Topic #3
16.31 Feedback Control
Frequency response methods
? Analysis
? Synthesis
? Performance
? Stability
Copy right 2001 by Jon at h an H ow.
1
Fall 2001 16.31 3–1
Introduction
? Rootlocusmethodshave:
–Advantages:
?Goodindicatoriftransientresponse;
?Explicityshowslocationofallclosed-looppoles;
?Trade-o?sinthedesignarefairlyclear.
–Disadvantages:
?Requiresatransferfunctionmodel(polesandzeros);
?Di?culttoinferallperformancemetrics;
?Hardtodetermineresponsetosteady-state(sinusoids)
? Frequency response methods are a good complement to the root
locustechniques:
–Caninferperformanceandstabilityfromthesameplot
–Canusemeasureddataratherthanatransferfunctionmodel
–Thedesignprocesscanbeindependentofthesystemorder
–Timedelaysarehandledcorrectly
–Graphicaltechniques(analysisandsynthesis)arequitesimple.
Fall 2001 16.31 3–2
Frequency response Function
? Given a system with a transfer function G(s), we call the G(jω),
ω ∈[0,∞)thefrequency response function (FRF)
G(jω)=|G(jω)|argG(jω)
–TheFRFcanbeusedto?ndthe steady-state responseofa
systemtoasinusoidalinput. If
e(t)→ G(s) → y(t)
and e(t)=sin2t, |G(2j)| =0.3, argG(2j) = 80
?
, then the
steady-stateoutputis
y(t)=0.3sin(2t?80
?
)
? The FRF clearly shows the magnitude (and phase) of the
responseofasystemtosinusoidalinput
? Avarietyofwaystodisplaythis:
1.Polar(Nyquist)plot–Revs.ImofG(jω)incomplexplane.
–Hardtovisualize,notusefulforsynthesis,butgivesde?nitive
testsforstabilityandisthebasisoftherobustnessanalysis.
2.Nichols Plot – |G(jω)| vs. argG(jω), which is very handy for
systemswithlightlydampedpoles.
3.Bode Plot–Log|G(jω)|andargG(jω)vs.Logfrequency.
–Simplesttoolforvisualizationandsynthesis
–Typicallyplot20log|G|whichisgiventhesymbol dB
Fall 2001 16.31 3–3
? Uselogarithmicsinceif
log|G(s)| =
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
(s+1)(s+2)
(s+3)(s+4)
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
vextendsingle
=log|s+1|+log|s+2|?log|s+3|?log|s+4|
and each of these factors can be calculated separately and then
addedtogetthetotalFRF.
? Canalsosplitthephaseplotsince
arg
(s+1)(s+2)
(s+3)(s+4)
= arg(s+1)+arg(s+2)
?arg(s+3)?arg(s+4)
? Thekeypointinthesketchingoftheplotsisthatgoodstraightline
approximationsexistandcanbeusedtoobtainagoodprediction
ofthesystemresponse.
Fall 2001 16.31 3–4
Example
? DrawBodefor
G(s)=
s+1
s/10+1
|G(jω)|=
|jω+1|
|jω/10+1|
log|G(jω)|=log[1+(ω/1)
2
]
1/2
?log[1+(ω/10)
2
]
1/2
? Approximation
log[1+(ω/ω
i
)
2
]
1/2
≈
?
?
?
?
?
0 ω lessmuch ω
i
log[ω/ω
i
] ω greatermuch ω
i
Twostraightlineapproximationsthatintersectat ω ≡ ω
i
? Errorat ω
i
obvious,butnothugeandthestraightlineapproxima-
tionsareveryeasytoworkwith.
10
?2
10
?1
10
0
10
1
10
2
10
0
10
1
10
2
Freq
|G|
Fall 2001 16.31 3–5
Toformthecompositesketch,
–Arrange representation of transferfunction so that DC gain of
eachelementisunity(exceptforpartsthathavepolesorzeros
attheorigin)–absorbthegainintotheoverallplantgain.
–Drawallcomponentsketches
–Start at low frequency (DC) with the component that has the
lowestfrequencypoleorzero(i.e. s=0)
–Use this component to draw the sketch up to the frequency of
thenextpole/zero.
–Changetheslopeofthesketchatthispointtoaccountforthe
newdynamics: -1forpole,+1forzero,-2fordoublepoles,...
–ScalebyoverallDCgain
10
?2
10
?1
10
0
10
1
10
2
10
3
10
?1
10
0
10
1
10
2
Freq
|G|
Figure1: G(s)=10(s+1)/(s+10)whichisa“lead”.
Fall 2001 16.31 3–6
? SinceargG(jω)=arg(1+jω)?arg(1+jω/10),wecanconstruct
phaseplotforcompletesysteminasimilarfashion
–Knowthatarg(1+jω/ω
i
)=tan
?1
(ω/ω
i
)
? Canusestraightlineapproximations
arg(1+jω/ω
i
)≈
?
?
?
?
?
?
?
?
?
?
?
?
?
0 ω/ω
i
≤0.1
90
?
ω/ω
i
≥10
45
?
ω/ω
i
=1
? Drawthecomponentsusingbreakpointsthatareatω
i
/10and10ω
i
10
?2
10
?1
10
0
10
1
10
2
10
3
0
10
20
30
40
50
60
70
80
90
100
Freq
Arg G
Figure2:Phaseplotfor(s+1)
Fall 2001 16.31 3–7
? Thenaddthemupstartingfromzerofrequencyandchangingthe
slopeas ω →∞
10
?2
10
?1
10
0
10
1
10
2
10
3
?80
?60
?40
?20
0
20
40
60
80
Freq
Arg G
Figure3:Phaseplot G(s)=10(s+1)/(s+10)whichisa“lead”.
Fall 2001 16.31 3–8
10
?4
10
?3
10
?2
10
?1
10
0
10
1
10
?3
10
?2
10
?1
10
0
Freq (Hz)
Magnitude
Actual
LF
MF
HF
+1
0
?2
?2
+1
?1
10
?4
10
?3
10
?2
10
?1
10
0
10
1
10
2
?180
?160
?140
?120
?100
?80
?60
?40
?20
0
20
Freq (Hz)
Phase (deg)
Actual
LF
MF
HF
Bode for G(s)=
4.54s
s
3
+0.1818s
2
?31.1818s?4.4545
.
The poles are at (-0.892, 0.886, -0.0227)
Fall 2001
Non-minimum Phase Systems
? Bodeplotsareparticularlycomplicatedwhenwehavenon-minimum
phasesystems
–Asystemthathasapole/zerointheRHPiscallednon-minimum
phase.
–The reason is clearer once you have studied the Bode Gain-
Phase relationship
–Keypoint:Wecanconstructtwo(andmanymore)systems
that have identical magnitude plots, but very di?erent phase
diagrams.
? Consider G
1
(s)=
s+1
s+2
and G
2
(s)=
s?1
s+2
10
?1
10
0
10
1
10
2
10
?1
10
0
Freq
|G|
MP
NMP
10
?1
10
0
10
1
10
2
0
50
100
150
200
Freq
Arg G
MP
NMP
Figure4: Magnitudeplotsareidentical,butthephaseplotsaredramaticallydi?erent. NMPhasa180deg
phaselossoverthisfrequencyrange.