Slow dominant pole
num=5;den=conv([1 1],[1 5]);step(num,den,6)
Amplitude
Time (sec.)
Step Response
0 1 2 3 4 5 6
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Fast dominant pole
num=5.5*[1 0.91];den=conv([1 1],[1 5]);step(num,den,6)
Amplitude
Time (sec.)
Step Response
0 1 2 3 4 5 6
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Similar example, but with second order dynamics combined with a simple real pole.
z=.15;wn=1;plist=[wn/2:1:10*wn];
nd=wn^2;dd=[1 2*z*wn wn^2];t=[0:.25:20]';
sys=tf(nd,dd);[y]=step(sys,t);
for p=plist;
num=nd;den=conv([1/p 1],dd);
sys=tf(num,den);[ytemp]=step(sys,t);
y=[y ytemp];
end
plot(t,y(:,1),'d',t,y(:,2),'+',t,y(:,4),'+',t,y(:,8),'v');
ylabel('step response');xlabel('time (sec)')
legend('2
nd
',num2str(plist(1)),num2str(plist(3)),num2str(plist(7)))
0 5 10 15 20
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
step response
time (sec)
2nd
0.5
2.5
6.5
For values of p=2.5 and 6.5, the response is very similar to the second order system. The
response with p=0.5 is clearly no longer dominated by the second-order dynamics
Example: G(s)=1/2^2
Design Gc(s) to put the clp poles at –1 + 2j
z=roots([-20 49 -10]);z=max(z),k=25/(5-2*z),alpha=5*z/(5-2*z),
num=1;den=[1 0 0];
knum=k*[1 z];kden=[1 10*z];
rlocus(conv(num,knum),conv(den,kden));
hold;plot(-alpha+eps*j,'d');plot([-1+2*j,-1-2*j],'d');hold off
r=rlocus(conv(num,knum),conv(den,kden),1)'
z = 2.2253
k = 45.5062
alpha = 20.2531
These are the actual roots that I found from the locus using a gain of
1 (recall that the K gain is already in the compensator)
r =
-20.2531
-1.0000 - 2.0000i
-1.0000 + 2.0000i
-20 -15 -10 -5 0 5
-20
-15
-10
-5
0
5
10
15
20
Real Axis
Imag Axis