ˉ
ˉ
? ? ?
? ? ?
16.21 Techniques of Structural Analysis and
Design
Spring 2003
Unit #10 - Principle of minimum potential
energy and Castigliano’s First Theorem
Principle of minimum potential energy
The principle of virtual displacements applies regardless of the constitutive
law. Restrict attention to elastic materials (possibly nonlinear). Start from
the PVD:
σ
ij
?
ij
dV = t
i
u
i
dS + f
i
u
i
dV, ?ˉ u = 0 on S
u
(1)ˉ ˉ u/ˉ
V S V
Replacing the expression for the stresses for elastic materials:
?U
0
σ
ij
=
??
ij
and assuming that the virtual displacement ?eld is a variation of the equili-
brated displacement ?eld ˉu = δu, ?
ij
= δ?
ij
.
?U
0
δ?
ij
dV = t
i
δu
i
dS + f
i
δu
i
dV
V
??
ij V
? ?? ?
S
1
? ?
?
?
The expression over the brace is the variation of the strain energy density
δU
0
:
?U
0
δU
0
= δ?
ij
??
ij
Using the properties of calculus of variations δ () = δ():
? ?
?
? ?
?
δU
0
dV = δ U
0
dV = δU = δ t
i
u
i
dS + f
i
u
i
dV = δ(?V )
S V
where V is the potential of the external loads. Therefore:
δΠ = δ(U + V ) = 0
which is known as the Principle of minimum potential energy (PMPE). In
fact this expression only says that Π is stationary with respect to variations
in the displacement ?eld when the body is in equilibrium.
We can prove that it is indeed a minimum in the case of a linear elastic
1
material: U
0
=
2
C
ijkl
?
kl
. We want to show:
Π(v) ≥ Π(u), ?v
Π(v) = Π(u) ? v = u
Consider ˉu = u + δu:
?
?
1
?
Π(u + δu) = C
ijkl
(?
ij
+ δ?
ij
)(?
kl
+ δ?
kl
) dV
2
V
? ?
? t
i
(u
i
+ δu
i
)dS ? t
i
(u
i
+ δu
i
)dV
S
?
V
?
1 1
=Π(u)+ ? 2
V
? 2
C
?
ijkl
?
ij
δ?
kl
dV +
V
2
C
ijkl
δ?
ij
δ?
kl
dV
? t
i
δu
i
dS ? f
i
δu
i
dV
S V
The second, fourth and ?fth term disappear after invoking the PVD and we
are left with:
1
Π(u + δu) = Π(u) + C
ijkl
δ?
ij
δ?
kl
dV
V
2
2
?
The integral is always ≥ 0, since C
ijkl
is positive de?nite. Therefore:
Π(u + δu) = Π(u) + a, a ≥ 0, a = 0 ? δu = 0
and
Π(v) ≥ Π(u), ?v
Π(v) = Π(u) ? v = u
as sought.
Castigliano’s First theorem
Given a body in equilibrium under the action of N concentrated forces
F
I
. The potential energy of the external forces is given by:
V = ?
N
I=1
F
I
u
I
where the u
I
are the values of the displacement ?eld at the point of applica-
tion of the forces F
I
. Imagine that somehow we can express the strain energy
as a function of the u
I
, i.e.:
U = U (u
1
,u
2
,...,u
N
) = U (u
I
)
3
?
?
????
?
?
?
Then:
Π = Π(u
I
) = U (u
I
) + V = U (u
I
) ?
N
I=1
F
I
u
I
Invoking the PMPE:
δΠ = 0 =
N
I =1
?U
δu
I
?
?u
I
?u
I
F
I
?u
J
δu
J
N
I=1
?U
δu
I
?
?u
I
F
I
δ
IJ
δu
J
=
N
I=1
?U
δu
I
?
?u
I
F
I
δu
I
=
?
?U
? F
I
?u
I
δu
I
=
?U
?u
I
? δu
I
? F
I
=
Theorem: If the strain energy can be expressed in terms of N displacements
corresponding to N applied forces, the ?rst derivative of the strain energy
with respect to displacement u
I
is the applied force.
Example:
4
?
?
(L + u)
2
+ v
2
u
?
I
= ? 1 ~
L
2
L
(L + u)
2
+ (L ? v)
2
1 u ? v
?
I
I = ? 1 ~
2L
2
2 L
1
? ?
u
?
2 √
?
1
?
u ? v
??
2
?
U = AEL + AE 2L
2 L 2 L
Note that we have written U = U (u,v). According to the theorem:
?U
0 =
?u
?U
F =
?v
See solution in accompanying mathematica ?le.
5