Mechanics of Materials
1
2
CHAPTER 1 AXIAL TENSION AND COMPRESSION
§ 1–1 Concepts and practical examples of axial tension and compression
§ 1–2 Internal force,method of section,axial force and its diagram
§ 1–3 Stresses on the section and strength conditions
§ 1-4 Deformation of the rod in axial tension and compression ? law of
elasticity
§ 1-5 Elastic strain energy of the rod in axial tension and compression
§ 1-6 Statically indeterminate problems and their treatment methods of axial
tension and compression
§ 1-7 Mechanical properties of materials in axial tension and compression
3
4
§ 1–1 轴向拉压的概念及实例
§ 1–2 内力、截面法,轴力及轴力图
§ 1–3 截面上的应力及强度条件
第一章 轴向拉伸和压缩
§ 1-4 拉压杆的变形 ? 弹性定律
§ 1-5 拉压杆的弹性应变能
§ 1-6 拉压超静定问题及其处理方法
§ 1-7 材料在拉伸和压缩时的力学性能
§ 1–1 CONCEPTS AND PRACTICAL EXAMPLES OF
AXIAL TENSION AND COMPRESSION
Characteristic of the external force,The acting line of the resultant of
e x t e r n a l fo r c e s is co i n c i d ed with t h e a x i s of t h e ro d,
1,Concepts
Characteristic of the deformation,Deformation of the rod is mainly
elongation or contraction along the axis of the rod and companied with lateral
reduction or enlargement,
Axial tension, Deformation of the rod is axial elongation
and lateral shortening,
Axial compression,Deformation of the rod is axial
shortening and lateral enlargement,
5
6
§ 1–1 轴向拉压的概念及实例
轴向拉压的外力特点,外力的合力作用线与杆的轴线重合 。
一、概念
轴向拉压的变形特点,杆的变形主要是轴向伸缩,伴随横向
缩扩。
轴向拉伸:杆的变形是轴向伸长,横向缩短。
轴向压缩:杆的变形是轴向缩短,横向变粗。
In axial compression,the corresponding force is called compressive force,
In axial tension,the corresponding force is called tensile
force,
Mechanical models are shown in the figures
PP
PP
7
8
轴向压缩,对应的力称为压力。
轴向拉伸,对应的力称为拉力。
力学模型如图
PP
PP
Practical
examples in
engineering
2,
9
10




二,
11
12
1,Internal force
Internal force is the resultant of internal forces,which is acting mutually
between two neighbour parts inside the body,caused by the external forces,
§ 1–2 INTERNAL FORCE,METHOD OF SECTION,AXIAL
FORCE AND ITS DIAGRAM
13
14
一、内力
指由外力作用所引起的、物体内相邻部分之间分布内
力系的合成(附加内力)。
§ 1–2 内力 · 截面法 · 轴力及轴力图
2,Method of section · axial force
Calculation of the internal forces is the foundation to analyze the
problems of strength,rigidity,stability etc,The general method to
determine internal forces is the method of section,
1),Basic steps of the method of section,
① Cut off,Assume to separate the rod into two distinct parts in the section in
which the internal forces are to be determined,
② Substitute,Take arbitrary part and substitute the action of another part on it by
the corresponding internal force in the cut-off section,
③ Equilibrium,Set up equilibrium equations for the remained part and
determine the unknown internal forces according to the external forces acted on it.
( Here the internal forces in the cut-off section are the external forces for the
remained part) 15
16
二、截面法 · 轴力
内力的计算是分析构件强度、刚度、稳定性等问题的
基础。求内力的一般方法是截面法。
1,截面法的基本步骤,
① 截开,在所求内力的截面处,假想地用截面将杆件一分为二。
②代替,任取一部分,其弃去部分对留下部分的作用,用作用
在截开面上相应的内力(力或力偶)代替。
③平衡,对留下的部分建立平衡方程,根据其上的已知外力来
计算杆在截开面上的未知内力(此时截开面上的内力
对所留部分而言是外力)。
2,Axial force—internal force of the rod in axial
tension or compression,designated by N,
Such as,Determine N by the method of section,
0?? X 0NP?? NP ?
A P P
P
A
N
Simple sketch
A P P Cut off:,
Substitute,
Equilibrium,
17
18
2,轴力 ——轴向拉压杆的内力,用 N 表示。
例如,截面法求 N。
0?? X 0NP?? NP ?
A P P
简图
A P P 截开,
代替,
平衡,
P
A
N
x
① Reflected the variety relation between
the corresponding axial force and the
position of the section,
② Find out value of the maximum axial
force and the position of the section in which the maximum axial force act,That is
to determine the position of the critical section and supply the information for the
calculation of strength,
3,Diagram of the axial force— sketch
expression of N (x)
3),Sign conventions for the axial force,
axial force N (tensile force)is positive when its
direction point to the outward direction of the
normal line of the section,(compressive
force)negative inward
N > 0 N N
N<0 N N
x
N
P
+
meaning
19
20
① 反映出轴力与横截面位置变化关系,较直观;
②确定出最大轴力的数值
及其所在横截面的位置,
即确定危险截面位置,为
强度计算提供依据。
三,轴力图 —— N (x) 的图象表示。
3,轴力的正负规定,
N 与外法线同向,为正轴力 (拉力 )
N与外法线反向,为负轴力 (压力 )
N > 0 N N
N<0 N N
N
x
P
+


Example 1 The forces with magnitudes 5P,8P,4P and P act respectively at
points A,B,C,D of the rod,Their directions are shown in the figure,Try to plot
the diagram of the axial force of the rod,
Solution,Determine the internal force N1 in segment OA,
Take the free body as shown in the figure,
A B C D
PA PB PC PD
O
A B C D
PA PB PC PD
N1
0?? X 0
1 ????? DCBA PPPPN
04851 ????? PPPPN PN 21 ?
21
22
[例 1] 图示杆的 A,B,C,D点分别作用着大小为 5P,8P,4P,
P 的力,方向如图,试画出杆的轴力图。
解,求 OA段内力 N1:设置截面如图
A B C D
PA PB PC PD
O
0?? X
1 0A B C DN P P P P? ? ? ? ? ?
04851 ????? PPPPN PN 21 ?
A B C D
PA PB PC PD
N1
x
Similarly,we get the
internal forces in segment
AB,BC,CD, They are
respectively,
N2= –3P
N3= 5P
N4= P
The diagram
of the axial
force is shown
in the right
figure,
B C D
PB PC PD
N2
C D
PC PD
N3
D
PD
N4
N
x 2P
3P
5P
P + +

23
24
同理,求得 AB、
BC,CD段内力分
别为,
N2= –3P
N3= 5P
N4= P
轴力图如右图
B C D
PB PC PD
N2
C D
PC PD
N3
D
PD
N4
N
x 2P
3P
5P
P + +

Simple method to plot the diagram of axial force,From the left to the right,
Characteristic of the diagram of the axial force,Value of sudden
change = concentrated load
If meeting the force P to the left ?,the increase of the axial force N is positive;
If meeting the force to the right ?, the increase of the axial force N is negative,
5kN 8kN 3kN
+
– 3kN
5kN
8kN
25
26
轴力 (图 )的简便求法,自左向右,
轴力图的特点:突变值 = 集中载荷
遇到向左的 P?,轴力 N 增量为正;
遇到向右的 P?, 轴力 N 增量为负。
5kN 8kN 3kN
+
– 3kN
5kN
8kN
Solution,The free end of the rod is the
origin of the coordinate and coordinate x to the
right is positive,Take the segment of length x
on the left of point x,its internal force is q
K L
x O
2
0 2
1d)( kxxkxxN x ??? ??
2
m a x 2
1)( kLxN ??
Example 2 Length of the rod shown in the figure is L,Distributed force q = kx
is acted on it,direction of the force is shown in the figure,Try to plot the diagram of
axial force of the the rod,
L
q(x)
N(x)
x
q(x)
N x
O

2
2kL
27
28
解,x 坐标向右为正,坐标原点在
自由端。
取左侧 x 段为对象,内力 N(x)为,
q
q L
x O
2
0 2
1d)( kxxkxxN x ??? ??
2
m a x 2
1)( kLxN ??
[例 2] 图示杆长为 L,受分布力 q = kx 作用,方向如图,试画出
杆的轴力图。
L
q(x)
N x
O

2
2kL
N(x)
x
q(x)
1,Concept of stress
§ 1–3 STRESSES ON THE SECTION AND STRENGTH CONDITIONS
Bring forward
the problem,
1),The magnitude of the internal force can not scale the strength of the
structure member,
2),Strength:① Intensity of the distributed internal forces in the
section? stress; ② The load-bearing capacity of the material,
1),Definition,Intensity of the internal force due to the external forces,
29
P P
P P
30
一、应力的概念
§ 1–3 截面上的应力及强度条件
问题提出,
1,内力大小不能衡量构件强度的大小。
2,强度:①内力在截面的分布集度 ? 应力;
②材料承受荷载的能力。
1,定义,由外力引起的内力 集度 。
P P
P P
Under most cases distribution of the internal force inside engineering members
is not uniform,Definition of intensity is neither accurate and important because
breakage or failure often begins from the point at which intensity of the internal
force is maximum,
?P
?A
M ① Average stress,
② Whole stress( sum stress),
A
Pp
M Δ
Δ?
Δ 0
Δ d
Δ dl i mA
PP
p
AA?
??
2),Expression of stress,
31
32
工程构件,大多数情形下,内力并非均匀分布,集度的定
义不仅准确而且重要,因为“破坏”或“失效”往往从内力集
度最大处开始。
?P
?A
M ① 平均应力,
② 全应力(总应力),
A
Pp
M Δ
Δ?
Δ 0
Δ d
Δ dl i mA
PP
p
AA?
??
2,应力的表示,
③ Whole stress may be decomposed into,
p ?
M ?
A
N
A
N
A d
d
Δ
Δlim

??
?
?
A
T
A
T
A d
d
Δ
Δlim

??
?
?
a,Stress perpendicular to the section is called―normal stress‖
b,Stress lying in the section is called―shearing stress‖
33
34
③ 全应力分解为,
p ?
M ?
A
N
A
N
A d
d
Δ
Δlim

??
?
?
A
T
A
T
A d
d
Δ
Δlim

??
?
?
a.垂直于截面的应力称为,正应力” (Normal Stress);
b.位于截面内的应力称为,剪应力” (Shearing Stress)。
Before
deformation
1),Experiment on the law of deformation and the hypothesis of plane
section,
Hypothesis of plane section,Cross sections remain planes before and
after deformations,
Deformations of longitudinal fibers are the same
a b
c d
After
loading
P P
d ′
a′
c′
b′
2,Stress in the cross section of the rod in tension or compression
35
36
变形前
1,变形规律试验及平面假设,
平面假设,原为平面的横截面在变形后仍为平面。
纵向纤维变形相同。
a b
c d
受载后 P P d ′ a′ c′ b′
二、拉(压)杆横截面上的应力
The material is homogeneous and,its deformation is uniform,so the internal
force is distributed uniformly。
2,Tensile stress,
A
xN )( ??
Normal stress due to the axial forces — ?, distributes uniformly in the cross
section,
Critical section,The section in which internal force is maximum
and of which the dimension is smallest,
Critical point,The point at which the stress is maximum,
3,Critical section and the maximum working stress,
))( )(m a x ( m a x xA xN?? 37
? N(x) P
38
均匀材料、均匀变形,内力当然均匀分布。
2,拉伸应力,
A
xN )( ??
轴力引起的正应力 —— ?, 在横截面上均布。
危险截面:内力最大的面,截面尺寸最小的面。
危险点:应力最大的点。
3,危险截面及最大工作应力,
))( )(m a x ( m a x xA xN??
? N(x) P
Straight rod,cross section of the rod is without sudden change,there is a
certain distance from the section to the point at which the load acts,
4),Application conditions of the formula,
6),Stress concentration,
Stress increases abruptly near the cross section with a sudden change in dimension
5),Saint-Venant principle,
Distribution and magnitude of the stress in the section at a certain distance from
the point at which the load is acted are not affected by the acting form of external
loads,
39
40
直杆、杆的截面无突变、截面到载荷作用点有一定 的距离。
4,公式的应用条件,
6,应力集中( Stress Concentration),
在截面尺寸突变处,应力急剧变大。
5,Saint-Venant原理,
离开载荷作用处一定距离,应力分布与大小不受外载荷作
用方式的影响。
Sketch of Saint-Venant principle and stress concentrations
(Red real lines denote the line before deformation and red dashed lines denote the
shape after deformation.)
Sketch of deformation,a b c P P
Sketch of the stress
distribution,
41
42
Saint-Venant原理与应力集中示意图
(红色实线为变形前的线,红色虚线为红色实线变形后的形状。 )
变形示意图,a b c P P
应力分布示意图,
7),Criterion of the strength design,
? ? ))( )(m a x ( m a x ?? ?? xA xN
where,[?]—allowable stress,?max– the maximum working stress
at the critical point,
② Design the dimension of the section,
][
m a x
m in ?
NA ?
? ? ; m a x ?AN ?
? ? m a x()P f N?
Three kinds of calculation of strength may be done
according to the criterion of strength,
That structure members are ensured not to be wrecked and have certain safe
degree,
? ? m a x ?? ?① Check the strength,
③ Determine the allowable load,
43
44
7,强度设计准则( Strength Design),
? ? ))( )(m a x ( m a x ?? ?? xA xN
其中,[?]--许用应力,?max--危险点的最大工作应力。
② 设计截面尺寸,
][
m a x
m in ?
NA ?
? ? ; m a x ?AN ? ? ? )N(fP i?
依强度准则可进行三种强度计算,
保证构件不发生强度破坏并有一定安全余量的条件准则。
? ? m a x ?? ?
① 校核强度,
③ 许可载荷,
Example 3 A circular rod is subjected to a tensile force P =25 kN,Its diameter
is d =14mm and its allowable stress is [?]=170MPa,Try to check the strength of
the rod,
Solution,① Axial force,N = P =25kN
M P a1 6 20 1 40143 102544 2
3
2m a x ??
?????
..π d
P
A
N?② Stress,
③ Check the strength,
? ? 1 7 0 M P a1 6 2 M P am a x ??? ??
④ Conclusion,The strength of the rod satisfies request,
The rod can work normally,
45
46
[例 3] 已知一圆杆受拉力 P =25 k N,直径 d =14mm,许用应力
[?]=170MPa,试校核此杆是否满足强度要求。
解,① 轴力,N = P =25kN
M P a1 6 20 1 40143 102544 2
3
2m a x ??
?????
..π d
P
A
N?
② 应力,
③ 强度校核,
? ? 1 7 0 M P a1 6 2 M P am a x ??? ??
④ 结论:此杆满足强度要求,能够正常工作。
Example 4 A three-pin house frame on which a vertical uniform load,with
the in density intensity is q =4.2kN/m is applied is shown in the figure,Diameter
of the steel tensile rod in the frame is d =16 mm and its allowable stress is
[?]=170MPa,Try to check the strength of the rod,
47
Tie bar
8.5m
q
q
A
B
C
48
[例 4] 已知三铰屋架如图,承受竖向均布载荷,载荷的分布
集度为,q =4.2kN/m,屋架中的钢拉杆直径 d =16 mm,许用
应力 [?]=170M Pa。 试校核钢拉杆的强度。
钢拉杆
8.5m
q
q
A
B
C
① Determine the reactions first according to the global equilibrium
Solution,
kN519 0
0 0
.Rm
HX
AB
A
?? ?
?? ?
49
Tie bar
8.5m
RA RB
HA
q
q
A
C
50
① 整体平衡求支反力 解,
kN519 0
0 0
.Rm
HX
AB
A
?? ?
?? ?
钢拉杆
8.5m
RA RB
HA
q
q
A
C
③ Stress,
④ Strength check
and conclusion,? ? M P a 1 7 0 M P a 1 3 1 m a x ??? ??
This rod satisfies the request of strength,It is safe,
M P a131
0160143
103264
d
4
2
3
2m a x
?
?
??
?
??
..
.
P
A
N
?
?
② Determine the axial force
according to the partial equilibrium
,
kN326 0,Nm C ?? ?
51
RA
HA
RC
HC
N
Cq
A
52
③ 应力,
④ 强度校核与结论,? ? M P a 1 7 0 M P a 1 3 1
m a x ??? ??
此杆满足强度要求,是安全的。
M P a131
0160143
103264
d
4
2
3
2m a x
?
?
??
?
??
..
.
P
A
N
?
?
② 局部平衡求 轴力,
HC
kN326 0,Nm C ?? ?
RA
HA
RC
N
Cq
A
? ?/ ;
/ s i n
B D B D
BD
AN
Lh
?
?
?
? 。
Example 5 A simple crane is shown in the figure,AC is a rigid beam, sum
weight of the hoist and heavy body that is lifted is P,What should be the angle ?
so that the rod BD has the minimum weight? The allowable stress of the rod [?]
is known,;BDBD LAV ?
Analysis,x L
h
? P
A B
C
D
53
54
? ?/ ;
/ s i n
B D B D
BD
AN
Lh
?
?
?
? 。
[例 5] 简易起重机构如图,AC为刚性梁,吊车与吊起重物总重
为 P,为使 BD杆最轻,角 ? 应为何值? 已知 BD 杆的 许用应力
为 [?]。;BDBD LAV ?
分析,x L
h
? P
A B
C
D
PxhNm BDA ??? ? )c t g() s i n(,0 ??
?c o sh
PLN
BD ?
? ??/NA BD?
? The cross-section area A of the rod BD,
Solution,? Internal force N((? ) of the rod BD,Take AC as
our study object as shown in the figure,
YA
XA
?
NBD
x
L
P
A B
C
55
56
PxhNm BDA ??? ? )c t g() s i n(,0 ??
?c o sh
PLN
BD ?
? ??/NA BD?? BD杆横截面面积 A,
解,? BD杆 内力 N(? ),取 AC为研究对象,如图
YA
XA
?
NBD
x
L
P
A B
C
YA
XA
?
NBD
x
L
P
A B
C
③ Determine the minimum value of VBD,
2/ s i n ;
[ ] s i n 2BD
PLV A L A h ?
??
? ? ?
o
m i n
24 5,
[]
PLA s V?
?
? ? ?
67
58
YA
XA
?
NBD
x
L
P
A B
C
③ 求 VBD 的 最小值,2
/ s i n ;
[ ] s i n 2BD
PLV A L A h ?
??
? ? ?
][
2 45
m i n
o
??
PLV,??? 时
3,Stresses in the inclined section of the rod in tension or compression
P P
k
k a
a
a
a A
Pp ?
Aa:Area of the inclined section; Pa,Internal
force in the inclined section,
aa aa c o s c o s AAA A ???
,
a?a
a
a
a c o sc o s 0???? A
P
A
Pp a?a c o s0?p
P
k
k a
Pa
From geometric
relation
Substituting it into the above
formula we get
Solution,Adopt the method of
section,According to the equilibrium
equation,Pa=P then
Assume a straight rod is subjected
to a tensile force P,Determine the
stress in the inclined section k-k,
Whole stress in the
inclined ection,
59
60
三、拉 (压 )杆斜截面上的应力
设有一等直杆受拉力 P作用。
求:斜截面 k-k上的应力。
P P
k
k a 解:采用截面法
由平衡方程,Pa=P
则,
a
a
a A
Pp ? Aa,斜截面面积; Pa:斜截面上内力。
由几何关系,
a
a a
a c o s
c o s AA
A
A ???
代入上式,得,
a?a
a
a
a c o sc o s 0???? A
P
A
Pp 斜截面上全应力,a?a c o s0?p
P
k
k a
Pa
a?a c o s0?p
Decomposition,
pa ? a?a? aa 20 c o sc o s ?? p
a?aa?a? aa 2s i n2s i nc o ss i n 00 ??? p
It indicates the change of stresses in different sections
through a point,
As a =90°,
0)( m in ?a?
As a = 0,90°, 0||
min ?a?
As a = 0°,
)( 0m a x ?? a ?
(The maximum normal stress exists
in the cross section)
As a = ± 45°,
2
|| 0m ax ?? a ?
(The maximum shearing stress exists
in the inclined section of 45 ° )
Whole stress in the
inclined section,
61
P P
k
k a
P
k
k a
pa
?a
?a
a
62
斜截面上全应力,a?
a c o s0?p
分解,
pa ? a?a? aa 20 c o sc o s ?? p
a?aa?a? aa 2s i n2s i nc o ss i n 00 ??? p
反映:通过构件上一点不同截面上应力变化情况。
当 a = 90° 时,
0)( m in ?a?
当 a = 0,90° 时,0||
min ?a?
当 a = 0° 时,
)( 0m a x ?? a ?
(横截面上存在最大正应力 )
当 a = ± 45° 时,
2
|| 0m ax ?? a ?
(45 ° 斜截面上剪应力达到最大 )
P P
k
k a
P
k
k a
p a
a ?
a
?a
a
2,Element,?Element— delegate of a point inside the member,infinitesimal
geometric body which envelops the study point,The element in common use is just
hexahedron ?properties of an element—a,stress is distributed uniformly in an
arbitrary parallel arbitrary plane; b,stresses in the parallel plane opposite plane
are equal,
3,stress element at a point M in
the rod in tension or compression,
1,State of stress at a point,There are countless sections through a point,
Sum of stresses in the different section through a point is called the state of
stress at this point,
Complementary,
? P M
? ? ? ?
63
64
2、单元体,?单元体 —构件内的点的代表物,是包围被研究点的
无限小的几何体,常用的是正六面体。
?单元体的性质 —a、平行面上,应力均布;
b、平行面上,应力相等。
3、拉压杆内一点 M 的应力单元体,
1.一点的应力状态,过一点有无数的截面,这一点的各个截面
上的应力情况,称为这点的应力状态。
补充,
? P M
? ? ? ?
??
?
?
?
?
?
aa??
a??
a
a
c o ss in
c o s
0
2
0
Take a free body as shown in the Fig.3,a is
positive if it is along countclockwise; ? a
is positive if it makes the free body rotate
clockwise,From the equilibrium of the free
body we get,
?
?
?
??
?
?
?
??
a
?
?
a
?
?
a
a
2s i n
2
)2c o s(1
2
:r
0
0
o
4,Stress in the inclined section of the rod in tension or compression
? ? ? ?
a a
x
Fig.3
65
66
?
?
?
?
?
aa??
a??
a
a
c o ss i n
c o s
0
2
0
取分离体如图 3,a 逆时针为正;
? a 绕研究对象顺时针转为正;
由分离体平衡得,
?
?
?
??
?
?
?
??
a
?
?
a
?
?
a
a
2s i n
2
)2c o s(1
2
:
0
0

4、拉压杆斜截面上的应力
? ? ? ?
a a
x
图 3
M P a7.632/4.1272/0m a x ??? ??
M P a5.95)60c o s1(
2
4.127)2c o s1(
2
0 ????? a??
a
M P a2.5560s i n
2
4.1272s i n
2
0 ??? a??
a
M P a4.127 1014.3 1 0 0 0 04 20 ????? AP?
Example 6 A rod,which the diameter d =1 cm is subjected to a tensile force P
=10kN,Determine the maximum shearing stress,the normal stress and shearing
stress in the inclined section of an angle 30° about the cross section,
Solution,Stresses in the inclined section of the rod in tension or compression
can be determined directly by the formula,
67
68
M P a7.632/4.1272/0m a x ??? ??
00 1 2 7, 4( 1 c o s 2 ) ( 1 c o s 6 0 ) 9 5, 5 M P a
22a
??a? ? ? ? ?
00 1 2 7, 4s i n 2 s i n 6 0 5 5, 2 M P a
22a
??a? ? ?
M P a4.127 1014.3 1 0 0 0 04 20 ????? AP?
[例 6] 直径为 d =1 cm 杆受拉力 P =10 kN的作用,试求最大剪应
力,并求与横截面夹角 30° 的斜截面上的正应力和剪应力 。
解:拉压杆斜截面上的应力,直接由公式求之,
Example 7 A tensile rod as shown in the figure is made from two parts glued
mutually together along mn,It is subjected to the action of force P,Assume that the
allowable normal stress is [?]=100MPa and allowable shearing stress is [?]=50MPa for the
adhesive,Area of cross section of the rod is A= 4cm2,If strength of the rod is controlled by
the adhesive what is the angle a ( a,between 0 0~60 0) to get the largest tensile force?
kN50,6.26 ??? BB Pa
Combine (1),(2) and get,
P P
m
n a
Solution,
)1( ][c o s 2 ???a? a ??
A
P
)2( ][c o ss i n ???aa? a ??
A
P
69
?
?
P
a 60 0 30 0
B
0 0
70
[例 7]图示拉杆沿 mn由两部分胶合而成,受力 P,设胶合面的许用
拉应力为 [?]=100MPa ;许用剪应力为 [?]=50MPa,并设杆的
强度由胶合面控制,杆的横截面积为 A= 4cm2,试问,为使杆承受
最大拉力,a角值应为多大?(规定, a在 0~60度之间 )。
kN50,6.26 ??? BB Pa
联立 (1),(2)得,
P P
m
n a
解,
)1( ][c o s 2 ???a? a ??
A
P
)2( ][c o ss i n ???aa? a ??
A
P
?
?
P
a 60 0 30 0
B
0 0
? ?0 0 0 260 / ( c o s 6 0 s i n 6 0 ) 4 5 0 1 0 4 / 3 4 6, 2 k NPA ?? ? ? ? ? ?
kN50m a x ?? P
The curves of formula (1)and,(2) are shown in the Tig.(2),Obviously the strength of
the rod on the left of point B is controlled by the normal stress,that on the right of
point B is controlled by the shearing stress,As a=60°, from formula (2) we can get
? ?1 2,6 0 / ( c o s 6 0 s i n 6 0 ) 4 6 0 1 0 4 / 3 5 5, 4 4 k NBPA ?? ? ? ? ? ? ? ?
kN44.55m a x ?? P
Solution,At the point of intersection
of curves (1) and (2),
kN4.54;31 11 ??? BB Pa;M P a60][ m a x ?? P?Discussion,As
71
?
?
P
a 60 0 30 0
B1
0 0
72
? ?0 0 0 260 / ( c o s 6 0 s i n 6 0 ) 4 5 0 1 0 4 / 3 4 6, 2 k NPA ?? ? ? ? ? ?
kN50m a x ?? P
(1),(2)式的曲线如图 (2),显然,B点左 侧由 正 应力控制杆的强
度,B点右侧由 剪 应力控制杆的强度,当 a=60° 时,由 (2)式得
kN44.55m a x ?? P
解 (1),(2)曲线交点处,
kN4.54;31 11 ??? BB Pa;M P a60][ m a x ?? P?讨论:若
?
?
P
a 60 0 30 0
B1
0 0
? ?1 2,6 0 / ( c o s 6 0 s i n 6 0 ) 4 6 0 1 0 4 / 3 5 5, 4 4 k NBPA ?? ? ? ? ? ? ? ?
1),The whole longitudinal
deformation of the rod,
3),Average stain,
1LLL
LL
? ????
2),Strain,linear deformation per unit length,
1,Deformation and strain of the rod in tension or compression
1L L L? ? ?
§ 1- 4 DEFORMATION OF THE ROD IN AXIAL TENSION
AND COMPRESSION ? LAW OF ELASTICITY
73
a b
c d
x?
L
Cross section
74
1、杆的纵向总变形,
3、平均线应变,
1LLL
LL
? ????
2、线应变:单位长度的线变形。
一、拉压杆的变形及应变
1L L L? ? ?
§ 1- 4 拉压杆的变形 ? 弹性定律
a b
c d
x?
L
4,Longitudinal strain at point x,
x
x
x ?
??
??
dlim
0
?
6,Lateral strain at point x,
5,Lateral deformation of the rod,
accaac ?????
ac
ac????
P P
d ′
a′
c′
b′
xx ??? d
L1
75
76
4,x点处的纵向线应变,
x
x
x ?
??
??
dlim
0
?
6,x点处的横向线应变,
5、杆的横向变形,
accaac ?????
ac
ac????
P P
d ′
a′
c′
b′
xx ??? d
L1
2,Elastic law of the rod in tension or compression
PLL
A?? EA
NL
EA
PLL ???
1),Case of equal internal forces
2),Case of variable internal forces
)(
d)()d(
xEA
xxNx ??
( ) d( d )
()LL
N x xLx
E A x? ? ? ???
?
?
??
n
i ii
ii
AE
LNL
1
When internal forces in n
segments are constant
※ ―EA‖is called the axial rigidity of the
rod in tension or compression,
P P
N ( x )
x
d x
N(x)
dx
x
77
78
二、拉压杆的弹性定律
PLL
A??
P L N LL
E A E A? ? ?
1、等内力拉压杆的弹性定律
2、变内力拉压杆的弹性定律
)(
d)()d(
xEA
xxNx ??
( ) d( d )
()LL
N x xLx
E A x? ? ? ???
1
n
ii
i ii
NLL
EA?
?? ?
内力在 n段中分别为常量时
※,EA” 称为杆的抗拉压刚度。
P P
N ( x )
x
d x
N(x)
dx
x
3),Elastic law in uniaxial stressed state
4),Possion,s ratio( or coefficient of the lateral
deformation)
3,Who firstly proposed the Elastic Law
The Elastic Law is the important foundation of solid mechanics
such Mechanics of Materials,Generally it is considered to be
proposed firstly by the English scientist Hook (1635-1703),So the
Elastic Law is also called Hook,s Law,Actually,there was an early
record of the proportional ration between force and deformation,
which is 1500 years earlier than Hook,
??
?
??
? ? ?? ??
or
1)( )(1)d( ?? ExA xNEdx x ???? 1 ??
E
?
That is
79
80
1)( )(1)d( ?? ExA xNEdx x ????
3、单向应力状态下的弹性定律
1,??
E
?即
4、泊松比(或横向变形系数)
??
?
??
,? ? ?? ??或
三、是谁首先提出弹性定律
弹性定律是材料力学等固体力学一个非常重要的基础。一般
认为它是由英国科学家胡克 (1635一 1703)首先提出来的,所以通
常叫做胡克定律。其实,在胡克之前 1500年,我国早就有了关于
力和变形成正比关系的记载。
― ‖ 胡:请问,弛其弦,以绳缓 缓 之
是什么意思?
郑:这是讲测量弓力时,先将弓的弦
松开,另外用绳子松松地套住弓
的两端,然后加重物,测量。
胡:我明白了。这样弓体就没有初始应力,处于自 然状态。
东汉经学家郑玄 (127—200)对, 考工记 ·弓人, 中, 量其力,
有三均, 作了 这样的注释:, 假令弓力胜三石,引之中三尺,弛
其弦,以绳缓擐之,每加物一石,则张一尺。, (图 )
82
― ‖ 胡:请问,弛其弦,以绳缓 缓 之
是什么意思?
郑:这是讲测量弓力时,先将弓的弦
松开,另外用绳子松松地套住弓
的两端,然后加重物,测量。
东汉经学家郑玄 (127—200)对, 考工记 ·弓人, 中, 量其力,
有三均, 作了 这样的注释:, 假令弓力胜三石,引之中三尺,弛
其弦,以绳缓擐之,每加物一石,则张一尺。, (图 )
胡:我明白了。这样弓体就没有初始应力,处于自 然状态。
郑:后来,到了唐代初期,贾公彦对我的注释又作 了注疏,他说,
郑又云假令弓力胜三石,引之 中三尺者,此即三石