Foundations of State
Estimation
Topics:
Hidden Markov Models
? Additional reading:
?
? J. J. Leonard and H. F. Durrant-Whyte. “ IEEE Trans.
?
Issues
? Statement:
–
world?
?
–
time t?
? Inputs:
– Model
–
? Outputs from different algorithms:
– Most likely current state x
i
–
i
)
– Most likely sequence of states over time: x
1
, x
2
, x
3
, x
4
, ... x
t
–
1
), p(x
2
), p(x
3
) ... p(x
t
)
? Choices:
– How to compute the estimate x
i
or p(x
i
)
–
i
)
Bayes Filters
Kalman Filters
G. Welch and G. Bishop. “An Introduction to the Kalman Filter”. University of North Carolina at Chapel Hill,
Department of Computer Science. TR 95-041. http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
Mobile robot localization by tracking geometric beacons.”
Robotics and Automation, 7(3):376-382, June 1991
L.R. Rabiner, “A tutorial on hidden Markov models," Proceedings of the IEEE, vol. 77, pp. 257-286, 1989.
Given a set of observations of the world, what is the current state of the
Alternatives:
Given a set of observations of the world, what is the state of the world at
Sequence of observations, or perhaps actions and observations
Probability distribution over possible current states p(x
Sequence of probability distributions over time p(x
How to represent p(x
Graphical Models, Bayes’ Rule and the Markov
Assumption
States
x
1
x
2
T(x
j
|a
i
, x
i
)
Z
2
b
1
Beliefs
Z
1
Observations
a
1
Actions
O(z
j
|x
i
)
b
2
Hidden
Observable
)(
)()|(
)|(
yp
xpxyp
yxp :ruleBayes
),|(),,,,,,,|(
1111001 ttttttt
axxpzzazaaxxp
:Markov
The Bayes’ Filter
)()',|()|(
),,...,,,,|'()',|()|(
),...,,,,,,|()|(
),...,,,,,,|(),...,,,,,,,|(
),,...,,,,,,|()(
1
'
111100
'
221100
221100221100
221100
xpxaxpxzp
zazazaxpxaxpxzp
azazazaxpxzp
azazazaxpazazazaxzp
zazazazaxpxp
t
X
tt
tt
X
tt
tt
ttt
ttt
3
3
:recursionhwitAnd
:variableauxiliaryaningIntroduc
:assumptionMarkovthetongAccordi
:ruleBayestongAccordi
Posterior belief
after an action
An action
is taken
Posterior belief
after sensing
State Space
Initial belief
? Linear process and measurement models
? Gaussian noise
? Gaussian state estimate
Kalman, 1960
f
x(t
1
)|z(t
1
)
(x|z
1
)
f
x(t
2
)|z(t
2
)
(x|z
2
)
f
x(t
2
)|z(t
12
)
|z
12
)
X
Z
1
x
1
Z
1
Z
2
Z
1
Z
2 x
σ
σ
σ
μ
x
t
z
tt
.
Bayes Filter
The Kalman Filter
),z(t
(x ,z
x2
Process model is
= Ax
t-1
+ Bu
t-1
+ q
t-1
Measurement model is
= Hx
t-1
+ r
Image adapted from Maybeck
? Only need first two moments:
? Process model:
? Measurement model:
])
?
)(
?
[(
)(
?
T
ttttt
tt
xxxxEC
xEx
QAACC
Bux
T
tt
ttt
1
11
??
ttt
ttttt
T
t
T
tt
CHKIC
zKxx
RHHCHCK
)(
)
?
(
??
)(
1
? Process model is now
? Measurement model is
? Linearising, we get
? where A, H, W and V are the Jacobians:
),,(
111
tttt
qux
),(
ttt
rz
ttttt
ttttt
ttt
VrxxHz
WqxxAxx
ux
|
|
)
~
()
~
(
)?(
~
),(
~
111
11
?
?
?
?
?
?
o
?
?
?
?
?
?
a
w
w
w
w
w
w
w
w
n
nn
n
x
f
x
f
x
f
x
f
A
1
1
1
1
?
?
?
?
?
?
o
?
?
?
?
?
?
a
w
w
w
w
w
w
w
w
n
mm
n
x
h
x
h
x
h
x
h
H
1
1
1
1
?
?
?
?
?
?
o
?
?
?
?
?
?
a
w
w
w
w
w
w
w
w
n
nn
n
q
f
q
f
q
f
q
f
W
1
1
1
1
?
?
?
?
?
?
o
?
?
?
?
?
?
a
w
w
w
w
w
w
w
w
m
mm
m
v
h
v
h
v
h
v
h
V
1
1
1
1
Linear Kalman Filter
x A
xH
The Extended Kalman Filter
x f
x h
x h
x f
0,
0,
Updates for the EKF
? Still using only first two moments.
? Process model:
? Measurement model:
T
ttt
T
tttt
ttt
AC
uxfx
1
11
),
?
(
?
tttt
ttttt
T
ttt
T
ttt
T
ttt
CIC
zKxx
HHCK
)(
?
((
??
)(
1
Robot Navigation
Initial belief Action
Measurement
?
?
?
?
o
?
?
?
?
a
T
[ y
x
?
?
?
?
o
?
?
?
?
a
'