16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #7 - Concepts of work and energy Strain energy and potential energy of a beam Figure 1: Kinematic assumptions for a beam ˉ Kinematic assumptions for a beam: From the ?gure: AA ? = u 3 (x 1 ). Assume small de?ections: B ? ~ B ?? ,B ˉ B ?? = u 3 + du 3 . C ˉ C ? = u 3 (x) + u1(x 1 ,x 3 ). Assume planar sections normal to the neutral axis remain planar 1 ? ? ? ?? ? after deformation. Then: u 3 = u 3 (x 1 ) (1) du 3 u 1 (x 1 ,x 3 ) = ?x 3 (2) dx 1 u 3 (x 1 ) is the only primary unknown of the problem (3) From these kinematic assumptions we can derive a theory for beams. Strains: du 1 d 2 u 3 ? 11 = dx 1 = ?x 3 dx 2 (4) 1 ? 22 = ? 33 = ?ν? 11 , plane stress (5) 1 ? du 1 du 3 ? 1 ? du 3 du 3 ? ? 13 = + = ? + = 0 (6) 2 dx 3 dx 1 2 dx 1 dx 1 Constitutive: d 2 u 3 σ 11 = E? 11 = ?Ex 3 dx 2 (7) 1 Equilibrium: Apply equilibrium (in the undeformed con?guration) to in- tegral quantities (moment M and shear force V ). De?nitions of integral quantities as forces “equivalent” to the internal stresses: V (x 1 ) + σ 13 d A = 0 (8) ? A(x 1 ) M (x 1 ) + σ 11 x 3 dA = 0 (9) A(x 1 ) replacing σ 11 : ? d 2 u 3 2 ? d 2 u 3 2 M (x 1 ) = ?E dx 2 x 3 dA = E dx 2 x 3 dA (10) A(x 1 ) 1 1 ? A(x 1 ) d 2 u 3 M (x 1 ) = EI(x 1 ) dx 2 (11) 1 2 Also note: Mx 3 σ 11 = ? (12) I With these de?nitions we can apply equilibrium as shown in the ?gure: ? dV F x 3 = 0 : V ? qdx 1 ? V ? dV = 0 → = ?q (13) dx 1 ? dx 2 1 M B = 0 : ?M + M + dM ? V dx 1 + q = 0 → dM dx 1 = V (14) 2 d ? dM ? d 2 M dx 1 dx 1 = ?q → dx 2 = ?q (15) 1 Replacing equation (11) in the last expression: d 2 ? d 2 u 3 ? dx 2 EI dx 2 + q(x 1 ) = 0 (16) 1 1 Fourth order di?erential equation governing the de?ections of beams. Needs 4 boundary conditions. Examples: a) b) L L x1 x1 ? case a u 3 (0) = 0, u ? 3 (L) = 0, u ??? 3 (0) = 0, u ?? 3 (L) = 0. ? case a u 3 (0) = 0, u ?? 3 (L) = 0. 3 (0) = 0, u 3 (L) = 0, u ?? 3 ? ? ? ? ? Strain energy of a beam Start from the general de?nition of strain energy density: ? ? ij U = σ ij d? ij (17) 0 for a linear elastic material we concluded: ? = 1 σ ij ? ij (18)U 2 Classical beam theory: σ 11 ?= 0, all other stress components are zero. U ? = 1 σ 11 ? 11 = 1 E? 2 (19) 2 2 11 d 2 u 3 ? 1 2 ? d 2 u 3 ? 2 ? 11 = ?x 3 dx 2 → U = Ex 3 dx 2 (20) 1 2 1 (21) ? 1 2 ? d 2 u 3 ? 2 U = UdV = V 2 Ex 3 dx 2 dV (22) V 1 ? L ? d 2 u 3 ? 2 ? 1 2 = 2 0 E dx 2 x 3 dAdx 1 (23) 1 A(x) U = 1 2 ? L 0 EI(x) ? d 2 u 3 dx 2 1 ? 2 dx 1 (24) also note: (25) (26)U = 1 2 L 0 M (x 1 ) d 2 u 3 dx 2 1 dx 1 Complementary strain energy of a beam Complementary strain energy density: ? ? ? 11 1 σ 2 11 1 U c = ? 11 dσ 11 = = 0 2 E 2E The complementary strain energy is then ? 1 ? L M 2 ? U c = U c dV = V 2 0 EI 2 A(x 1 ) ? ?Mx 3 ? 2 (27) I 2 x 3 dAdx 1 (28) U c = 1 2 ? L 0 M 2 EI dx 1 (29) Potential of the external forces: 4 ? ? ? ? ? S t i u i dS ? V V = ? f i u i dV (30) ? L 0 V = ? q(x 1 )u 3 (x 1 )dx 1 ? Pu 3 (L) ? Mu 3 (L) (31) The total potential energy of the beam is: Π(u 3 ) = ? L 0 ? 1 2 ? d 2 u 3 EI dx 2 ? 2 dx 1 + qu 3 + Pu 3 (L) + Mu 3 (L) (32) This is the expression we gave the ?rst day of class!. 5