F
y
prime ? F)=0.
C4CDA1 EulerCWBACHC1BEB2D1
y
prime
F
y
prime ?F = c,
B7
y
prime
y
prime
√
2gy
√
1+y
prime2
?
√
1+y
prime2
√
2gy
= c.
22
AUBLAPA1C1
y(1 + y
prime2
)=c
1
.
DJ y
prime
=cott/2,CJC1
y =
c
1
1+y
prime2
= c
1
sin
2
t
2
=
c
1
2
(1 ? cos t),
dx =
dy
y
prime
=
c
1
2
sin t
cot
t
2
dt =
c
1
2
(1 ? cos t)dt.
A4
?
?
?
?
?
x =
c
1
2
(t ? sin t)+c
2
,
y =
c
1
2
(1 ? cos t).
C0 t =0C3 x =0,C1 c
2
=0,CO c
1
C0 y(a)=b BJ
CCA1C4CDC1ANAAD7C2C3A5
?
?
?
?
?
x =
c
1
2
(t ? sin t),
y =
c
1
2
(1 ? cos t).
CRCDBMDAAFDBC7C2A8ANA2
CB3.1.8 BCAKATB9A5BEAGAGB2C2AAD7A1B7BCCV
AH
J[y]=2π
integraldisplay
x
1
x
0
y
radicalBig
1+y
prime2
dx,y(x
0
)=y
0
,y(x
1
)=y
1
C2B4D1BEANA2
BZ EulerCWBACHC1BEB2D1
y
prime
F
y
prime ?F = c,
B7
2πy
y
prime2
√
1+y
prime2
? 2πy
radicalBig
1+y
prime2
= c.
AUBLAPCQC1
y = c
radicalBig
1+y
prime2
.
DJ y
prime
=sinht,BRBSBXC8C1
y = c
1
cosh t, dx =
dy
y
prime
=
c
1
sinh t
sinh t
dt = c
1
dt.
C4CDA1CYBCBEAGCDC0AWAGBEAN
?
?
?
?
?
x = c
1
t + c
2
,
y = c
1
cosh t,
23
BM xDEB9A5COB7C2A1CIBXC8DAASBGAZCN t,C1
y = c
1
cosh
x ?c
2
c
1
,
AZDAB3CNc
1
,c
2
C0 y(x
0
)=y
0
,y(x
1
)=y
1
BJCCA2C0BL
CQBNA1AKATBEAGCDB8D9AGA2
3.2 BJDDB6BFBKCUB0B9BKB0ASBBD3CY
C0CVAHA5
J[y(x),z(x)] =
integraldisplay
x
1
x
0
F(x, y, z, y
prime
,z
prime
) dx, (3.2.1)
ALC4DABOA5
?
?
?
?
?
y(x
0
)=y
0
,
z(x
0
)=z
0
,
?
?
?
?
?
y(x
1
)=y
1
,
z(x
1
)=z
1
,
(3.2.2)
BCCVAH(3.2.1)C8CIALC4DABO (3.2.2)C8AIC2B4D1A2
AJCOBF J BFC1B4D1C2AKBKDABOA2C0 F A7C4CY
AGANDCCHC1CQBYD7B7AVBYCNA1ARC0 J CIBEAN y =
y(x),z= z(x)BXBFC1B4D1A2C0
?
?
?
?
?
ˉy = y(x)+αδy,
ˉz = z(x)+βδz,
A5
?
?
?
?
?
y = y(x),
z = z(x),
C2DGC8BEANA1AZDA y(x),z(x) ∈ C
2
([x
0
,x
1
]),δy,δzCD
y,zC2AND1A1B7
δy|
x
0
= δz|
x
0
= δy|
x
1
= δz|
x
1
=0.
BQ ˉy, ˉz BRBS (3.2.1)C8A1C1
J[ˉy, ˉz]=
integraldisplay
x
1
x
0
F(x, y+αδy,z+βδz,y
prime
+αδy
prime
,z
prime
+βδz
prime
) dx.
BXC8CI α = β =0C3BFC1B4D1A1CYBQ
?J
?α
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
α=β=0
=0,
?J
?β
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
α=β=0
=0,
24
B7
integraldisplay
x
1
x
0
(F
y
δy + F
y
primeδy
prime
) dx=
integraldisplay
x
1
x
0
(F
y
?
d
dx
F
y
prime)δydx =0,
integraldisplay
x
1
x
0
(F
z
δz + F
z
primeδz
prime
) dx=
integraldisplay
x
1
x
0
(F
z
?
d
dx
F
z
prime)δz dx =0,
C0C4δy,δzCDBNBSAHCNA1DHCFB1AGBVD0CY
?
?
?
?
?
F
y
?
d
dx
F
y
prime =0,
F
z
?
d
dx
F
z
prime =0.
(3.2.3)
CWBA(3.2.3)C8B6A5CVAH (3.2.1)C8C2 EulerCWBAA2
B4C93.2.1 CVAH (3.2.1)CI y(x),z(x) BFC1B4D1
C2AKBKDABOCD y(x),z(x)A8AG EulerCWBA(3.2.3).
CB 3.2.2 BCCVAH
J[y,z]=
integraldisplay π
2
0
(y
prime2
+ z
prime2
+2yz) dx
A8AGALC4DABO
y(0) = z(0) = 0,y(
π
2
)=1,z(
π
2
)=?1
C2B4D1BEANA2
BZ BUA5
F = y
prime2
+ z
prime2
+2yz,
A4 EulerCWBAA5
?
?
?
?
?
2z ?
d
dx
(2y
prime
)=0,
2y ?
d
dx
(2z
prime
)=0,
B7
?
?
?
?
?
z ? y
primeprime
=0,
y ?z
primeprime
=0.
C0BLCWBAASBG z,C1
y
(4)
? y =0,
AZDBC3A5
?
?
?
?
?
y = c
1
e
x
+ c
2
e
?x
+ c
3
cos x + c
4
sin x,
z = y
primeprime
= c
1
e
x
+ c
2
e
?x
?c
3
cos x ? c
4
sin x.
25
C0ALC4DABOCQBQBJCC c
1
= c ? 2=c
3
=0,c
4
=1,A4
CYBCC2B4D1BEANA5
?
?
?
?
?
y =sinx,
z = ?sin x.
CB 3.2.3 C0 F
y
prime
y
primeF
z
prime
z
prime ? F
2
y
prime
z
prime negationslash=0,BCCVAH
J[y,z]=
integraldisplay
x
1
x
0
F(y
prime
,z
prime
) dx
C2B4D1BEANA2
BZ BUA5F
y
= F
z
=0,A4 EulerCWBAA5
?
?
?
?
?
d
dx
F
y
prime =0,
d
dx
F
z
prime =0,
B7
?
?
?
?
?
F
y
prime
y
primey
primeprime
+ F
y
prime
z
primez
primeprime
=0,
F
y
prime
z
primey
primeprime
+ F
z
prime
z
primez
primeprime
=0.
DHCFBGC0DABOA1BLCWBAC6C1DHC3
y
primeprime
=0,z
primeprime
=0.
B7
?
?
?
?
?
y = c
1
x + c
2
z = c
3
x + c
4
CDCYBCC2B4D1BEANA2
B4C93.2.4 CVAH
J =
integraldisplay
x
1
x
0
F(x, y
1
,···,y
n
,y
prime
1
,···,y
prime
n
) dx
CIA8AGALC4DABO
y
i
(x
0
)=y
i0
,y
i
(x
1
)=y
i1
,i=1, 2,···,n.
AIBFC1B4D1C2AKBKDABOCD y
1
(x),y
2
(x),···,y
n
(x) A8
AGEulerCWBA
F
y
i
?
d
dx
F
y
prime
i
=0,i=1, 2,···,n.
A9A3BMA9CWCRA1BXCLEulerCWBAC2DBC3AGC12n
DEBNBSB3CNA1D0?CQC0CYDGC2ALC4DABOBJCCA2
26
3.3 BJDDD2A3BKCUB0BEBYAZCUB0ASBBD3CY
AJD2A4CVAH
J[y]=
integraldisplay
x
1
x
0
F(x, y, y
prime
,y
primeprime
) dx (3.3.1)
C2B4D1AAD7A1AZALC4DABOA5
?
?
?
?
?
y(x
0
)=y
0
,
y(x
1
)=y
1
,
?
?
?
?
?
y
prime
(x
0
)=y
prime
0
,
y(x
1
)=y
prime
1
.
(3.3.2)
C0 F ∈ C
3
,y∈ C
4
,ARC0y(x)CDC6J BFC1B4D1C2AH
CNA1DJ ˉy = y(x)+αδy,AZDAδyCD y C2AND1A1B7
δy|
x
0
= δy|
x
1
= δy
prime
|
x
0
= δy
prime
|
x
1
=0.
BQ ˉy BRBS(3.3.1)C8A1CL αBCBYAPCHDJ α =0,C1
δJ[y]=
integraldisplay
x
1
x
0
(F
y
δy + F
y
primeδy
prime
+ F
y
primeprimeδy
primeprime
) dx.
D2BZD1AWB2D1CSA1C1
integraldisplay
x
1
x
0
F
y
primeδy
prime
dx= F
y
primeδy
vextendsingle
vextendsingle
vextendsingle
vextendsingle
x
1
x
0
?
integraldisplay
x
1
x
0
δy
d
dx
F
y
prime dx= ?
integraldisplay
x
1
x
0
d
dx
F
y
prime·δy dx,
integraldisplay
x
1
x
0
F
y
primeprimeδy
primeprime
dx= ?
integraldisplay
x
1
x
0
d
dx
F
y
primeprime·δy
prime
dx=
integraldisplay
x
1
x
0
d
2
dx
2
F
y
primeprime·δydx,
C4CD
δJ[y]=
integraldisplay
x
1
x
0
(F
y
?
d
dx
F
y
prime +
d
2
dx
2
F
y
primeprime)δy dx.
C0 δyC2BNBSB2B6B1AGBVD0CY
F
y
?
d
dx
F
y
prime +
d
2
dx
2
F
y
primeprime =0. (3.3.3)
CWBA(3.3.3)B6A5 Euler-PoissonCWBAA2C4CDC1
B4C93.3.1 CVAH (3.3.1)CI y(x)BFC1B4D1C2AK
BKDABOCD y(x)A8AGEuler-PoissonCWBA(3.3.3).
A9A3 BMA9CWCRA1 E-P CWBACDCTBYB3A2D1CW
BAA1AZDBC3DAAGC1CTDEBNBSB3CNA1D0?C0ALC4DA
BO(3.3.2)BJCCA2
CB 3.3.2 BCCVAH
J[y]=
integraldisplay
1
0
(1 + y
primeprime2
) dx
27
A8AGALC4DABO
y(0) = 0,y
prime
(0) = 0,y(1) = 1,y
prime
(1) = 1
C2B4D1BEANA2
BZ BUA5
F =1+y
primeprime2
,
A4AZ E-PCWBAA5
d
2
dx
2
(2y
primeprime
)=0,
B7
y
(4)
=0,
AZDBC3A5
y = c
1
x
3
+ c
2
x
2
+ c
3
x + c
4
.
C0ALC4DABOCQC1 c
1
= c
2
= c
4
=0,c
3
=1,BUBLA1CY
BCB4D1BEANA5y = x.
CB 3.3.3 BCCVAH
J[y]=
integraldisplay π
2
0
(y
primeprime2
? 2y
prime2
+ y
2
) dx
A8AGALC4DABO
y(0) = y
prime
(0) = 0,y(
π
2
)=1,y
prime
(
π
2
)=
π
2
C2B4D1BEANA2
BZ BUA5
F = y
primeprime2
? 2y
prime2
+ y
2
,
A4AZ E-PCWBAA5
2y ?
d
dx
(?4y
prime
)+
d
2
dx
2
(2y
primeprime
)=0,
B7
y
(4)
+2y
primeprime
+ y =0,
AZDBC3A5
y =(c
1
+ c
2
x)cosx +(c
3
+ c
4
x)sinx.
28
C0ALC4DABOCQC1 c
1
=0,c
2
= ?1,c
3
=1,c
4
=0,BUBL
CYBCB4D1BEANA5
y = ?x cos x +sinx.
CB 3.3.4 BCCVAH
J[y]=
integraldisplay
l
?l
(
1
2
μy
primeprime2
+ ρy) dx
A8AGALC4DABO
y(?l)=y
prime
(?l)=y(l)=y
prime
(l)=0
C2B4D1BEANA2
BZ AGD7CIBCDBCIB6A2C2BWB2DJB0DAC2DJBEC3
C9BZA2BR?DACDCLCFC2A1CJ μρCDB3CNA1A4AZ E-P
CWBAA5
ρ +
d
2
dx
2
(μy
primeprime
)=0,
B7
y
(4)
= ?
ρ
μ
,
AZDBC3A5
y = ?
ρ
24μ
x
4
+ c
1
x
3
+ c
2
x
2
+ c
3
x + c
4
.
C0ALC4DABOCQC1
c
1
= c
3
=0,c
2
=
ρl
2
12μ
,c
4
= ?
ρl
4
24μ
,
BUBLCYBCB4D1BEANA5
y = ?
ρ
24μ
x
4
+
ρl
2
12μ
x
2
?
ρl
4
24μ
= ?
ρ
24μ
(x
2
?l
2
)
2
.
CLC4AGC1A6CYAHCNC2DIDCBYBYCNA1B0AGCNDEA6
CYAHCNC2A6CCALC4C2AND1AAD7A1CIF AGA2AAATC2
DABOAIA1CYCUC5CQBQC1BZAIDEC2?A2
B4C93.3.5 BR?CVAH
J[y]=
integraldisplay
x
1
x
0
F(x, y, y
prime
,···,y
(n)
) dx,
CJy(x)C6J[y]BFC1B4D1C2AKBKDABOCDEuler-Poisson
CWBA
F
y
?
d
dx
F
y
prime +
d
2
dx
2
F
y
primeprime ?···+(?1)
n
d
n
dx
n
F
y
(n) =0
29
B7D4A2
B4C93.3.6 BTCVAH
J[y]=
integraldisplay
x
1
x
0
F(x, y, y
prime
,···,y
(n)
) dx,
CJy(x),z(x)C6J[y,z]BFC1B4D1C2AKBKDABOCDEuler-
PoissonCWBA
?
?
?
?
?
F
y
?
d
dx
F
y
prime +
d
2
dx
2
F
y
primeprime ?···+(?1)
n d
n
dx
n
F
y
(n) =0,
F
z
?
d
dx
F
z
prime +
d
2
dx
2
F
z
primeprime ?···+(?1)
n d
n
dx
n
F
z
(n) =0,
B7D4
B4C93.3.7 BR?CVAH
J[y
1
,y
2
,···,y
m
]=
integraldisplay
x
1
x
0
F(x, y
1
,···,y
(n
1
)
1
; y
2
,···,y
(n
2
)
2
;···; y
m
,···,y
(n
m
)
m
) dx,
CJ y
1
(x),y
2
(x),···,y
m
(x) C6 J[y
1
,y
2
,···,y
m
] BFC1B4
D1C2AKBKDABOCD Euler-PoissonCWBA
F
y
i
?
d
dx
F
y
prime
i
+
d
2
dx
2
F
y
primeprime
i
?···+(?1)
n
d
n
dx
n
F
y
(n)
i
=0,i=1,···,m.
B7D4A2
3.4 B6DFBKCUB0B9BKBRA5D3CY
COA1CQCAAHCNC2CVAH
J[u(x, y)] =
integraldisplay
D
integraldisplay
F[x, y, u(x, y),u
x
(x, y),u
y
(x, y)] dσ
(3.4.1)
C2B4D1AAD7A1AZDAF CDCHC1CQBYD7B7AVBYCNC2AD
CAAHCNA1COAHCN u(x, y)BKBCCIAWAGBXC2AJBDC8 D
AQC1CQBYD7B7AVBYCNA1B9CIDC2ALC4ΓBXBFBPCY
D1A2DJ
Y = {u(x, y): u ∈ C
2
(D),u|
Γ
=BPCYD1}.
ALCIC2AAD7CDA1CIY DACOBMDEAHCNu(x, y),C6CVAH
J[u(x, y)]BFB4D1A2BT u ∈ Y C6C1 J[u] BPBZB4D1A1
30
AOAAu(x, y) CHC1C4AAD4CTAPA4CLC4C5CN α, COA1
AIBUAHCNB5AL
ˉu = u + αη,
AZDAη = δu = u
2
?u
1
,u
1
,u
2
∈ Y,η|
Γ
= u
2
|
Γ
?u
1
|
Γ
=0.
BUBLA1 ˉu ∈ Y . CLC4BNBSA6CCC2η(x, y),COA1AHCN
?(α)=J[ˉu]=
integraldisplay
D
integraldisplay
f(x, y, u + αη,u
x
+ αη
x
,u
y
+ αη
y
) dσ.
CICYBGCCC2DABOAIA1 ?(α) CHC1D7B7BYCNA1B9BX
α =0C3 ?(α)BFC1B4D1A1BUCO ?
prime
(α)|
α=0
=0.CABA
CWC1
?
prime
(α)=
integraldisplay
D
integraldisplay
(F
u
η + F
u
x
η
x
+ F
u
y
η
y
) dσ.
A3BSA1BXC8C2AFB2AHCNDA F
u
,F
u
x
,F
u
y
CI x, y, u +
αη,u
x
+ αη
x
,u
y
+ αη
y
BIBFB4D1A1BQ α =0BRBSBX
C8A1C1
?
prime
(0) =
integraldisplay
D
integraldisplay
(F
u
η + F
u
x
η
x
+ F
u
y
η
y
) dσ=0. (3.4.2)
(3.4.2) C8C2AFB2AHCNDA F
u
,F
u
x
,F
u
y
CI x, y, u, u
x
,u
y
BIBFD1A1u(x, y)A5C6J[u]BPBZB4D1C2AHCNA2A5DD
BXBZB1AGBVD0A1AB?AKB4D1CZBF η(x, y)CWA1BUBL
BKC3DG η CL x, y C2AVBYCNA1AB?BXBZ GreenA0C8
contintegraldisplay
Γ
Pdx+ Qdy=
integraldisplay
D
integraldisplay
(
?Q
?x
?
?P
?y
) dσ.
BUF
u
x
η
x
C7F
u
y
η
y
ARAUCDANDEAHCNC2AVBYCNA1COCD
F
u
x
η,F
u
y
η C2AVBYCNC2BMAWD1A2CBC5BX
?
?x
(F
u
x
η)=F
u
x
η
x
+ η
?
?x
F
u
x
,
?
?y
(F
u
y
η)=F
u
y
η
y
+ η
?
?y
F
u
y
,
31
CYBQ
integraldisplay
D
integraldisplay
(F
u
x
η
x
+ F
u
y
η
y
) dσ
=
integraldisplay
D
integraldisplay
[
?
?x
(F
u
x
η)+
?
?y
(F
u
y
η)] dσ
?
integraldisplay
D
integraldisplay
η(
?
?x
F
u
x
+
?
?y
F
u
y
) dσ
=
contintegraldisplay
Γ
(?F
u
y
η) dx+(F
u
x
η) dy
?
integraldisplay
D
integraldisplay
η(
?
?x
(F
u
x
+
?
?y
(F
u
y
) dσ
= ?
integraldisplay
D
integraldisplay
η(
?
?x
F
u
x
+
?
?y
F
u
y
) dσ
BQBXC8BRBS (3.4.2)C8C1
?
prime
(0) =
integraldisplay
D
integraldisplay
η[F
u
? (
?
?x
F
u
x
+
?
?y
F
u
y
)] dσ=0.
BUA5η(x, y)CDBNBSC2A1C0B1AGBVD0CY
F
u
?
?
?x
F
u
x
?
?
?y
F
u
y
=0.
C4CDC1AIAGC2CCD0A2
B4C93.4.1 BTAHCNu(x, y) ∈ Y C6CVAH(3.4.1)BF
C1B4D1A1CJ u(x, y)AKA8AGAVA2D1CWBA
F
u
?
?
?x
F
u
x
?
?
?y
F
u
y
=0. (3.4.3)
CWBA(3.4.3)B6A5CVAHJ[u]C2A6CFCWBAA1CRCDBM
DECQBYAVA2D1CWBAA2
A9A3BX u(x, y)C6CVAH
J[u]=
integraldisplay
D
integraldisplay
F(x, y, u, u
x
,u
y
) dσ
BPBZB4D1C3A1 u(x, y)AKCDAVA2D1CWBACCC3AAD7
?
?
?
?
?
F
u
?
?
?x
F
u
x
?
?
?y
F
u
y
=0,
u(x, y)|
Γ
=BPCYD1,
C2C3A2CRCRAIA1BCAVA2D1CWBAC2CCC3AAD7CQBQA5
AUA5BCANDECVAHC2B4D1AAD7A1CRCDCDBCC3AVA2D1
CWBAC2AND1CSC2B1BHA2
CB 3.4.2 BCBFCVAH
J[u]=
integraldisplay
D
integraldisplay
[u
2
x
+ u
2
y
+2uf] dσ
32
C2A6CFCWBAA2
BZ BUA5
F = u
2
x
+ u
2
y
+2uf,F
u
=2f,F
u
x
=2u
x
,F
u
y
=2u
y
,
A4A6CFCWBAA5
F
u
?
?
?x
F
u
x
?
?
?y
F
u
y
=2f ? 2u
xx
? 2u
yy
=0,
B0
triangleu =
?
2
u
?x
2
+
?
2
u
?y
2
= f(x, y).
B7BLCVAH J[u]C2A6CFCWBAA5 PoissonCWBAA2
A7C4CNCAAHCNC2CVAHA1C1AIDEBVDEC2A4A2
B4C93.4.3 CLC4DBDECQCAAHCNC2CVAH
J[u(x, y),v(x, y)] =
integraldisplay
D
integraldisplay
F(x, y, u, v, u
x
,v
x
,u
y
,v
y
) dσ,
AZA6CFCWBAA5
F
u
?
?
?x
F
u
x
?
?
?y
F
u
y
=0,F
v
?
?
?x
F
v
x
?
?
?y
F
v
y
=0.
B4C9 3.4.4 CLC4CHC1BMDECQCAAHCN u(x, y) B9
F DAAGC1D0C2DCBYAVBYCNC2CVAHA1BR
J[u]=
integraldisplay
D
integraldisplay
F(x, y, u, u
x
,u
y
,u
xx
,u
xy
,u
yy
) dσ,
AZA6CFCWBAA5
F
u
?(
?
?x
F
u
x
+
?
?y
F
u
y
)+(
?
2
?x
2
F
u
xx
+
?
2
?x?y
F
u
xy
+
?
2
?y
2
F
u
yy
)=0.
B4C93.4.5 BVCAAHCNC2CVAH
J[u(x, y, z)] =
integraldisplayintegraldisplay
?
integraldisplay
F(x, y, z, u, u
x
,u
y
,u
z
) dv,
C2A6CFCWBAA5
F
u
?
?
?x
F
u
x
?
?
?y
F
u
y
?
?
?z
F
u
z
=0.
CB 3.4.6 BCCVAH
J[u(x, y, z)] =
integraldisplayintegraldisplay
?
integraldisplay
(u
2
x
+ u
2
y
+ u
2
z
+2uf) dv
33
C2A6CFCWBAA2
BZ BUA5
F = u
2
x
+u
2
y
+u
2
z
+2uf,F
u
=2f,F
u
x
=2u
x
,F
u
y
=2u
y
,F
u
z
=2u
z
,
A4 J[u]C2A6CFCWBAA5
2f ? 2
?
2
u
?x
2
? 2
?
2
u
?y
2
? 2
?
2
u
?z
2
=0,
B0
triangleu =
?
2
u
?x
2
+
?
2
u
?y
2
+
?
2
u
?z
2
= f(x, y, z).
CB 3.4.7 BCBFCVAH
J[u(x, y)] =
integraldisplay
D
integraldisplay
(u
2
xx
+2u
2
xy
+ u
2
yy
) dσ
C2A6CFCWBAA2
BZ BUA5
F = u
2
xx
+2u
2
xy
+ u
2
yy
,
F
u
=0,F
u
x
=0,F
u
y
=0,F
u
xx
=2u
xx
,F
u
xy
=4u
xy
,F
u
yy
=2u
yy
,
A4 J[u]C2A6CFCWBAA5
F
u
? (
?
?x
F
u
x
+
?
?y
F
u
y
)+(
?
2
?x
2
F
u
xx
+
?
2
?x?y
F
u
xy
+
?
2
?y
2
F
u
yy
)
=0? (
?0
?x
+
?0
?y
)+[
?
2
?x
2
(2u
xx
)+
?
2
?x?y
(4u
xy
)+
?
2
?y
2
(2u
yy
)]
=0,
B0
triangletriangleu =
?
4
u
?x
4
+2
?
4
u
?x
2
?y
2
+
?
4
u
?y
4
=0
CRDECWBAB6A5DCCAAJCWBAA1BLBTBBA5
triangletriangleu =0.
34
B2CVDJ C5B5ARC0B0ASBBD3CY
4.1 ASBBD3CYB0CXAW
D2A4CVAH
J[y]=
integraldisplay
x
1
x
0
F(x, y, y
prime
) dx (4.1.1)
C2B4D1A2ALCIBGCCDBDEALC4C7A(x
0
,y
0
),B(x
1
,y
1
)DA
C2BMDEB0DBDEARA2BOCDA1CRC3CQBFBEANC2CUA3CU
BQA2BUBLA1C6C1A6CCALC4AAD7BPBZB4D1C2B1AGAK
BKDABOBXBXC1BZA8AGA1B7AHCNy(x)BXBXA8AGEuler
CWBA
F
y
?
d
dx
F
y
prime =0. (4.1.2)
CRCDBMDECQBYB3A2D1CWBAA1D0C2DBC3y = y(x, c
1
,c
2
)
DAABAGDDDBDEBNBSB3CNA1BKAPBJCCD0?B3BKDBDE
DABOA2CIA6CCALC4C2AND1AAD7DAA1CRDBDEDABOCD
y(x
0
)=y
0
AJ y(x
1
)=y
1
, COCIALC4CQANCDC2BAB0
AIA1 x
0
AJ x
1
BLCDBSCCC2A1A5DDBJCCD0?A1B3BK
BCCOAZCZDABOA2AB?AJD2A4ALCIC7A(x
0
,y
0
)A6CC
COC2CIC7B(x
1
,y
1
)CQBQANCDC2BAB0A2
C0CVAH (4.1.1) C8DAC2 y(x) C1DCBMDEA6CCC2AL
CIC7A(x
0
,y
0
), B7 y(x
0
)=y
0
, COC0C2CIC7 B(x
1
,y
1
)
CQBQCIANBEANw(x, y)=0BXBOCDA1CJC1DABOw(x
1
,y
1
)
=0.BLC3x
1
CDBSCCC2A2
C0CVAH (4.1.1) C2B4D1BEANA5y = y(x), COA1BX
ALC4C7 B(x
1
,y
1
) C2A8D7BOCDBZC7B
1
(x
1
+ δx
1
,y
1
+
δy
1
)=y(x) C2A8D7C3CVAH (4.1.1) C2AND1A2A5BLA1
AB?CICVAHC2CKDC ?J DABFBFCLδx
1
AJ δy
1
COBF
A5ANB2DIAWC2AOBMAWD1A2CVAH J C2CKDC
?J =
integraldisplay
x
1
+δx
1
x
0
F(x, y + δy,y
prime
+ δy
prime
) dx?
integraldisplay
x
1
x
0
F(x, y, y
prime
) dx
=
integraldisplay
x
1
+δx
1
x
1
F(x, y + δy,y
prime
+ δy
prime
) dx
+
integraldisplay
x
1
x
0
[F(x, y + δy,y
prime
+ δy
prime
) ? F(x, y, y
prime
)] dx.
(4.1.3)
CLC4(4.1.3)C8C2CIC2C6BMAQA1C0B2D1DAD1CCD0B6
35
F C2D7B7B2A1C1
integraldisplay
x
1
+δx
1
x
1
F(x, y + δy,y
prime
+ δy
prime
) dx
= F|
x=x
1
+θδx
1
· δx
1
= F(x, y, y
prime
)|
x=x
1
· δx
1
+ ε
1
δx
1
,
(4.1.4)
AZDA 0 <θ<1,COBXδx
1
→ 0C3 ε
1
→ 0.
CLC4(4.1.3)C8C2CIC2C6CQAQA1C0 Taylor A0C8CL
CMA1C1
integraldisplay
x
1
x
0
[F(x, y + δy,y
prime
+ δy
prime
) ?F(x, y, y
prime
)] dx
=
integraldisplay
x
1
x
0
[F
y
(x, y, y
prime
)δy + F
y
prime(x, y, y
prime
)δy
prime
] dx+ R
1
,
(4.1.5)
AZDA R
1
CDBU δy AJ δy
prime
DCBYC2ACBBATDCA2D2BZD1
AWB2D1CSB6 Euler CWBA(4.1.2),ARA3BSBZ δy|
x
0
=0,
C1
integraldisplay
x
1
x
0
[F
y
δy + F
y
primeδy
prime
] dx
=[F
y
primeδy]|
x
1
x
0
+
integraldisplay
x
1
x
0
[F
y
?
d
dx
F
y
prime]δy dx
=[F
y
primeδy]|
x=x
1
.
(4.1.6)
A3BSBMA9CWCRA1δy|
x=x
1
negationslash= δy
1
,CRCDBUA5δy
1
CDBXAL
C4C7BOCDBZ(x
1
+ δx
1
,y
1
+ δy
1
)A8D7C3y
1
C2CKDCA1
CO δy|
x=x
1
CDBXDBAF (x
0
,y
0
) AJ (x
1
,y
1
) DBC7C2B4D1
BEANBOBZDBAF (x
0
,y
0
)AJ (x
1
+ δx
1
,y
1
+ δy
1
)DBC7C2
B4D1BEANC3A1CIC7 x
1
BIAFAOAOC2CKDCA2
AKBKA1
δy|
x=x
1
≈ δy
1
? y
prime
(x
1
)δx
1
.
BLC3C8CUC3C8C7C9BJC3C8AOB2BMDEBU δx
1
A5DCBY
C2ACBBATA2C4CDC0 (4.1.4)C8A1ARBQ (4.1.6)C8BRBS
(4.1.5)C8A1C1
integraldisplay
x
1
+δx
1
x
0
Fdx≈ F|
x=x
1
δx
1
,
integraldisplay
x
1
x
0
[F(x, y + δy,y
prime
+ δy
prime
) ? F(x, y, y
prime
)] dx
≈ F
y
prime|
x=x
1
(δy
1
?y
prime
(x
1
)δx
1
).
AZDAC8CUC3C8C7C9BJC3C8AOB2BU δx
1
AJ δy
1
A5DC
BYC2ACBBATDCA2BQBQBXDBC8BRBS (4.1.3)C8A1B7CQ
36
C1BZ
δJ = F|
x=x
1
δx
1
+ F
y
prime|
x=x
1
(δy
1
? y
prime
(x
1
)δx
1
)
=(F ? y
prime
F
y
prime)|
x=x
1
δx
1
+ F
y
prime|
x=x
1
δy
1
.
COB4D1C2B1AGAKBKDABO δJ =0CDB7A5
(F ? y
prime
F
y
prime)|
x=x
1
δx
1
+ F
y
prime|
x=x
1
δy
1
=0. (4.1.7)
BT δx
1
AJ δy
1
CDAOASACA7C2A1CJC1
(F ?y
prime
F
y
prime)|
x=x
1
=0,F
y
prime|
x=x
1
=0.
BUCDB3B3C1AKBKCOA1AND1 δx
1
C7 δy
1
AOA7C2BA
B0A2C0C2CIC7CQBQBGANBMBEAN C
1
: w(x, y)=0BO
CDA1BLC3
w
x
1
δx
1
+ w
y
1
δy
1
=0. (4.1.8)
BGCC w
y
1
negationslash=0,C0 (4.1.8)C3BF δy
1
APBRBS (4.1.7),AR
C0δx
1
C2BNBSB2A1C1
[(F ? y
prime
F
y
prime)w
y
? F
y
primew
x
]|
x=x
1
=0. (4.1.9)
BTBGCC w
x
1
negationslash=0,DCBJCQBQC1BZ(4.1.9).
CWBA(4.1.9) B6A5B4D1BEAN y = y(x) C7BEAN C
1
C2AVBZDABOA2B7BT y = y(x)(x
0
≤ x ≤ x
1
) A5ANCD
C2CIC7C2CVAHC2B4D1BEANA1CJC2CIC7 x
1
AKA8AG
(4.1.7)C8A2AIAGCOA1B9DBDCBKC2D4CKBAB0A2
(1) C0C2CIC7B CQBQBGBEAN C
1
: y = ?(x) BO
CDA2CRC3
w = y ? ?(x),w
x
= ??
prime
(x),w
y
=1,
C4CD (4.1.9)C8B7A5
[(?
prime
? y
prime
)F
y
prime + F]|
x=x
1
=0. (4.1.10)
CRDEDABOBPD4DDCIALC4C7BI?
prime
AJ y
prime
CQAVA2CZBJ
C2BNBNA7AHA2
(2) C0C2CIC7B CQBQCID0ANx = x
1
BXBOCDA2
CRC3 B B6A5ACC0CIC7A1CO δx
1
=0,C4CDC0 (4.1.7)
C8B0 (4.1.9)C8CQC1
F
y
prime|
x=x
1
=0. (4.1.11)
37
CRCRAIA1BT y = y(x) CD J[y] C2B4D1BEANA1CJ F
y
prime
BGA9y = y(x)CI x = x
1
BIC2D1A5DHA2CRBJC2DABO
(4.1.11)B6A5J[y]C2ACBKALC4DABOA2
(3) C0C2CIC7B CQBQCID0ANy = y
1
BXBOCDA1
C4CDδy
1
=0.C0 (4.1.7)C8B0 (4.1.9)C8CQC1
[F ? y
prime
F
y
prime]|
x=x
1
=0. (4.1.12)
AKAPA1BTCQBFBEANC2ALCIC7A(x
0
,y
0
)CDCQANCD
C2A1B0CQDBDECIC7A, BCECDCQANCDC2A1CJBQBXCL
DCBJC2D2A4BXBZC4D9C7BXA1CQCY x
0
,x
1
A5DFDBAU
DCBAB0D1AQA8AGDABO (4.1.9)-(4.1.12)C8A2
CB 4.1.1 BCD7BWAWAGBXDBDABEAN x + y +1=0
C7 xy =1C2AKCJBEANA2
BZ C0CYBCAWAGBEANA5 y = f(x), ALCIC2AAD7
CDBCCVAH
J[y]=
integraldisplay
x
1
x
0
radicalBig
1+y
prime2
dx
C2B4D1BEANA2
C
2
: y = ψ(x)=?(1 + x),A(x
0
,ψ(x
0
)) ∈ C
2
;
C
1
: y = ?(x)=
1
x
,B(x
1
,?(x
1
)) ∈ C
1
.
J[y]C2 EulerCWBAC2C3A5 y = c
1
x + c
2
. CRC3C1
y
prime
= c
1
,
F =
radicalBig
1+y
prime2
=
radicalBig
1+c
2
1
,
F
y
prime =
y
prime
√
1+y
prime2
=
c
1
radicalBig
1+c
2
1
.
CICRDBDEALC4C7CEANCDC2BACTAIA1C0AVBZDABO(4.1.10)
C7CYDGALC4DABOA1BXC1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
[(?
prime
? y
prime
)F
y
prime + F]|
x=x
1
=0,
[(ψ
prime
? y
prime
)F
y
prime + F]|
x=x
0
=0,
y(x
0
)=y
0
,
y(x
1
)=y
1
,
38
B7
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
(?
1
x
2
1
?c
1
)
c
1
radicalBig
1+c
2
1
+
radicalBig
1+c
2
1
=0,
(?1 ?c
1
)
c
1
radicalBig
1+c
2
1
+
radicalBig
1+c
2
1
=0,
c
1
x
0
+ c
2
= ?(1 + x
0
),
c
1
x
1
+ c
2
=
1
x
1
.
C3D6D4CWBAC1A3
x
0
= ?
1
2
,x
1
= ±1,c
1
=1,c
2
=0.
BTCOA1C2CDCOBEANBXAOBXC4x>0C2AOBMD1CXA1
AOAAD6D4CWBAC1A4BMC2BMAJC3
x
0
= ?
1
2
,x
1
=1,c
1
=1,c
2
=0.
C4CDCYBCBEANA5
y = x, ?
1
2
≤ x ≤ 1.
CB 4.1.2 BCCVAH
J[y]=
integraldisplay
a
0
√
1+y
prime2
√
2gy
dx
C2B4D1BEANA2
BZ BUA5
F =
√
1+y
prime2
√
2gy
,
BUBLA1C1
F
y
prime =
y
prime
√
2gy
√
1+y
prime2
.
BNCOA1A8AGALC4DABOy(0) = 0C2EulerCWBAC2C3A5
?
?
?
?
?
x =
c
1
2
(t ? sin t),
y =
c
1
2
(1 ? cos t).
D7DACLy(a)ABC1ANBNAKBKBCA1CRBSA7A9CYDGBFC2
CDACBKALC4DABOA1C4CDC1
y
prime
(x)
radicalBig
2gy(x)
radicalBig
1+[y
prime
(x)]
2
|
x=a
=0,
B7
y
prime
(a)=0.
39
CRCRAIA1CICYBCBEANBXC2C7 (a, y(a)) BIA1B8ANBX
C7X DEAWB1A2CYBQC7 (a, y(a))BXCDA8ANC2CBC7A1
COA8ANC2CBC7CLBXC4t = π,BUBL
a =
c
1
2
(π ? sin π),c
1
=
2a
π
.
C4CDCYBCB4D1BEANA5
?
?
?
?
?
x =
a
π
(t ? sin t),
y =
a
π
(t ? cos t),
0 ≤ t ≤ π.
4.2
integraldisplay
x
1
x
0
F(x, y, z, y
prime
,z
prime
) dxD8B9BKB0B0C5B5ARC0
D3CY
AGC0D2A4CVAH
J[y,z]=
integraldisplay
x
1
x
0
F(x, y, z, y
prime
,z
prime
) dx (4.2.1)
C2CQCDALC4C2B4D1AAD7A2A5DDCWAMB1BNA1AB?BG
CCJ[y,z]C2BMDEALC4C7 A(x
0
,y
0
,z
0
)CDA6CCC2A1CO
DIBMDEALC4C7 B(x
1
,y
1
,z
1
)CQBQBOCDA2C0 (4.2.1)C8
C2B4D1BEANA5
?
?
?
?
?
y = y(x),
z = z(x),
x
0
≤ x ≤ x
1
(4.2.2)
CYCUC4A6CCALC4AAD7C2D2A4A1y(x),z(x) AKB4A8AG
EulerCWBA
?
?
?
?
?
F
y
?
d
dx
F
y
prime =0,
F
z
?
d
dx
F
z
prime =0.
(4.2.3)
CRDECWBAC2DBC3DAAGC1CTDEBNBSB3CNA1C0C4B
C7ANCDA1C3CNDDBMDEA6CYDCx
1
. CRBJA1A5DDARA2BJ
CCA4BMC3A1CDBKBJCCADDEB3CNA2C0C4AC7A6CCA1
BMA9AVCQBQBMBYDBDEBNBSB3CNA1A5DDBJCCDIDIBV
DEB3CNA1AKB4AVC1BVDECWBAA2AIAGDHCF BC2AUDC
BACTA1D1AQDGBFCRAUCWBAA2
CLC4ALCIC7A(x
0
,y
0
,z
0
)A6CCCOC2CIC7B(x
1
,y
1
,z
1
)
CQBQANCDC2BAB0A1CRC3 J[y,z]BFB4D1C2AKBKDABO
40
δJ =0CAAUBLAPA5
[F?y
prime
F
y
prime?z
prime
F
z
prime]|
x=x
1
δx
1
+F
y
prime|
x=x
1
δy
1
+F
z
prime|
x=x
1
δz
1
=0.
(4.2.4)
BXC8DAδx
1
,δy
1
,δz
1
CDBNBSC2A1B7C7 BCQBQA5BNBS
CWC8BOCDA1AIAGAB?D1BVDBBAB0D2A4A2
(1) BT δx
1
,δy
1
,δz
1
AOASACA7A1C0 (4.2.4)C8CQC1
?
?
?
?
?
?
?
?
?
?
?
[F ?y
prime
F
y
prime ? z
prime
F
z
prime]|
x=x
1
=0,
F
y
prime|
x=x
1
=0,
F
z
prime|
x=x
1
=0.
(4.2.5)
BCBF Euler CWBA(4.2.3) C2DBC3A1C0 (4.2.5) C8B6 A
A6CCCWBJCCCRDBBAB0AIC2B4D1BEANB6 x
1
C2D1A2
(2) BTC2CIC7B BGBEAN y = ?(x),z = ψ(x) BO
CDA1CRC3 δx
1
,δy
1
,δz
1
A8AGA7AHC8
δy
1
= ?
prime
(x
1
)δx
1
,δz
1
= ψ
prime
(x
1
)δx
1
.
BRBS (4.2.4)C8A1C1
[F +(?
prime
?y
prime
)F
y
prime +(ψ
prime
? z
prime
)F
z
prime]|
x=x
1
· δx
1
=0.
C0 δx
1
C2BNBSB2A1C1
[F +(?
prime
? y
prime
)F
y
prime +(ψ
prime
?z
prime
)F
z
prime]|
x=x
1
=0. (4.2.6)
BXC8B6A5CVAH J[y,z]C2B4D1BEANC7CIC7BEANC2AV
BZDABOA2BCBFEulerCWBA(4.2.3)C2DBC3A1CHC0(4.2.6)
C8A1y
1
= ?(x
1
),z
1
= ψ(x
1
)B6 AA6CCCDCQBQBJCCCR
DBBAB0AIC2B4D1BEANAJ x
1
C2D1A2
(3) BTCIC7BCIANBEAG?(x, y, z)=0BXBOCDA1
BLC3δx
1
,δy
1
,δz
1
A8AGA7AHC8
?
x
1
δx
1
+ ?
y
1
δy
1
+ ?
z
1
δz
1
=0.
BR??
x
1
negationslash=0,CJC1
δ
x
1
=
?
x
1
?
z
1
δx
1
?
?
y
1
?
z
1
δy
1
.
BRBS (4.2.4)C8A1ARA3BSBZ δx
1
,δy
1
C2BNBSB2C1
?
?
?
?
?
[F ? y
prime
F
y
prime ? z
prime
F
z
prime ? F
z
prime
?
x
?
z
]
x=x
1
=0,
[F
y
prime ? F
z
prime ?F
z
prime
?
y
?
z
]
x=x
1
=0,
(4.2.7)
41
(4.2.7) C8B6A5CVAH J[y,z] C2B4D1BEANC7CIC7BEAG
C2AVBZDABOA2BCBFEulerCWBA(4.2.3)C2DBC3A1CHC0
(4.2.7)C8A1?(x
1
,y
1
,z
1
)=0AJ A(x
0
,y
0
,z
0
)CDA6CCC2
CQBQCCBFB4D1BEANAJ x
1
C2D1A2
AKAPA1BTALC4C7 A(x
0
,y
0
,z
0
)CDCQBQANCDC2A1BQ
BXCLDCBJC2CWCSBXBZC4D9C7BXA1CDC1BZA0BHCYCU
C2DABOA2BXBKBLCQBQCYCUC5D2A4DBDEALC4C7DCC3
ANCDC2BAB0A2
CB 4.2.1 BCCVAH
J[y,z]=
integraldisplay
x
1
0
[y
prime2
+ z
prime2
+2yz] dx
C2B4D1BEANA1BPCYy(0) = 0,z(0) = 0,B9C7B(x
1
,y
1
,z
1
)
CIAWAGx = x
1
BXBOCDA2
BZ AGD3CD A(0, 0, 0)A6CCA1B(x
1
,y
1
,z
1
)CIAWAG
x = x
1
BXANCDC2BAB0A2
AJBC EulerCWBAC2DBC3A2C0C4
F = y
prime2
+ z
prime2
+2yz,
F
y
=2z,F
z
=2y,F
y
prime =2y
prime
,F
z
prime =2z
prime
,
EulerCWBAA5
?
?
?
?
?
F
y
?
d
dx
F
y
prime =2z ? 2y
primeprime
=0,
F
z
?
d
dx
F
z
prime =2y ? 2z
primeprime
=0.
D0C2DBC3A5
?
?
?
?
?
y = c
1
cosh x + c
2
sinh x + c
3
cos x + c
4
sin x,
z = c
1
cosh x + c
2
sinh x ?c
3
cos x ? c
4
sin x.
C0ALC4DABO y(0) = 0,z(0) = 0 C1 c
1
= c
3
=0,C4
CD
?
?
?
?
?
y = c
2
sinh x + c
4
sin x,
z = c
2
sinh x ? c
4
sin x.
(4.2.8)
C0C4B CIAWAGx = x
1
BXBOCDA1A4 δx
1
=0,CO
δy
1
,δz
1
BNBSA2C0BMA9DABO (4.2.4),C1
?
?
?
?
?
F
y
prime|
x=x
1
=0,
F
z
prime|
x=x
1
=0,
42
B7
?
?
?
?
?
y
prime
(x
1
)=0,
z
prime
(x
1
)=0.
C0 (4.2.8)C8A1C1
?
?
?
?
?
c
2
cosh x
1
+ c
4
cos x
1
=0,
c
2
cosh x
1
?c
4
cos x
1
=0.
BT cos x
1
negationslash=0,CJC0BXC8CQBQC3BFA3 c
2
= c
4
=0,
C4CDA1CYBCB4D1BEANA5
?
?
?
?
?
y =0,
z =1.
BT cos x
1
=0,CJ
x
1
= nπ +
π
2
,
nA5CUCNA1 c
2
=0,B4D1BEANA5
?
?
?
?
?
y = c
4
sin x
1
,
z = ?c
4
sin x.
AZDA c
4
A5BNBSB3CNA1D0CDAWAGz = ?y BXC2BNBS
BMDABEANA2BQBRBICWA1CIBXCLDBDBBAB0AICEC1
J[y,z]=0.
CB 4.2.2 BCD7BWC7 B(1, 0, 0) C7BEAG
summationtext
: z =
x
2
+ y
2
+
1
4
C2AKCJBEANA2
BZ C0CYBCBEANA5
?
?
?
?
?
y = y(x),
z = z(x),
x
0
≤ x ≤ 1,
D0AKC6CVAH
J =
integraldisplay
1
x
0
radicalBig
1+y
prime2
+ z
prime2
dx
BFAKATD1A2CRDECVAHC2BMDEALC4C7 B(1, 0, 0) A6
CCA1CODIBMDEALC4C7 A(x
0
,y
0
,z
0
) CICSBJBEAG
summationtext
:
z = x
2
+ y
2
+
1
4
BXBOCDA2
F =
radicalBig
1+y
prime2
+ z
prime2
,
43
F
y
=0,F
y
prime =
y
prime
√
1+y
prime2
+ z
prime2
,
F
z
=0,F
z
prime =
z
prime
√
1+y
prime2
+ z
prime2
.
J C2 EulerCWBAA5
?
?
?
?
?
?
?
?
?
?
?
F
y
?
d
dx
F
y
prime = ?
d
dx
y
prime
radicalBig
1+y
prime2
+ z
prime2
=0,
F
z
?
d
dx
F
z
prime = ?
d
dx
z
prime
radicalBig
1+y
prime2
+ z
prime2
=0,
B7
?
?
?
?
?
?
?
?
?
?
?
y
prime
radicalBig
1+y
prime2
+ z
prime2
=0,
z
prime
radicalBig
1+y
prime2
+ z
prime2
=0,
CYBQz
prime
= ky
prime
,BRBSBXC8A1C1 y
prime
= g
1
,z
prime
= g
2
,C4CDC1
?
?
?
?
?
y = g
1
x + h
1
,
z = g
2
x + h
2
,
AZDA k,g
1
,g
2
,h
1
,h
2
CECDB3CNA1D0C2B9AKDEB0A5CS
BJD0ANA2C0ALC4DABO y(1) = 0,z(1) = 0,C1
h
1
= ?g
1
,h
2
= ?g
2
,
CYBQ
?
?
?
?
?
y = g
1
(x ? 1),
z = g
2
(x ? 1).
BUA5C7ACIBEAG
summationtext
BXBOCDA1CHC0AVBZDABO(4.2.7),
C1
?
?
?
?
?
?
?
?
?
?
?
?
?
[F ?y
prime
F
y
prime ?z
prime
F
z
prime ?F
z
prime
?
x
?
z
]|
x=x
0
=0,
[F
y
prime ?F
z
prime
?
y
?
z
]|
x=x
0
=0,
z
0
?x
2
0
? y
2
0
?
1
4
=0.
B7
?
?
?
?
?
?
?
?
?
?
?
?
?
[1 + 2xz
prime
]|
x=x
0
=0,
[y
prime
+2yz
prime
]|
x=x
0
=0,
z
0
? x
2
0
? y
2
0
?
1
4
=0.
C0BLC3C1
g
1
=0,g
2
= ?1,x
0
=
1
2
,
44
C4CDCYBCD0ANA5
?
?
?
?
?
y =0,
z = ?(x ? 1),
1
2
≤ x ≤ 1.
C7 AC2AOAOA5(
1
2
, 0,
1
2
). BQCYBCD0ANBRBSCVAHA1B7
CQC1BZAKCJCICZ
|AB| =
radicalBigg
(
1
2
? 1)
2
+(
1
2
)
2
.
4.3
integraldisplay
x
1
x
0
F(x, y, y
prime
,y
primeprime
) dxD8B9BKB0C5B5ARC0D3
CY
BDCCBXCVAH
J[y]=
integraldisplay
x
1
x
0
F(x, y, y
prime
,y
primeprime
) dx (4.3.1)
C2ALC4CQBQANCDC3C2B4D1AAD7A2C0C7 A(x
0
,y
0
,y
prime
0
)
A5A6CCC7A1COC7B(x
1
,y
1
,y
prime
1
)CDCQBQANCDC2A2C0CV
AH (4.3.1) C2B4D1BEANA5 y = y(x), CJD0AKCCA8AG
Euler-PoissonCWBA
F
y
?
d
dx
F
y
prime +
d
2
dx
2
F
y
primeprime =0. (4.3.2)
CIBMA9BAB0AIA1CRCDBMDECTBYB3A2D1CWBAA1DBC3
DAAGC1CTDEBNBSB3CNA2C0C4BC7ANCDA1CYBQx
1
BL
BSCCA2BUA5AC7A6CCA1C0 y(x
0
)=y
0
,y
prime
(x
0
)=y
prime
0
CQ
BQBJCCBFEuler-Poisson CWBADBC3DAC2DBDEBNBSB3
CNA2BUBLA1A5DDBJCCA4BMC3A1B7A5DDBJCCDIDIBVDE
BSCCB3CNA1CDAKB4CHCOBFBVDECWBAA1CRAUCWBACQ
BQC0CVAHBFB4D1C2B1AGAKBKDABO δJ =0C1BZA2AB
?AVCDAJCDBMA9BAB0C7B1D2A4A1BACWCVAH (4.3.1)
C2CKDC ?J,BKAPD1CZBFANB2DIAW δJ.
C0CVAH(4.3.1)C8CIBEANy = y(x)BXBFC1B4D1A1
BNBFBMDACQBFBEAN y = y(x)+δy,BX x = x
0
C3CLBX
C4C7A,BXx = x
1
+δx
1
C3CLBXC4C7 B
prime
(x
1
+δx
1
,y
1
+
δy
1
,y
prime
1
+ δy
prime
1
). C7B5AGC2DFBYCYCUA1C4CDC1
?
?
?
?
?
δy|
x=x
1
= δy
1
?y
prime
(x
1
)δx
1
,
δy
prime
|
x=x
1
= δy
prime
1
? y
primeprime
(x
1
)δx
1
.
(4.3.3)
45
?J =
integraldisplay
x
1
+δx
1
x
0
F(x, y + δy,y
prime
+ δy
prime
,y
primeprime
+ δy
primeprime
) dx
?
integraldisplay
x
1
x
0
F(x, y, y
prime
,y
primeprime
) dx
=
integraldisplay
x
1
+δx
1
x
0
F(x, y + δy,y
prime
+ δy
prime
,y
primeprime
+ δy
primeprime
) dx
+
integraldisplay
x
1
x
0
[F(x, y + δy,y
prime
+ δy
prime
,y
primeprime
+ δy
primeprime
)
?F(x, y, y
prime
,y
primeprime
)] dx.
BXBZDAD1CCD0A1ARC0 F BQB6y(x),y
prime
(x),y
primeprime
(x)C2D7
B7B2A1CDC1BZ
?J = F(x, y, y
prime
,y
primeprime
)|
x=x
1
· δx
1
+
integraldisplay
x
1
x
0
[F
y
δy + F
y
primeδy
prime
+ F
y
primeprimeδy
primeprime
] dx+ R,
AZDA R CDBU |δx
1
|,|δy
1
|,|δy|,|δy
prime
|,|δy
primeprime
| DGCNDACZAK
BQBYCNA5DIDCBYC2ACBBATDCA2BUBL
δJ = F|
x=x
1
· δx
1
+
integraldisplay
x
1
x
0
[F
y
δy + F
y
primeδy
prime
+ F
y
primeprimeδy
primeprime
] dx.
BQBXC8C2CIB2D1AIAIC2C6CQAQD1AWB2D1BMBMA1C6
BVAQD1AWB2D1DBBMA1ARA3BSBZC2CIC7A6CCC3δy|
x=x
0
=
0,δy
prime
|
x=x
0
=0,CHC0(4.3.2)C8A1AB?C1BZ
δJ =[Fδx
1
+ F
y
primeδyF
y
primeprimeδy
prime
?
d
dx
(F
y
primeprime)δy]|
x=x
1
.
BQ (4.3.3)C8BRBSBXC8A1CRC3CVAH (4.3.1)BFB4D1C2
AKBKDABO δJ =0AMB7A5
[F ? y
prime
F
y
prime ? y
primeprime
F ? y
primeprime
+ y
prime d
dx
F
y
primeprime]|
x=x
1
· δx
1
+
[F
y
prime ?
d
dx
f
y
primeprime]|
x=x
1
· δy
1
+ F
y
primeprime|
x=x
1
· δy
prime
1
=0.
(4.3.4)
CRCRAIA1ALCIC7A6CCA3 y(x
0
= y
0
,y
prime
(x
0
)=y
prime
0
,C2CI
C7AUA9BRAKANCDA1B7AUA9 δx
1
,δy
1
,δy
prime
1
A5AKD1A1BG
C6 J[y] BFB4D1C2BEANCI x = x
1
BI (4.3.4) C8?B7
D4A2CRC3BLCQD1B7BVDBBACTCWD2A4A3
(1) BT δx
1
,δy
1
,δy
prime
1
DAA5y
prime
1
AOASACA7A1CI (4.3.4)
C8DAA1C0 δx
1
,δy
1
,δy
prime
1
C2BNBSB2CYA1D0?C2AHCNCI
C7x = x
1
BIBXD9A5DHA1B7
?
?
?
?
?
?
?
?
?
?
?
[F ? y
prime
F
y
prime ? y
primeprime
F
y
primeprime + y
primeprime
F
y
primeprime
d
dx
F
y
primeprime|
x=x
1
=0,
[F
y
prime ?
d
dx
F
y
primeprime]|
x=x
1
=0,
F
y
primeprime|
x=x
1
=0.
(4.3.5)
46
(2) BT y
1
,y
prime
1
CEBNCXC4 x
1
, CIC7B(x
1
,y
1
,y
prime
1
) CI
BEANy = ?(x)BXBOCDA1B9 y
prime
= ψ(x),CRC3
δy
1
= ?
prime
(x
1
)δx
1
,δy
prime
1
= ψ
prime
(x
1
)δx
1
.
BRBS (4.3.4)C8A1ARA3BSBZ δx
1
C2BNBSB2A1C1
[F +(?
prime
?y
prime
)(F
y
prime ?
d
dx
F
y
primeprime)+(ψ
prime
? y
primeprime
)F
y
primeprime]
x=x
1
=0.
(4.3.6)
A4CI x = x
1
BIBLC1BVDEDABOA3 y
1
= ?(x
1
),y
prime
1
=
ψ(x
1
)B6 (4.3.6)C8A2
(3) BT x
1
,y
1
,y
prime
1
BOCIA9A7AHC8 Φ(x
1
,y
1
,y
prime
1
)=0,
CJC1
Φ
x
1
δx
1
+Φ
y
1
δy
1
+Φ
y
prime
1
δy
prime
1
=0.
BGCC Φ
y
prime
1
negationslash=0,CJ
δy
prime
1
= ?
Φ
x
1
Φ
y
prime
1
δx
1
?
Φ
y
1
Φ
y
prime
1
δy
1
.
BRBS (4.3.4)C8A1CHC0δx
1
,δy
1
C2BNBSB2A1C1
?
?
?
?
?
?
?
[F ? y
prime
(F
y
prime ?
d
dx
F
y
primeprime) ? (y
primeprime
+
Φ
x
Φ
y
prime
F
y
primeprime]|
x=x
1
=0,
[F
y
prime ?
d
dx
F
y
primeprime ?
Φ
y
Φ
y
prime
F
y
primeprime]|
x=x
1
=0.
(4.3.7)
A4CI x = x
1
BIBPC1BVDEDABOA1B7 Φ(x
1
,y
1
,y
prime
1
)=0
B6 (4.3.7)C8A2
CB 4.3.1 C0CVAH
J[y]=
integraldisplay
1
0
(1 + y
primeprime2
) dx,y(0) = 0,y
prime
(0) = 1,y(1) = 1,
CO y
prime
(1)BNBSA1CGBCJ[y]C2B4D1BEANA2
BZ C0C4F =1+y
primeprime2
,A4 Euler-PoissonCWBAA5
F
y
?
d
dx
F
y
prime +
d
2
dx
2
F
y
primeprime =2y
(4)
=0,
DBC3A5
y = c
1
+ c
2
x + c
3
x
2
+ c
4
x
3
.
C0 y(0) = 0 C1 c
1
=0;C0 y
prime
(0) = 1 C1 c
2
=1;C0
y(1) = 1 C1 c
3
+ c
4
=0.BUA5x
1
=1,y
1
=1CDA6CC
C2A1CYBQ δx
1
=0,δy
1
=0,C4CDBMA9DABO (4.3.4)AU
A5
F
y
primeprime|
x=1
δy
prime
1
=0
47
B0
y
primeprime
|
x=1
δy
prime
1
=0.
C0C4δy
prime
1
CDBNBSC2A1A4y
primeprime
|
x=1
=0,COy
primeprime
=2c
3
+6c
4
x,
BX x =1C3C12c
3
+6c
4
=0.BLC8C7c
3
+ c
4
=0D6D4
CQC3C1 c
3
= c
4
=0.BUBLA1B4D1D3ARCID0ANy = x
BXBPBZA2
48
B2D4DJ CZBWBRA5B0ASBBD3CY
5.1 DHDGCTCZBW ? =0D5B0ASBBD3CY
DABOB4D1C2AND1AAD7CDCDCICVAHCYBNCXC2AH
CNBXD8BFBMAUCECMDABOCWBCCVAHC2B4D1AAD7A2
DIBKBDCCCVAH
J[y,z]=
integraldisplay
x
1
x
0
F(x, y, z, y
prime
,z
prime
) dx, (5.1.1)
A8AGALC4DABO
?
?
?
?
?
y(x
0
)=y
0
,
z(x
0
)=z
0
,
?
?
?
?
?
y(x
1
)=y
1
,
z(x
1
)=z
1
,
(5.1.2)
AJCECMDABO
?(x, y, z)=0 (5.1.3)
C2B4D1AAD7A1DFBYBFCVAH J C2B4D1BEANCYBXA8AG
C2DABOA2BMA9BAB0CQBQCYDFA2
CRCYAAD7C2B9AKBSBTCDA3CIBEAG ?(x, y, z)=0
BXBCBMDABEAN
Γ:
?
?
?
?
?
y = y(x),
z = z(x),
x
0
≤ x ≤ x
1
,
C6CVAH(5.1.1)CI ΓBXBFC1B4D1A2CRDBDABOB4D1C2
BCC3AAD7CYCUC4CNCAAHCNBCB4D1C2LagrangeB9CN
CSA1CQBQA5AUA5ACDABOB4D1CWBID0A2
B4C95.1.1(Lagrange) C0y(x),z(x)CDCVAH(5.1.1)
CIALC4DABO(5.1.2)AJCECMDABO (5.1.3)AIC2B4D1AH
CNA2BR?CIBEAN
Γ:
?
?
?
?
?
y = y(x),
z = z(x),
BX?
y
,?
z
D5BYC1BMDEAUA5DHA1CJAKBOCIAHCNλ(x)),
C6 y(x),z(x)A8AGCVAH
J
?
[y,z]=
integraldisplay
x
1
x
0
(F + λ?) dx:=
integraldisplay
x
1
x
0
F
?
dx (5.1.4)
49
C2 EulerCWBA
F
?
y
?
d
dx
F
?
y
prime =0,F
?
z
?
d
dx
F
?
z
prime =0, (5.1.5)
AZDAF
?
= F + λ?.
A1 AUCXC0CIBEAN Γ BX ?
z
negationslash=0,C0BWAHCNBOCI
CCD0A1CQC0 (3)C8BJCCBMDEAHCN
z = ψ(x, y).
BQBLAHCNBRBS (5.1.1)C8A1C1
J =
integraldisplay
x
1
x
0
F[x, y, ψ(x, y),y
prime
,ψ
prime
x
+ ψ
y
y
prime
] dx
:=
integraldisplay
x
1
x
0
Φ(x, y, y
prime
) dx.
(5.1.6)
AZDAΦ(x, y, y
prime
)=F[x, y, ψ(x, y),y
prime
,ψ
prime
x
+ψ
y
y
prime
]. CRBJCD
A7CVAH (5.1.1)C2DABOB4D1AAD7A5AUA5CVAH (5.1.6)
C2ACDABOB4D1AAD7A2
CVAH (5.1.6)C2 EulerCWBAA5
Φ
y
?
d
dx
Φ
y
prime =0, (5.1.7)
BACW Φ
y
, Φ
y
prime,
d
dx
Φ
y
prime,C1
Φ
y
= F
y
+ F
z
ψ
y
+ F
z
prime[ψ
xy
+ ψ
yy
y
prime
],
Φ
y
prime = F
y
prime + F
z
primeψ
y
,
d
dx
Φ
y
prime =
d
dx
F
y
prime + ψ
y
d
dx
F
z
prime + F
z
prime[ψ
yz
+ ψ
yy
y
prime
],
BRBS (5.1.7)C8A1C1
Φ
y
?
d
dx
Φ
y
prime = F
y
+ ψ
y
[F
z
?
d
dx
F
z
prime] ?
d
dx
F
y
prime =0.
A3BSBZ
?
z
negationslash=0,ψ
y
=
?z
?y
= ?
?
y
?
z
,
C4CDC1
F
y
?
d
dx
F
y
prime ?
?
y
?
z
[F
z
?
d
dx
F
z
prime]=0,
B0
F
y
?
d
dx
F
y
prime
?
y
=
F
z
?
d
dx
F
z
prime
?
z
:= ?λ(x).
50
BUBLA1BOCI λ(x), C6C1B4D1AHCN y(x),z(x) A8AGCW
BA
F
y
+ λ(x)?
y
?
d
dx
F
y
prime =0,F
z
+ λ(x)?
z
?
d
dx
F
z
prime =0.
DJ F
?
= F + λ?,CJ
F
?
y
= F
y
+ λ?
y
,F
?
y
prime = F
y
prime,F
?
z
= F
z
+ λ?
z
,F
?
z
prime = F
z
prime,
C4CDBXC8ANA5
F
?
y
?
d
dx
F
?
y
prime =0,F
?
z
?
d
dx
F
?
z
prime =0.
COBLCWBACDCDBQF
?
A5AFB2AHCNC2CVAHC2EulerCW
BAA2
CB5.1.1 CICSBJBEAG
summationtext
: z ?
1
2
x
2
=0BXBCD7BW
DBC7O(0, 0, 0)AJ B(1,
1
2
,
1
2
)C2AKCJBEANA2
BZ AAD7ACC2A5CIBEAG
summationtext
: z ?
1
2
x
2
=0BXBCBM
BEAN
Γ:
?
?
?
?
?
y = y(x),
z = z(x),
0 ≤ x ≤ 1,
C6AZA8AGALC4DABO
?
?
?
?
?
y(0) = 0,
z(0) = 0,
?
?
?
?
?
y(1) =
1
2
,
z(1) =
1
2
,
B9C6CVAH
J[y,z]=
integraldisplay
1
0
radicalBig
1+y
prime2
+ z
prime2
dx
BFB4ATD1A2C0 LagrangeCCD0A1AND4A0CVAH
J
?
=
integraldisplay
1
0
[
radicalBig
1+y
prime2
+ z
prime2
+λ(x)(z?
1
2
x
2
)] dx=
integraldisplay
1
0
F
?
dx,
AZDA
F
?
=
radicalBig
1+y
prime2
+ z
prime2
+ λ(x)(z ?
1
2
x
2
),
C0 EulerCWBAC8 (5.1.5)B6CECMDABOA1AB?C1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
F
?
y
?
d
dx
F
?
y
prime = ?
d
dx
(
y
prime
radicalBig
1+y
prime2
+ z
prime2
)=0, (I)
F
?
z
?
d
dx
F
?
z
prime = λ(x) ?
d
dx
(
z
prime
radicalBig
1+y
prime2
+ z
prime2
)=0, (II)
z ?
1
2
x
2
=0. (III)
51
C0 (I)C8C1
y
prime
radicalBig
1+y
prime2
+ z
prime2
= c
1
,
BQ (III)C8BRBSBLC8C1
y
prime
radicalBig
1+y
prime2
+ x
2
= c
1
,
B0
y
prime
=
radicaltp
radicalvertex
radicalvertex
radicalbt
c
2
1
1 ?c
2
1
√
1+x
2
:= c
√
1+x
2
.
B2D1APCQC1
y =
c
2
[x
√
1+x
2
+ln(x +
√
1+x
2
)] + c
2
.
BUA5CYBCBEANAFC7 O(0, 0, 0)AJ B(1,
1
2
,
1
2
), C0BLCQ
BQBJCC
c
2
=0,c=
1
√
2+ln(1+
√
2)
. (IV)
C4CDCYBCBEANA5
?
?
?
?
?
?
?
y =
x
√
1+x
2
+ln(x +
√
1+x
2
)
2[
√
2+ln(1+
√
2)]
,
z =
1
2
x
2
,
0 ≤ x ≤ 1.
D7BWC7 O C7 B C2ARCKC2B4CGA5
J =
integraldisplay
1
0
√
1+y
prime2
+ z
prime2
dx
=
integraldisplay
1
0
radicalBig
1+c
2
(1 + x
2
)+x
2
dx
=
√
1+c
2
integraldisplay
1
0
√
1+x
2
dx
=
√
1+c
2
1
2
[x
√
1+x
2
+ln(x +
√
1+x
2
)]|
1
0
=
√
1+c
2
2c
,
AZDAcA5 (IV)C8A2
CB 5.1.2 CGBCCCDJAG x
2
+ y
2
= R
2
BXD7BWC7
P
1
(x
1
,y
1
,z
1
)C7C7P
2
(x
2
,y
2
,z
2
)C2AKCJBEANA2
BZ C0CCDJAGC2AZCNCWBAA5
?
?
?
?
?
x = R cos t,
y = R sin t,
0 ≤ t ≤ 2π.
BUA5C7 P
1
,P
2
CICCDJAGBXA1A4CYBCBEANC2 x, y AO
AOC7CCDJAGC2AODCA1D3BKBCBF z AOAO z = z(t) B7
52
CQA2C0 P
1
,P
2
C7CLBXC2AZCNA5 t
1
<t
2
, CJ P
1
P
2
C2
ARB4A5
l =
integraldisplay
t
2
t
1
radicalBig
x
prime2
(t)+y
prime2
(t)+z
prime2
(t) dt.
C4CDAAD7AUA5A3BCAF P
1
,P
2
C7B9A8C4CCDJAGBXC2
BEANA1C6CVAH lBFB4ATD1A2
AND4A0CVAH
l
?
=
integraldisplay
t
2
t
1
[
radicalBig
x
prime2
(t)+y
prime2
(t)+z
prime2
(t)+λ(t)(x
2
+y
2
?R
2
)] dt.
BQ x = R cos t, y = R sin tBRBSBXC8A1C1
l
?
=
integraldisplay
t
2
t
1
radicalBig
R
2
+ z
prime2
(t) dt,
AZDA F
?
=
√
R
2
+ z
prime2
,F
?
z
=0,F
?
z
prime =
z
prime
√
R
2
+ z
prime2
=0,l
?
C2 EulerCWBAA5
F
?
z
?
d
dt
F
?
z
prime = ?
d
dt
z
prime
√
R
2
+ z
prime2
=0.
B2D1A1C1
z
prime
√
R
2
+ z
prime2
= c,
CJ
z
prime
=
cR
√
1 ? c
2
:= c
1
.
CHB2D1A1C1
z = c
1
t + c
2
.
A4CYBCAKCJBEANCDCCDJA5AN
?
?
?
?
?
?
?
?
?
?
?
?
?
x = R cos t,
y = R sin t,
z = c
1
t + c
2
,
AZDAc
1
,c
2
C0 P
1
(x
1
,y
1
,z
1
),P
2
(x
2
,y
2
,z
2
)BJCCA2
A9A3 BTBQ LagrangeCCD0DAC2CECMDABOAWA5A3
?(x, y, z, y
prime
,z
prime
)=0,CO ?
y
prime B0 ?
z
prime DAD5BYC1BMDEAUA5
DHA1CJCCD0C2C2A4BPB7D4A2
LagrangeCCD0C2BMA9B0C8A5A3
C0AHCN y
1
(x),y
2
(x),···,y
n
(x)CDCVAH
J[y
1
,y
2
,···,y
n
]=
integraldisplay
x
1
x
0
F(x, y
1
,y
2
,···,y
n
,y
prime
1
,y
prime
2
,···,y
prime
n
) dx
53
CIALC4DABO
y
i
(x
0
)=y
i0
,y
i
(x
1
)=y
i1
,i=1, 2,···,n,
AJCECMDABO
?
j
(x, y
1
,y
2
,···,y
n
)=0,j=1, 2,···,m; m<n,
AIC2B4D1AHCNA2BGCC?
j
(j =1, 2,···,m)AOASCFD4A1
B7D5BYC1BMDE mBYAHCNB1DEC8AUA5DHA1AIBR
D(?
1
,?
2
,···,?
m
)
D(y
1
,y
2
,···,y
m
)
=
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
??
1
?y
1
??
1
?y
2
···
??
1
?y
m
??
2
?y
2
??
1
?y
2
···
??
2
?y
m
··· ··· ··· ···
??
m
?y
1
??
m
?y
2
···
??
m
?y
m
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
negationslash=0,
CJBOCI m DEAHCN λ
1
(x),λ
2
(x),···,λ
m
(x), C6C1B4D1
AHCNy
1
(x),y
2
(x),···,y
m
(x)A8AGCVAH
J
?
=
integraldisplay
x
1
x
0
[F +
m
summationdisplay
j=1
λ
j
?
j
] dx=
integraldisplay
x
1
x
0
F
?
dx
C2 EulerCWBA
F
?
y
i
?
d
dx
F
?
y
prime
i
=0,i=1, 2,···,n.
BXCLC2A4APAIA1C6CVAH J BPBZB4D1C2AHCNBQ
DCC3C6CVAH J
?
BPBZACDABOB4D1A2BR?BQBXCLC2
CECMDABODAA5
ψ
j
(x, y
1
,···,y
n
,y
prime
1
,···,y
prime
n
)=0,j=1,···,m; m<n,
COBGCC
D(ψ
1
,ψ
2
,···,ψ
m
)
D(y
prime
1
,y
prime
2
,···,y
prime
m
)
negationslash=0,
CJBXCLC2A4DCBJB7D4A2
5.2 B1A8D3CY
BMA9C2C3DDAAD7CDD2CICVAHCECM (C3DDDABO)
K[y]=
integraldisplay
x
1
x
0
G(x, y, y
prime
) dx= l (5.2.1)
54
B6ALC4DABO
y(x
0
)=y
0
,y(x
1
)=y
1
(5.2.2)
AIC2CYC1CQBYD7B7BYCNC2AHCNy(x)DAA1B7CIB5AL
Y = {y(x):
integraldisplay
x
1
x
0
G(x, y, y
prime
) dx= l,y(x
i
)=y
i
,i=0, 1,y∈ C
2
}
DABCCVAH
J[y]=
integraldisplay
x
1
x
0
F(x, y, y
prime
) dx (5.2.3)
C2B4D1AHCNA1AZDA G, l, y
i
C3CLCDDGCCC2AHCNB0B3
CNA2
A7C4CRDBB0C8C2C3DDAAD7B4D1BOCIC2AKBKDA
BOA1AB?C1BRAIC2 Euler CCD0A1D0A7DABOB4D1C2
AND1AAD7A5AUA5ACDABOB4D1C2AND1AAD7A2
B4C95.2.1(Euler) BTBEAN Γ:y = y(x) CIC3DD
DABO(5.2.1)B6ALC4DABO (5.2.2)AIC6CVAH (5.2.3)BP
BZB4D1A1CJBOCIB3CN λ,C6 y(x)A8AGCVAH
J
?
=
integraldisplay
x
1
x
0
(F + λG) dx:=
integraldisplay
x
1
x
0
F
?
dx (5.2.4)
C2 EulerCWBA
F
?
y
?
d
dx
F
?
y
prime =0, (5.2.5)
AZDAF
?
= F + λG.
A1 BUA5B5AGC0A2D1CWBACECMDABOC2B4D1AAD7
BPCAC1BZC3CKA2ALCIACBKBQCVAHCECMANB7A2D1CW
BACECMC2BACTCWBID0A2A5BLA1DJ
u(x)=
integraldisplay
x
1
x
0
G(x, y, y
prime
) dx,
D0A8AG
u(x
0
)=0,u(x
1
)=l, u
prime
(x)=G[x, y(x),y
prime
(x)].
BR?BQJ[y]CNB7DBDEAHCN y(x),u(x)C2CVAH
J[y,u]=
integraldisplay
x
1
x
0
F(x, y, y
prime
) dx, (5.2.6)
ARDJ
Φ(x, y, y
prime
,u,u
prime
)=G(x, y, y
prime
) ?u
prime
,
55
CJC3DDAAD7C2B4D1BEAN y = y(x) AKCDCVAH (5.2.6)
CICECMDABO
Φ(x, y, y
prime
,u,u
prime
)=0
AJALC4DABO
y(x
0
)=y
0
,y(x
1
)=y
1
,u(x
0
)=0,u(x
1
)=l
AIC2B4D1AHCNCZBMA2
C0B5BMC0CYA1BT y(x),u(x) A5BLDABOAIC2B4D1
AHCNA1CJAKBOCI λ(x),C6 y(x),u(x)A8AGCVAH
J
??
=
integraldisplay
x
1
x
0
[F(x, y, y
prime
)+λ(x)Φ(x, y, y
prime
,u,u
prime
)] dx
=
integraldisplay
x
1
x
0
[F(x, y, y
prime
)+λ(x)(G(x, y, y
prime
) ?u
prime
)] dx
:=
integraldisplay
x
1
x
0
F
??
(x, y, y
prime
,u,u
prime
) dx
C2 EulerCWBA
?
?
?
?
?
F
??
u
?
d
dx
F
??
u
prime =0, (5.2.7)
F
??
y
?
d
dx
F
??
y
prime =0, (5.2.8)
AZDA F
??
= F9x, y, y
prime
)+λ(x)[G(x, y, y
prime
) ? u
prime
]. BUA5
F
??
u
=0,F
??
u
prime = ?λ(x),CRC3 (5.2.7)C8B7A5
d
dx
λ(x)=0,
CYBQA1 λA5B3CNA2C0C4
F
??
y
= F
y
+ λG
y
,F
??
y
prime = F
y
prime + λG
y
prime,
C0 (5.2.8)C8C1
F
y
++λG
y
?
d
dx
(F
y
prime + λG
y
prime)=0.
COBLCWBACDCD
F
?
y
?
d
dx
F
?
y
prime =0.
C0 EulerCCD0A1AB?C1BZBCCVAH (5.2.3)CIC3DD
DABO(5.2.1)B6ALC4DABO(5.2.2)AIC2B4D1AHCNC2C3
D7CWCSA2
AND4A0CVAH
J
?
[y]=
integraldisplay
x
1
x
0
[F + λG] dx:=
integraldisplay
x
1
x
0
F
?
dx,
56
AZDAλA5BSCCB3CNA2BKAPC0 J
?
C2 EulerCWBA
F
?
y
?
d
dx
F
?
y
prime =0
C7C3DDDABOB6ALC4DABOD6D4BCC3A2
CB5.2.2 CIXOYAWAGBXBCDBAFDBCCC7A(x
0
,y
0
),
B(x
1
,y
1
) B9B4CGA5CCD1 l C2BEAN y = y(x), C6D0CY
A3B7C2BEALD5B0C2AGB2AKATA2
BZ AAD7CDCIC3DDDABOB6ALC4DABO
integraldisplay
x
1
x
0
radicalBig
1+y
prime2
dx= l, y(x
0
)=y
0
,y(x
1
)=y
1
AIBCCVAH
J =
integraldisplay
x
1
x
0
ydx
C2B4ATD1A2
AND4A0CVAH
J
?
=
integraldisplay
x
1
x
0
[y + λ
radicalBig
1+y
prime2
] dx,
CJC1
F
?
= y + λ
radicalBig
1+y
prime2
,F
?
y
=1,
F
?
y
prime =
λy
prime
√
1+y
prime2
,
A4 J
?
C2 EulerCWBAA5
1 ?
d
dx
λy
prime
√
1+y
prime2
=0,
B7
x =
λy
prime
√
1+y
prime2
+ c
1
.
DJ y
prime
=tant,CJ
x =
λ tant
sec t
+ c
1
B0
x = λ sint + c
1
.
C0 dy= y
prime
dx,C1
dy=tant ·λ cos tdt= λ sin tdt.
C0BLC1
y = ?λ cos t + c
2
.
57
C4CDC1
?
?
?
?
?
x = λ sin t + c
1
,
y = ?λ cos t + c
2
,
AUA5D0BTAOAOCWBA
(x ? c
1
)
2
+(y ? c
2
)
2
= λ
2
.
CRCRAIA1B4D1BEANCDBQ (c
1
,c
2
)A5CCAYA1λA5AA
CBC2CCDAC2BMCKCCARA2C0ALC4DABOC7CECMDABOCQ
BQBJCCc
1
,c
2
AJ λ. A3BSA1BTBJCCC2CCARAUA4BMA1
CJBMDEC6J BFB4BQD1A1CODIBMDEC6 J BFB4ATD1A2
AKAPA1AB?DGBFEulerCCD0C2BMA9BAB0A2
C0AHCN y
1
(x), y
2
(x), ···, y
n
(x)CIC3DDDABO
integraldisplay
x
1
x
0
G
i
(x, y
1
,···,y
n
,y
prime
1
,···,y
prime
n
) dx= l, i =1,···,m
AJALC4DABO
y
j
(x
0
)=y
j0
,y
j
(x
1
)=y
j1
,j=1, 2,···,n
AIC6CVAH
J[y
1
,y
2
,···,y
n
]=
integraldisplay
x
1
x
0
F(x, y
1
,···,y
n
,y
prime
1
,···,y
prime
n
) dx
BPBZB4D1A1CJAKBOCIB3CN λ
1
, λ
2
, ···, λ
m
, C6 y
1
(x),
y
2
(x), ···, y
n
(x)A8AGCVAH
J
?
=
integraldisplay
x
1
x
0
[F +
m
summationdisplay
i=1
λ
i
G
i
] dx:=
integraldisplay
x
1
x
0
F
?
dx
C2 EulerCWBA
F
?
y
j
?
d
dx
F
?
y
prime
j
=0,j=1, 2,···,n.
58
B2CDDJ B9BKBRD7D3CYDED6D9D1BBBAAU
6.1 PoissonBAAUARA5D3CYDEASBBD3CY
C0 m A5D0D7CUCNA1AB?B3BZBZAIAGBMAUC0D7
B7AHCNAJB7C2AHCNCSBJA2
C
m
(?) = {u| D
α
uCI?AQD7B7,?|α|≤m}.
C
∞
(?) =
∞
intersectiondisplay
m=0
C
m
(?) = {u| D
α
uCI ?AQD7B7,?α}.
C
m
0
(?) = {u ∈ C
m
(?)| uCI ?DAC1C5CXB5}.
C
∞
0
(?) = {u ∈ C
∞
(?)| uCI ?DAC1C5CXB5}.
C
m
(
ˉ
?) = {u| D
α
uCI ?BXD7B7, ?|α|≤m}.
AGC0CWAIBMA9C2PoissonCWBADirichletAAD7
?triangleu = f(x),CI?DA, (6.1.1)
u = g,CI ?BX, (6.1.2)
C3BHC4BMDEAND1AAD7A2A5BLAB?AJCWAIAIAGC2BV
D0A2
ASBBB8BPAQDCC96.1.1 BR?AHCN u ∈ C
0
(?) A8
AG
integraldisplay
?
u(x)?(x) dx=0, ?? ∈ C
∞
0
(?), (6.1.3)
CJCI?DAu ≡ 0.
AYBZBBAI
B
2
= {v ∈ C
2
(?)
intersectiondisplay
C
1
(
ˉ
?)| v = gCI ??BX,
B
2
0
= {v ∈ C
2
(?)
intersectiondisplay
C
1
(
ˉ
?)| v =0CI ??BX,
I(v)=
integraldisplay
?
(
1
2
|Dv|
2
? fv) dx. (6.1.4)
AIAGC2CCD0CRAIA1BCALD1AAD7 (6.1.1), (6.1.3) CI
B
2
0
DAC2C3C3BHC4CI B
2
0
DABCCVAH (6.1.4) C2B4D1
AHCNA2
B4C96.1.2C0?CHC1C
1
ALC4??,u∈ B
2
. AOAAA1
uCD PoissonCWBA(6.1.1)C2C3C2BBBKDABOCDA3uCD
AND1AAD7
I(u)=min
v∈B
2
I(v), (6.1.5)
59
C2C3A2
A1CGA3AJCWAIDABOCDAKBKC2A2C0u ∈ B
2
CDPois-
sonCWBA(6.1.1)C2C3A2CIAUCVA0C8 (EulerCCD0)
integraldisplay
?
(D
1
w
1
+···+D
n
w
n
dx=
integraldisplay
??
[w
1
cos(ν,x
1
)+···+w
n
cos(ν,x
n
)] ds,
(6.1.6)
(AZDAν A5DICSARBTA8ARDC) DABF
(w
1
,···,w
n
)=(vD
1
u,···,vD
n
u)=vDu, v ∈ B
2
.
C1BFDDDF (Green)A0C8
integraldisplay
?
vtriangleudx+
integraldisplay
?
Dv · Dudx =
integraldisplay
??
v
?u
?ν
ds. (6.1.7)
C0C4??u = f,C0BXC8C1BF
integraldisplay
?
(Du· Dv ?fv) dx=0, ?v ∈ B
2
0
. (6.1.8)
CLBNBS v ∈ B
2
, DJ v ? u = ?, CJ v = u + ?, ? ∈ B
2
0
.
C0(6.1.4)B6(6.1.8)C1
I(v)=I(u + ?)
=
1
2
integraldisplay
?
|Du + D?|
2
dx?
integraldisplay
?
f(u + ?) dx
= I(u)+
integraldisplay
?
(Du· D?? f?) dx+
1
2
integraldisplay
?
|D?|
2
dx
= I(u)+
1
2
integraldisplay
?
|D?|
2
dx≥ I(u).
BLC8APAI uCDAND1AAD7 (6.1.5)C2C3A2
CHCWAIDABOCDBBD1C2A2C0 u ∈ B
2
CDAND1AAD7
(6.1.5)C2C3A2BNBFAHCN ? ∈ C
∞
0
(?),C4CDCLBNBSAZ
CNt ∈ RC1 u + t? ∈ B
2
. C0 (6.1.5)CYC0
I(u)=min
t∈R
I(u + t?).
BUBLC1
d
dt
I(u + t?)|
t=0
=0. (6.1.10)
C0 I C2CCBT (6.1.4)C1
I(u + t?)=
integraldisplay
?
[
1
2
|Du + tD?|
2
dx? f(u + t?)] dx
= I(u)+t
integraldisplay
?
(Du· D??f?) dx+
t
2
2
integraldisplay
?
|D?|
2
dx.
BQBLC8BRBS (6.1.10)C1BF
integraldisplay
?
(D?· Du? f?) dx=0. (6.1.11)
60
CIDDDFA0C8 (6.1.7)DAAJv = ? ∈ C
∞
0
(?)C1BF
integraldisplay
?
? ·triangleudx+
integraldisplay
?
D?· Dudx =0. (6.1.12)
C0(6.1.12)BMBG (6.1.11)C1
integraldisplay
?
?(triangleu + f) dx=0.
C0C4? ∈ C
∞
0
(?)CDBNBSC2A1CLBXC8D2BZAND1CSB1
AGBVD0CYC0 triangleu + f ≡ 0, B7 u A8AG Poisson CWBA
(6.1.1). CWA0A2
6.2 A0CWACDEB7AXB9BKBRD7D3CY
AIAGCLBGC0 H CDC5HilbertCSBJA1D
A
CD H C2
BMDEBDAFANB2ABCSBJA1 A CD D
A
BZ H DAC2ANB2
CWAB (AUAKCDC1C4C2).
B4DB6.2.1 BR?CWAB AA8AG
〈Au, v〉 = 〈u,Av〉, ?u,v ∈ D
A
,
CJB6AA5 D
A
BXC2CLB6CWABA2
B4DB6.2.2 C0 ACD D
A
BXC2CLB6CWABA2BR?CW
ABAA8AG
〈Au, u〉 > 0,?0 negationslash= u ∈ D
A
,
CJB6AA5 D
A
BXC2CVCWABA2BR?BOCICVB3CN cC6
C1
〈Au, u〉≥cbardblubardbl
2
, ?u ∈ D
A
,
CJB6AA5 D
A
BXC2CVCCCWABA2
CB6.2.3 C0C1C4BDC8?C1C
1
ALC4??,H = L
2
(?).
C0C4
D
A
= {u ∈ C
2
(
ˉ
?)| u =0CI ??BX}
CI C
∞
0
(?)DABDAFA1CO
C
∞
0
(?) ? D
A
? L
2
(?),
BUBLD
A
CI H DABDAFA2 A = ??CD D
A
BXC2CVCC
CWABA2
61
A1CGA3A = ?? AKBKCDD
A
BXC2ANB2CWABA2BX
u,v ∈ D
A
C3A1C0 GreenA0C8C1
integraldisplay
?
v?udx+
integraldisplay
?
Du·Dv dx =
integraldisplay
??
v
?u
?n
ds, (6.2.1)
integraldisplay
?
u?vdx+
integraldisplay
?
Du· Dv dx =
integraldisplay
??
u
?v
?n
ds,
AZDAnA5DICSARDCC2BTA8ARDCA2BQBXDEDBC8AOBM
C1C6CQGreenA0C8
integraldisplay
?
(v?u ? u?v) dx=
integraldisplay
??
(v
?u
?n
? u
?v
?n
) ds.
C0C4CI??BXC1u = v =0,BXC8CQBQAWB7
integraldisplay
?
v?udx=
integraldisplay
?
u?vdx
B0
〈??u,v〉 = 〈u,??v〉.
CRCRAIA = ??CDD
A
BXC2CLB6CWABA2CHC0(6.2.1),
FriedrichsAUC3C8C1BFA3CLBNBS u ∈ D
A
C1
〈Au, u〉 = 〈??u,u〉 = ?
integraldisplay
?
u?udx
=
integraldisplay
?
|Du|
2
dx≥ c
2
integraldisplay
?
u
2
dx= c
2
bardblubardbl
2
2
,
AZDA c>0. BXC8CRAIA = ?? CD D
A
BXC2CVCCCW
ABA2
B4C96.2.4 BR?ACD D
A
BXC2CVCWABA1 f ∈ H,
CJCWBA
Au = f (6.2.2)
CI D
A
DAAKCND3ARC1BMDEC3A2
A1CGA3C0CWBA(6.2.2)C1DBDEC3 u,v ∈ D
A
,C0BL
CY
A(u ? v)=Au ? Av =0,
BNCOC1
〈A(u ? v),u?v〉 =0.
C0C4ACDCVCWABA1BUBL u ? v =0,B7 u = v.
B4C96.2.5 C0ACDD
A
BXC2CVCWABA1u ∈ D
A
,f∈
H. uCDCWBA
Au = f
62
C2C3BXB9C6BXA3 uCDAND1AAD7
I(u)=min
v∈D
A
I(v)(6.2.3)
C2C3A1AZDA
I(v)=
1
2
〈Av, v〉?〈f,v〉
CDBMDECQBMCVAHA2
A1CGA3AJCWAIDABOCDAKBKC2A2C0uCDCWBAAu =
f C2C3A1CJCLC4BNBSC2 v ∈ D
A
,DJ ?v ? uC1BF
I(v)=I(u + ?)=
1
2
〈A(u + ?),u+ ?〉?〈f,u + ?〉
= I(u)+〈Au ? f,?〉+
1
2
〈A?, ?〉≥I(u).
CHCWDABOCDBBD1C2A2C0uCDAND1AAD7(6.2.3)C2
C3A1CJCLC4BNBSC2 ? ∈ D
A
C1
I(u)=min
t∈R
I(u + t?).
C0BLCY
d
dt
I(u + t?)
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
t=0
=0. (6.2.4)
CHC0I(v)C2CCBTC1BZ
I(u + t?)=
1
2
〈A(u + t?),u+ t?〉?〈f,u + t?〉
= I(u)+t〈Au ? f,?〉 +
t
2
2
〈A?, ?〉.
BQBLC8BRBS (6.2.4)C1BF
〈Au ?f,?〉 =0.
BLC8CLC4BNBSC2 ? ∈ D
A
B7D4A1BUBL Au = f,BLB7
CRAIuCDCWBAAu = f C2C3A2
6.3 ADCOARC0CZBW
CLC4BMA9C2C6BVALD1AAD7 (RobinAAD7)
??u = f CI ?DA (6.3.1)
?u
?n
+ α(x)u = ψ(x), CI ??BX (6.3.2)
63
AB?C1AIAGC2CCD0A2
B4C96.3.1 C0 ?CHC1C
1
ALC4 ??, f ∈ C(
ˉ
?),α∈
C(??), ψ ∈ C(??),u∈ D
?
= C
2
(?) ∩ C
1
(
ˉ
?),BB
I(v)=
integraldisplay
?
(
1
2
|Dv|
2
? fv) dx+
integraldisplay
??
(
1
2
α(x)v
2
?ψv) ds.
BR?uCDAND1AAD7
I(u)= min
v∈D
?
I(v)(6.3.3)
C2C3A1CJ u CD Poisson CWBAC6BVALD1AAD7 (6.3.1),
(6.3.2) C2C3A2CTCZA1BR?CI ?? BXC1 α(x) ≥ 0, B9
u CD Poisson CWBAC6BVALD1AAD7 (6.3.1), (6.3.2) C2
C3A1CJ uCDAND1AAD7 (6.3.3)C2C3A2
64
B2CLDJ ASBBD3CYA7B0A4BXB8
7.1 CAAB (Ritz)B8
D1AACSC2B1AGCSAPCDBZBACCC2AHCNB6DEC2AN
B2AJALAHC8AND1AAD7C2B4D1BEANA2
COB1BRAICYAZC2AND1AAD7A2C0CVAH
J[y]=
integraldisplay
x
1
x
0
F(x, y, y
prime
) dx (7.1.1)
C2ALC4DABOA5
y(x
0
)=0,y(x
1
)=0. (7.1.2)
CRDBALC4DABOB6A5B0BMALC4DABOA2BR?CYD2A4C2
CVAHC2ALC4AUCDB0BMC2A1BR y(x
0
)=y
0
,y(x
1
)=y
1
,
CJCQBQDJ
y(x)=z(x)+
x ?x
1
x
0
? x
1
y
0
+
x ? x
0
x
1
?x
0
y
1
, (7.1.3)
CRC3C1z(x
0
)=z(x
1
)=0.BZ(7.1.3)C8CLCVAH(7.1.1)
ANANAWA1B7CQBQAAD7 (7.1.1), (7.1.2)C8AUA5B0BMAL
C4C2AND1AAD7
J[y]:=J
1
[z]=
integraldisplay
x
1
x
0
F
1
(x, z, z
prime
) dx, z(x
0
)=z(x
1
)=0.
C0CVAH J[y] C2B4D1BEANCIAHCNB5 Y AQA1ARB9
Y A1B7ANB2CSBJA2BZD1AACSBCCVAH J[y]C2C8CUC3
C2AVDFBRAIA3
(1) BABFY C2B1AHCN
?
1
(x),?
2
(x), ···,?
n
(x),··· (7.1.4)
CLBNBMy ∈ Y , yCECQBQAPC9A5{?
i
}C2C1AMB0ACAM
ANB2AJALA2D4AQA1CLB4D1AHCN f(x),BLC1
f(x)=c
1
?
1
(x)+c
2
?
2
(x)+···+ c
n
?
n
(x)+···.
(2) CLACDEn,COA1C0?
1
(x), ?
2
(x), ···, ?
n
(x)C2
B7C2ANB2ABCSBJY
n
,C0
y
n
=
n
summationdisplay
i=1
a
i
?
i
∈ Y
n
,
65
C0CVAH J[y]CDBJCCDD nCAAHCN
J[a
1
,···,a
n
]:=J[y
n
]=
integraldisplay
x
1
x
0
F[x,
n
summationdisplay
i=1
a
i
?
i
(x),
n
summationdisplay
i=1
a
i
?
prime
i
(x)] dx.
(3) CLACDE n, BABF a
(n)
1
, a
(n)
2
, ···, a
(n)
n
, C6 J[y
n
]
BFB4D1A1BLCDCDC0CWBA
?
?a
i
J[y
n
]=0,i=1, 2,···,n
CWBJCC a
(n)
1
,a
(n)
2
,···,a
(n)
n
,BKAPBZC1BZC2AHCN
f
n
=
n
summationdisplay
i=1
a
(n)
i
?
i
ANA5AND1AAD7C2C8CUC3A2
BXCLC2 f
n
CDB6DE (7.1.4)C8B5nDEAHCNCYC1CQ
ARC2ANB2AJALDAC6CVAH J[y
n
] BPBZB4D1C2AHCNA2
CRBJC1BZC2B6DEf
1
, f
2
, ···, f
n
, ···B6A5J[y]C2B4AT
AUB6DEA2BUA5
Y
1
? Y
2
?···?Y
n
?···,
CYBQ
J[f
1
] ≥ J[f
2
] ≥···≥J[f
n
] ≥···,
ARB9
J[f
n
] ≥ J[f],n=1, 2,···,
CIBMA9BACTAIA1C1
lim
n→∞
J[f
n
]=J[f].
B7C6CRBJA1BLAUARADCW lim
n→∞
J[f
n
]BOCIA1B7C6 lim
n→∞
J[f
n
]
BOCIA1D0BLAUBMCCCHD8C4 J[y] C2B4D1AHCN f. BU
CLB3BZAHCNCWCRA1 f
n
AUC6DHC7CHD8COB9BMD6CH
D8C4f. BUBLA1BR?AUBGA0B7B4AMCGCWA1COD3AMC4
B5AGC2 nAQ f
n
,CJ f
n
CDCDAND1AAD7C2C8CUC3A2
CLC4AAD7(7.1.1), (7.1.2)C8A1B1AHCNDBB3BABFAI
DEC2BVDEAHCNAHA3
?
n
(x)=(x ? x
0
)
n
(x
1
?x),n=1, 2,···;
?
n
(x)=(x
1
?x)
n
(x ? x
0
),n=1, 2,···;
66
?
n
(x)=sin
nπ(x ?x
0
)
x
1
?x
0
,n=1, 2,···.
CB 7.1.1 BZ RitzCSBCAND1AAD7
J[y]=
integraldisplay
1
0
(y
prime2
? y
2
? 2xy) dx, y(0) = y(1) = 0
C2C8CUC3A2
BZ BF
?
n
(x)=x
n
(1? x),n=1, 2,···,
AKBK
?
n
(0) = ?
n
(1) = 0.
(1) BCBMBYC8CUC3A2
AN y
1
= c
1
?
1
(x)=c
1
x(1 ? x), CJ y
prime
= c
1
(1 ? 2x).
BRBSCVAHA1C1
J[y
1
]=J[c
1
]
=
integraldisplay
1
0
[c
2
1
(1 ? 2x)
2
?c
2
1
x
2
(1? x)
2
? 2xc
1
x(1 ? x)] dx
=
3
10
c
2
1
?
1
6
c
1
.
BABFc
1
,C6 J[c
1
]BFB4D1A2A5BLA1DJ
dJ
dc
1
=
6
10
c
1
?
1
6
=0,
C1 c
1
=
5
18
,A4BMB8C8CUC3A5
f
1
=
5
18
x(1 ? x).
(2) BCCQB8C8CUC3
AN
y
2
= c
1
?
1
(x)+c
2
?
2
(x)
= c
1
x(1 ?x)+c
2
x
2
(1 ? x)
= x(1 ? x)(c
1
+ c
2
x).
CJ
y
prime
2
=(1? 2x)(c
1
+ c
2
x)+c
2
x(1 ?x).
BRBSCVAHA1C1
J[y
2
]=J[c
1
,c
2
]
=
integraldisplay
1
0
{[(1 ? 2x)(c
1
+ c
2
x)+c
2
x(1 ?x)]
2
?x
2
(1 ?x)
2
(c
1
+ c
2
x)
2
? 2x
2
(1 ? x)(c
1
+ c
2
x)}dx.
67
BQ J[y
2
]D1AQCLc
1
AJ c
2
BCAVBYCNA1BKAPCHDJ
?J
?c
1
=0,
?J
?c
2
=0,
C1CWBA
?
?
?
?
?
3
10
c
1
+
3
20
c
2
=
1
12
,
3
20
c
1
+
13
105
c
2
=
1
20
.
C3BLCWBAC1
c
1
=
71
369
,c
2
=
7
41
,
A4CQB8C8CUC3A5
f
2
=
71
369
x(1 ? x)+
7
41
x
2
(1 ?x)
=
1
41
x(1 ?x)(
71
9
+7x).
(3) C8CUC3C7C9BJC3C2AIBUA2
C3 EulerCWBAA1CQC1C9BJC3A5
y =
sin x
sin 1
? x.
ALBQC9BJC3A1BMB8C8CUC3A1CQB8C8CUC3AIBUBR
AIA3
x C9BJC3 BMB8C8CUC3 CQB8C8CUC3
y =
sin x
sin 1
?x y
1
=
5
18
x(1 ? x) y
2
=
1
41
x(1 ? x)(
71
9
+7x)
0 0 0 0
0.2 0.0361 0.0444 0.0362
0.4 0.0627 0.0667 0.0626
0.6 0.0710 0.0667 0.0709
0.8 0.0525 0.0444 0.0526
1 0 0 0
68