第三章 堤防渗透破坏的除险加固
第一节 渗透破坏的成因和分类
第二节 渗透破坏除险方案的选择
第三节 渗透破坏除险方案的复核
第四节 除险加固工程的设计和施工
??? 渗透破坏在堤防工程中非常普遍,据98年长江防洪抢险的统计资料,由渗透破坏造成的险情约占险情总数的70%。除去漫溢险情,则溃口性险情几乎全部是渗透破坏所致。防洪抢险及除险加固的实践表明,渗透破坏是堤防工程中最普遍且难以治愈的心腹之患。
??? 要做好渗透破坏的除险加固工作,需从以下几个方面入手:首先要了解渗透破坏属于哪种类型,并分析其形成的原因;然后根据渗流控制原则和具体的工程地质条件,选择经济合理的除险措施;为保证除险效果,需要对所选择的工程措施进行复核;最后对所选择的工程措施进行精心设计和施工,达到根除渗透破坏的目的。
第一节 渗透破坏的成因和分类
??? 只要堤防的临水侧和背水侧存在水头差,堤防就有渗流产生。随着汛期水位的升高,堤身内的浸润线逐步形成并不断抬高,堤基和堤身内的渗透比降也逐渐增大。当渗流产生的实际渗透比降J大于土的临界渗透比降JC时,土体将产生渗透破坏。堤防的内在隐患会加速渗透破坏的发生和发展。
一、渗透破坏的土力学分类和判别
??? 渗透破坏也称渗透变形。由于渗流条件和土体条件的不同,渗透破坏的机理、发展过程及后果也不一样。从渗透破坏发生的机理角度,可以将渗透破坏分为四种类型:
?? 1.流土
??? 在渗透力作用下,土体中的颗粒群同时起动而流失的现象称为流土。这种破坏形式在粘性土和无粘性土中均可以发生。粘性土发生流土破坏的外观表现为:土体隆起、鼓胀、浮动、断裂等。无粘性土发生流土破坏的外观表现是:泉眼(群)、砂沸、土体翻滚最终被渗透托起等。
??? 2.管涌
??? 在渗透力的作用下,土体中的细颗粒(填料颗粒)沿着土体骨架颗粒间的孔道移动或被带出土体,这种现象叫管涌。它通常发生在砂砾石地层中。
??? 3.接触冲刷
??? 渗流沿着两种不同介质的接触面流动并带走细颗粒的现象称为接触冲刷。如穿堤建筑物与堤身的结合面和裂缝的渗透破坏等。
??? 4.接触流土
??? 渗流垂直于两种不同介质的接触面运动,并把一层土的颗粒带入另一土层的现象称为接触流土。这种现象一般发生在颗粒粗细相差较大的两种土层的接触带,如反滤层的机械淤堵等。
??? 对粘性土,只有流土、接触冲刷或接触流土三种破坏形式,不可能产生管涌破坏。对无粘性土,则四种破坏形式均可发生。对无粘性土,管涌和流土的判别可以按照表3—1进行。
表3-1 无粘性土管涌和流土的判别
土? 类
土颗粒组成特点
渗透变形形式
正常级配砂砾石
Cu<10
流土
10<Cu<20
流土或管涌
Cu>20
管涌
缺少中间颗粒的砂砾石
Pz<25%-30%
管涌
Pz>30%
流土
注:Cu为土的不均匀系数,Cu=d60/d10;Pz为小於颗粒级配曲线上断裂点A的粒径含量;
d60为过筛重量占60%的颗粒直径,d10为过筛重量占10%的颗粒直径。
二、土的抗渗强度
??? 土的抗渗强度表明了土体抵抗渗透破坏的能力,包括抗渗临界比降和允许比降。允许比降JB由临界比降JC除以安全系数得到。土的抗渗强度决定于土的性质和渗流条件(渗透破坏形式)两个方面。
??? 1.流土
??? 流土首先发生于渗流出口,不可能在土体内部直接发生。当渗流自下向上运动时,一旦渗透力克服了重力的作用,则土体就会产生流土破坏,此时土体的临界比降可以通过原状土室内试验求得,也可以由下式近似确定:
JC=(ρs/ρw-1)(1-n) ??????????????????????????????????????? (3-1)
??? 式中:ρs为土颗粒的密度,ρw为水的密度,n为土体的孔隙率。
??? 由公式(3-1)求得的JC偏小,大约小于试验值的15%~25%,这主要是因为在该式中没有考虑土的抗剪强度的影响(包括内摩擦角和凝聚力两个方面),因此也是偏于安全的。表3-2给出了无粘性土不发生流土破坏的允许比降经验值,细砂取小值,较粗的砂土取大值。
??? 2.管涌
??? 管涌可能发生在渗流出口,也可能发生在土体内部。由于颗粒移动中的堵塞作用,可能会有管涌中断现象发生,有的是暂时性中断,而后继续发生,有的是永久性中断,即发生了自愈情况。还有一种情况,由于土体中细颗粒填料较少,它的带出不影响土体骨架颗粒的稳定,当细颗粒被带完后,只出清水,不出浑水,管涌终止。
??? 由于计算管涌临界比降的公式目前还不成熟,因此管涌临界比降一般通过室内试验测定。根据经验,对水流向上的垂直管涌,允许比降一般为0.1~0.25,水平管涌的允许比降为垂直管涌的允许比降乘以摩擦系数tgφ。表3—2给出了无粘性土不发生管涌破坏的允许比降的经验值。
表3-2 无粘性土抗流土或管涌破坏的允许坡降JB的经验值
项
目
渗透变形型式
流土型
过渡型
管涌型
Cu<3
Cu=3-5
Cu>5
级配连续
级配不连续
JB
0.25-0.35
0.35-0.50
0.50-0.80
0.25-0.40
0.15-0.25
0.10-0.15
?? 3.接触冲刷
??? 接触冲刷发生在堤身和堤基的内部,但其颗粒仍旧是从渗流出口处带出。接触冲刷不断发展会形成漏水通道,而引起堤防溃决。
??? 在两种性质不同的土层界面上发生接触冲刷时,其临界比降可以通过室内试验或按伊斯托明娜的试验结果(图3-1)获得。图中的纵坐标为接触冲刷的临界比降,横坐标为D10/d10tgφ,其中D10为粗粒土层的有效粒径(过筛重量占总土重10%的颗粒直径),d10为细粒土层的有效粒径,tgφ为细粒和粗粒土层之间的摩擦系数。
??? 在土层与刚性建筑物接触界面上发生接触冲刷时,对比一些试验资料和建闸的经验将非管涌土地基的允许渗透比降值列入表3-3,供参考。表中渗透比降的允许值是由临界比降除以1.5的安全系数得到的,但没有考虑渗流出口处的保护。如果渗流出口有反滤保护,则表中的数据可以适当提高30%~50%。
图3-1 接触冲刷临界坡降曲线
表3-3 各种土基上水闸设计的允许渗流坡降
地基土质类别
允许渗流坡降
地基土质类别
允许渗流坡降
水平段Jx
出口Jo
水平段Jx
出口Jo
粉 砂
细 砂
中 砂
粗 砂
中细砾
粗砾夹卵石
0.05~0.07
0.07~0.10
0.10~0.13
0.13~0.17
0.17~0.22
0.22~0.28
0.25~0.30
0.30~0.35
0.35~0.40
0.40~0.45
0.45~0.50
0.50~0.55
砂 壤 土
粘壤土夹砂礓土
软 粘 土
较坚实粘土
极坚实粘土
0.15~0.25
0.25~0.35
0.30~0.40
0.40~0.50
0.50~0.60
0.40~0.50
0.50~0.60
0.60~0.70
0.70~0.80
0.80~0.90
? 4.接触流土
??? 接触流土的抗渗临界比降应通过室内试验获得。
? 5.堤坡的抗冲刷能力
??? 当渗流从堤坡上出逸而产生渗水(亦称散浸)后,渗水对堤坡具有一定的冲刷作用,有可能产生渗透破坏。其中最易产生破坏的地方是出逸点。堤坡抗冲刷破坏的临界比降可以用下式估算:
Jc=γ'/γw(tgφ-tgβ)cosβ+c/r ????????????????????????????? (3-2)
??? 式中:γ'为土的浮容重;γw为水的容重;tgφ 为土的摩擦系数;φ为土在水下的内摩擦角;c为土的凝聚力;β为堤坡的坡角。
??? 出逸点处的渗流比降为J=sinβ,设土的浮容重为1,忽略凝聚力c,当J=Jc时由式(3-2)得到:
tgβ=0.5tgφ ??????????????????????????? (3-3)
??? 因此,堤坡不产生冲刷破坏的条件是tgβ<0.5tgφ,即坡角的正切必须小于饱和土内摩擦角正切的一半,或者说坡角约等于土的休止角的一半,这是无粘性土堤坡不产生局部冲刷破坏的一个最低要求。
?? 6.粘性土的抗渗强度
??? 粘性土的渗透破坏特性取决于容重、含水率、粘土矿物成分、交换性阳离子的数量和成份、孔隙液体的含盐浓度和成分等物理化学因素,因此,它远比无粘性土渗透破坏特性复杂。粘性土可分为分散性粘土,非分散性粘土和过渡型粘土。如图3-2,其中A区为分散性粘土,B区为非分散性粘土,C区为过渡性粘土。该图的纵坐标为钠的百分比,横坐标TDS为金属阳离子总量。分散性粘土遇水后土颗粒逐渐脱落而形成悬液,极易被水流带走,其破坏要比细砂和粉土更为容易。而非分散性粘性土由于其凝聚力很大,只会发生流土破坏,不会发生管涌破坏,有反滤保护时,其临界比降可以超过20以上,而一般取4~5为粘性土的抗渗允许坡降
图3-2 区别分散性和非分散性粘土图
7.软弱夹层的抗渗强度
??? 软弱夹层的渗透破坏不同于无粘性土,也不同于粘性土,而是介于两者之间。其渗透破坏的特征为:
??? (1)泥夹碎片层,当结构发生破坏时,沿层面出水,出口细粒跳动,形成小洞眼,直至出现渗透通道;
??? (2)含泥沙砾层,当结构破坏时,渗流出口有细粒移动并呈浑水,直至破坏。软弱夹层的抗渗强度应通过试验得到。
??? 三、堤防渗透破坏的成因和分类
??? 堤防工程中对渗透破坏的分类主要是从宏观现象考虑。比如,由于堤基的渗透破坏在后期多表现为集中渗流对土体的冲刷,并往往冒水翻砂,形如管中涌水(砂),因此在堤防工程中统称为管涌(亦称泡泉),这是宏观上的体验。其实,堤防工程中常说的管涌基本上都是土力学中的流土破坏。
??? (一)堤身渗透破坏的成因和分类
??? 堤身的渗透破坏包括三种类型:渗水(散浸)造成的堤坡冲刷、漏洞和集中渗流造成的接触冲刷。分述如下:
??? 1.堤坡冲刷
??? 堤坡冲刷系由背水堤坡渗水所致。一种是堤坡的出逸比降大于允许比降而产生的渗透破坏,另一种是渗水集中后造成对坡面的水流冲刷。
??? 应当说,对背水侧地下水位(或水头)较高的情况,当发生持续高水位时堤坡渗水是必然的。关键是出逸点不应过高,渗流量不应过大,以免造成堤坡的渗透破坏和水流冲刷,甚至导致滑坡,对这种有害渗水必须采取措施进行除险。造成出逸点过高的主要原因有:堤身断面宽度不够,堤坡偏陡;堤身尤其是后加高的堤身透水性强,或填筑层面明显,导致堤身的水平向渗透系数偏大;新老堤身、堤段施工接头处存在薄弱结合面。如清基不彻底或根本未清基,堤段结合部压实不密等;堤身裂缝并被雨水灌入;堤身存在其它隐患。如洞穴、冻土块等。
??? 2.堤身漏洞
??? 堤防背水坡及堤脚附近出现横贯堤身的流水孔洞称为漏水洞。由于漏水洞中的集中水流对土体的冲刷力很强,因此对堤防的危害性极大。
??? 产生漏洞的主要原因有:堤身质量差,土料含砂量高,有机质多;有生物洞穴或其它易腐烂的物料;其它隐患,如旧涵洞、坑窖、棺木等。
??? 即使漏洞没有贯穿堤身,也将大大缩短渗径,从而加大了出口渗透比降,增加了渗透破坏的可能性,同时漏洞中的集中水流还将造成对土体的水流冲刷,使漏洞长度加长,直径变大,最终贯穿堤身,导致堤防溃决。因此,对堤身漏洞隐患必须进行除险加固。
??? 3.堤身接触冲刷
??? 当堤身发生集中渗流且冲刷力大于土体的抗渗强度时,在集中渗流处就会产生接触冲刷破坏。造成堤身集中渗流的主要原因有:穿堤建筑物与堤身间出现裂缝;新老堤身结合面未清基或清基不彻底;堤防分段建设的结合部填筑密度低等。由于接触冲刷的发展速度往往较快,因此对堤防的威胁很大,必须对其进行除险加固。
??? (二)堤基渗透破坏的成因和分类
??? 堤基的渗透破坏常表现为泡泉、沙沸、土层隆起、浮动、膨胀、断裂等,通常统称为管涌。一般来讲,堤防堤基的表土层一般极少是砂砾层,因此,堤基的渗透破坏一般均为土力学中的流土破坏。产生的原因是,随着汛期水位的升高,背水侧堤基的渗透出逸比降增大,一旦超过堤基的抗渗临界比降就会产生渗透破坏。渗透破坏首先在堤基的薄弱环节出现,如坑塘或表土层较薄的位置。对近似均质的透水堤基,渗透破坏首先发生的堤脚处。堤基管涌,尤其是近堤脚的管涌,发展速度快,容易形成管涌洞,一旦抢险不及时或措施不得当,就有溃堤灾难发生的危险。因此,对管涌堤段必须进行除险加固。
??? 另外,如果堤身直接座落在砂砾石强透水层上,或座落在强风化的岩基上 ,则在堤身与堤基的结合面也可能发生接触冲刷或接触流土破坏。
第二节 渗透破坏除险方案的选择
??? 堤防除险加固的实践表明,渗透破坏是堤防工程中最普遍且难以治愈的心腹之患,选择有效、合理、经济的除险加固方案是一项技术性很强的工作,是堤防渗透破坏除险加固工作的关键环节。
??? 渗透破坏的除险加固应从两方面入手:一方面是提高堤身和堤基本身抵抗渗透破坏的能力,如采取提高堤身密实度、消除堤身堤基隐患、放缓边坡、贴坡排水、透水后戗或盖重等措施;另一方面是降低渗流的破坏能力,即降低渗流出口比降和堤身的浸润线,这方面应遵循“前堵后排、反滤料保护渗流出口”的渗流控制原则,并根据工程地质条件、出险情况和堤防的重要程度选择合理的渗流控制措施。“前堵”就是在临水侧采取防(截)渗措施,如防渗铺盖、防渗斜墙和垂直防渗幕(墙)等,“后排”即在背水侧采取导渗和排水减压措施,如导渗沟、排水褥垫、排水减压沟、减压井等。
??? 一、堤身渗透破坏除险方案的选择
??? 堤身渗透破坏包括渗水(散浸)、漏洞和集中渗流三种类型。根据其不同特点,应选择各自适宜的除险加固措施。
??? (一)渗水除险方案的选择
??? 渗水往往会导致背水坡的脱坡、冲刷、流土甚至形成漏洞和陷坑,应根据其产生的原因和危害程度,采取相应的工程措施进行除险加固。
??? 1.对威胁背水坡抗滑稳定的严重有害渗水,可采用填筑压实法、机械吹填法或放淤固堤法加宽培厚堤身或做透水后戗,也可以在临水坡外邦或增建防渗斜墙,或采用劈裂灌浆、锥探灌浆、垂直铺塑等做垂直防渗。
??? 2.对不至于威胁堤坡抗滑稳定,但可能产生堤坡冲刷、流土破坏的渗水,可采用贴坡反滤、透水后戗的方法进行除险。
??? (二)漏洞和跌窝除险方案的选择
??? 堤身漏洞和跌窝往往由生物洞穴产生,汛前较难发现,但这种险情在汛期往往发展很快,加之堤身断面有限,对堤身的危害很大,汛期抢险困难,酿成溃口者有之。为防患于未然,汛前应首先对漏洞和跌窝隐患进行巡视、探查。对洞穴应采取开挖回填的方法进行除险,如果开挖回填困难可以采取充填灌浆的办法进行处理。
??? (三)集中渗流除险方案的选择
??? 1.对堤身与穿堤建筑物基础接触面的集中渗流,可采用高喷或静压注浆在临水侧做垂直防渗,也可以在接触面采用静压注浆的办法进行处理,必要时在背水侧做反滤保护。对堤身与穿堤建筑物侧墙间的集中渗流,可以采用接触面静压注浆的方法进行处理。
??? 2.对新老堤身结合的水平层面产生的集中渗流,可采用临水侧开挖回填封堵或接触面充填灌浆的方法进行处理。
??? 3.对堤防分段建设的结合部产生的集中渗流,可采用临水坡截渗或结合部挤密灌浆的方法进行处理,必要时在背水坡采取反滤保护措施。
??? 二、堤基渗透破坏除险方案的选择
??? 修建于双层和多层地基、透水地基、岩石地基上的堤防,经渗流计算,堤基、背水坡或堤后地面渗流出逸比降不能满足规范要求,或者汛期曾经出现过严重渗漏、管涌或流土破坏险情时,应采取除险加固措施。所用措施包括:填塘固堤、临水侧防渗铺盖、地基垂直防渗、背水侧压渗盖重、排水减压沟井、水平排水褥垫等。应根据具体情况选择一种或多种措施来达到除险加固的目的。应该指出的是,防汛抢险的实践表明,堤基管涌大部分发生在坑塘等薄弱环节,因此,应首先考虑填塘措施进行除险。堤基渗透破坏除险方案的选择主要根据地基的工程地质情况确定:
??? (一)双层或多层地基
??? 这种地基在堤防工程中非常普遍,渗透破坏险情多且治愈困难。
??? 1.对由于临水侧铺盖、背水侧表土层或压渗盖重缺陷(池塘、人为挖坑、天然缺失等)造成的险情,应首先采取回填的方法恢复铺盖和表土层的完整性。临水侧铺盖回填的范围为铺盖的有效长度范围以内,背水侧表土层或盖重的回填范围应根据险情和地形地质条件、渗流计算以及堤防的重要程度等确定,可在距堤脚50~200m之间选择。临水侧用粘性土材料,背水侧用渗透系数比原土层大的材料进行回填,但应满足反滤要求。
??? 2.对背水侧地基覆盖层较薄且透水层较深的情况,可以采用压实填筑法或吹填法增加盖重,也可以采用在背水堤脚外适当位置设置减压沟或减压井的方法。同时也可以考虑盖重和排水减压沟井联合使用的形式,以达到根治地基渗透破坏的目的。
??? 3.对覆盖层较厚且下卧强透水层较深的地基,宜采用盖重措施进行处理,盖重宜采用比覆盖层渗透系数大的透水材料。也可以在背水堤脚外适当位置设置减压井,达到减小扬压力和除险的目的,参见图3-17。
??? 4.对地基下卧透水层不深、隔水层较浅的情况,应首先考虑采用垂直封闭式防渗措施(参见图3-16)。也可以采用盖重或盖重结合减压沟井的方法。
??? 5.对多层地基且存在浅层弱透水层的情况,宜采用压渗盖重或结合减压措施进行除险参见图3-22。也可以考虑采用半封闭式垂直防渗措施(参见图3-18),但必须在勘察资料充分并经渗流计算充分论证后方可采用。
??? (二)透水地基
??? 1. 浅层透水地基宜采用封闭式垂直防渗措施进行处理,并与堤身防渗体连成统一的防渗体系。
??? 2. 相对不透水层埋藏较深、透水层较厚时,可以采用背水侧压渗盖重进行处理。当临水侧有稳定滩地时,也可以采用临水侧铺盖进行防渗处理。
??? (三)岩石地基
??? 1.对强风化造成岩基或堤身渗透破坏的情况,可以采用地基帷幕灌浆的方法进行处理,对临水侧有外滩的情况也可以使用铺盖防渗,必要时可在背水堤脚附近采取反滤保护措施。
??? 2.当岩溶或其它原因使岩基渗水量过大,以致危机堤防安全时,可采用模袋灌浆或充填灌浆堵塞漏水通道,必要且有条件时可加设防渗铺盖。
第三节 渗透破坏除险方案的复核
??? 为了达到技术上可靠、经济上合理的目的,需要对除险方案进行复核。
??? 一 、除险方案复核的任务
??? 对初步选定的除险方案必须进行复核。复核的主要任务是:论证除险方案的效果;通过比较,选择经济合理的除险方案。
??? (一)除险效果的复核
??? 对初步选定的除险方案,通过渗流计算分析,了解堤身和堤基的水头(水压力)、渗透比降、渗流量等水力要素,据此进行渗透稳定和抗滑稳定复核,论证是否能够达到除险加固的要求。
??? (二)除险方案优化
??? 对初步拟定的几种除险方案进行渗流及渗透稳定计算,在保证除险效果的前提下,从工程管理、环境影响、经济指标等几个方面进行综合评价,选定最为经济合理的除险方案。
??? 二、除险方案的渗流计算要求
??? 除险方案的效果应通过渗流计算确定。渗流计算应满足以下要求:
??? (一)渗流计算的内容要求
??? 通过渗流计算应得到堤身渗流场的水头(浸润线、出逸点、水压力等)、渗透比降和渗流量等水力要素。对河、湖堤防,计算方案包括:
??? 1.临水侧为设计洪水位,背水侧为相应水位情况的稳定渗流计算;
??? 2.临水侧为设计洪水位,背水侧为最低水位或无水情况的稳定渗流计算;
??? 3.洪水降落时的非稳定渗流计算。
??? (二)计算剖面选择和地层概化的要求
??? 选择计算剖面时应综合考虑堤身、堤基的工程地质和水文地质条件,取有代表性的、结果偏于安全的剖面进行渗流计算。对在洪水期发生过较大险情的地段应重点考虑。
??? 由于工程水文地质条件的复杂性,在进行渗流计算时往往需要对地质剖面进行概化。概化的原则是,在满足计算精度的前提下尽量使地层简单化,以方便计算。根据我国河、湖堤防堤基的实际情况,可以将堤防地基概化为三种类型:单层透水堤基、双层堤基和多层堤基。具体简化原则有:①渗透系数相差5倍以内的相邻土层可视为一层土,并采用加权平均的渗透系数作为计算依据;②对双层结构堤基,当下卧土层的渗透系数比上层土层的渗透系数小100倍及以上时,可以将下卧土层视为不透水层;③当堤基表土层比堤身的渗透系数大100倍及以上时,可以认为堤身不透水,仅对堤基按有压流进行渗流计算,堤身浸润线的位置可以根据堤基中的压力水头确定。
??? 三、除险方案的渗流计算方法
??? 根据堤防除险方案的渗流计算要求,必须对堤防除险方案进行稳定和非稳定渗流计算,以获得除险方案复核所必须的资料,达到复核的目的。
???? (一)渗流场求解方法简介
??? 求解渗流场的方法有:数值计算方法、模型试验方法和水力学方法。
??? 1.数值计算方法
??? 常用的渗流场数值计算方法有两种,即有限单元法和有限差分法,以有限单元法最为常用。随着计算机和计算技术的飞速发展,渗流场的数值计算方法和程序日益完善,功能强大,尤其是有限单元方法,基本上可以满足所有的工程计算要求,并得到了一定的普及。这种方法的优点是:能够适应各种复杂的工程地质条件,不需对地层进行太多的简化,计算精度高,速度快,比模型试验省时省力。本章中的图3—16~3—18、3—21~3—23就是作者采用有限单元法得到的结果,有关数值计算的详细内容请参考有关资料,此不详述。
??? 2.模型试验方法
渗流场的模型试验方法主要有砂槽模型方法和电模拟方法两种类型。电模拟方法又分导电介质方法(导电液或导电纸等)和电阻网络方法。根据目前的发展情况,以电阻网模型较为常用,但与数值计算方法相比,相对费时费力。有关模型试验的详细内容请参考有关资料。
??? 3.水力学计算方法
??? 根据水力学和渗流力学理论,通过对工程水文地质剖面的概化,在一些特定条件下可以采用水力学方法对渗流场进行理论求解。但由于这种方法对地层情况的适应性差,过多的地层概化又往往影响精度,因此其应用受到许多限制。限於篇幅,下面只介绍双层堤基和盖重的计算方法,其它情况的渗流计算请参见《堤防工程设计规范》中的附录E和其它有关资料。
??? (二)双层堤基渗流的水力学计算方法
??? 1.无限长等厚双层堤基的渗流计算
??? 当堤基表土层的渗透系数比下卧强透水层的渗透系数小100倍及以上时即为双层堤基,这种堤基在我国的堤防工程中广泛存在。如图3-3所示,堤基表层弱透水层底板下的承压水头可用下式进行计算:
CD段:
h=He-Ax(1+Ab+thAL)??
(3-4)
BC段:
h=H(1+Ax')/(1+Ab+thAL)??
(3-5)
??? 式中:h为弱透水层底板下的承压水头(m);A为越流系数。th为双曲正切函数;k0 、T0分别为强透水层的渗透系数和厚度;k1、T1分别为表层弱透水层的渗透系数和厚度。
图3-3 无限长等厚双层地基计算图
??? 2.有限长等厚双层堤基的渗流计算
??? 如图3-4所示的有限长等厚双层堤基,堤基水头可以根据下式计算:
用式3-4试算ξ,以确定出逸段与非出逸段的分解点B:
式中:
??? 出逸段AB对应的透水层内的水头为:
??? 非出逸段BC对应的透水层内的水头为:
式中的△x'由表3-4求得。
表3-4 △x'计算表
x'/T0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
△x'/△0
1.00
0.76
0.56
0.39
0.26
0.19
0.14
0.10
0.07
0.05
0.03
0.02
0.01
0
表中:。式中:To(m)、ko(m/s)分别为强透水层的厚度和渗透系数;T1(m)、k1(m/s)分别为弱透水层的厚度和渗透系数;x为AB段的横坐标;x¢ 为BC段的横坐标;ξ 为BC段的长度(m)。th、ch、sh为双曲线函数,arth为反双曲线函数。
图3-4 有限长等厚双层堤基计算图
??? 3.不等厚或不均质双层堤基的渗流计算
??? 当弱透水层为不等厚或不均质(各段渗透系数不同)时,可用递推公式先求得临水侧和背水侧的不透水等效长度S上和S下,再按不透水底板求出弱透水层底面各点的承压水头。
(注::用递推法计算背水侧S下时,应满足地表水淹没弱透水层的条件,如图3-5所示。)
式中 :Ai为第i段的双层地基越流系数;ko为强透水层的渗透系数(m/s);To为强透水层的厚度(m);ki为第i段弱透水层的渗透系数(m/s);ti为第i段弱透水层的厚度(m)。
图3-5 递推计算图
递推公式:
? 式中:βi=2AiLi
??? 采用Di-1和Si两公式,递推临水侧等效长度时,从临水侧向背水侧递推,一直 推到堤脚,所得S值即为临水侧的等效长度S上;背水侧从背水侧向临水侧递推,如图3-5所示,方法同前,算出背水侧的等效长度S下,递推过程如图3-6所示。
图3-6 递推过程图
??? 关于So的值的计算:①若弱透水层为无限长,So=0;②若弱透水层为有限长,在弱透水层端部So=0.441To。
??? 若弱透水层的渗透系数没有变化且为等厚的,只要递推一次就可以推到堤前。如渗透系数或厚度有变化,则按不同渗透系数或不同厚度分段递推。
??? 求得S上、S下以后,即可用3-12式求出背水侧弱透水层下各点的承压水头(见图3—7):
??? 式中:S上为临水侧弱透水层等效长度;S下为背水侧弱透水层等效长度;b堤底宽度;x为背水侧计算点到背水堤脚的距离。
??? 4.盖重的计算
??? 加盖重以后,如果盖重材料的渗透系数很大,通过弱透水层的渗透水能畅通排出,则可以不再核算。如果盖重材料的渗透系数不是很大,则加盖重后等效长度加长,应重新计算,把盖重段当做一段来递推。
??? 盖重所用材料的渗透系数,一般情况下与其下的弱透水层不同。若第n段弱透水层的渗透系数和厚度为kn、tn,首先把盖重材料的k? 、t? 换算成与其下的弱透水层相同渗透系数的厚度t'1,,使t'=t'n+t'1。再以kn、t'n和前一段Sn-1为参数代入递推公式计算,即:
式中 βn=2AnLn
??? 盖重如做成梯形,可划分成若干个阶梯形等厚的段落,逐段递推,分段越多越精确。
??? 求得加盖重的等效长度以后,采用3-12式求得各点承压水头,核算盖重段及盖重后各段的渗透稳定。
图3-7 承压水头计算图
图3-8 盖重计算图
四、除险方案的渗透稳定计算
??? 渗透比降为沿渗流途径的水头变化率,当渗透途径为L,渗透水头差为h2-h1时,其渗透坡降J为:
J=(h2-h1)/L ?????????????????????????????? (3-13)
??? 通过渗流计算可以获得堤身和堤基的渗透比降J,若J小于土体的抗渗允许坡降JB,则土体是渗透稳定的,否则,表明土体不能满足抗渗稳定要求,需要进行加固处理。
第四节 除险加固工程的设计和施工
??? 在第二节中,根据堤基工程地质和地形的特点,对除险加固措施的选择进行了介绍。本节对设计与施工的有关问题进行阐述。
??? 一、反滤层的设计与施工
??? 在导渗沟、贴坡反滤、减压沟、减压井等的设计中均有反滤层的设计问题,为此专门进行阐述。
??? (一)反滤层的用途
??? 反滤层是排水设备的主要组成部分,其作用是滤土排水,防止渗流逸出处遭受渗透破坏以及渗流造成的表面水流冲刷。对有承压水的地层还起压重作用。
??? (二)对反滤层的要求
??? (1)透水性应大于被保护土,并能将渗透水流通畅排出;
??? (2)使被保护的土层不发生渗透变形;
??? (3)不致被细颗粒淤塞失效;
??? (三)反滤层的类型
??? 划分反滤层类型的目的主要是为了合理地确定反滤层数,因此只分两种类型。
??? (1)Ⅰ型反滤:包括Ⅰa和Ⅰb型。其特点是反滤层位于被保护土层的下部,渗流方向主要由上向下(图3-9)。如褥垫排水。
??? (2)Ⅱ型反滤:包括Ⅱa和Ⅱb型。其特点是反滤层位于被保护土层的上部,渗流方向主要由下向上(图3-10)。如减压沟的反滤层。
??? 渗流方向近乎水平或倾斜向,反滤层近乎垂直或倾斜向的情况,属于过渡型,如减压井、贴坡反滤等,可归为Ⅰ型。
图3-9 Ⅰ型反滤
图3-9 Ⅱ型反滤
??? (四)反滤层的设计内容
??? 反滤层的设计可分为保护无粘性土和保护粘性土两大类,设计内容有:
???? (1)确定反滤层的类型;
??? (2)根据滤土准则,确定反滤层的级配或选择土工织物产品。并据以选择宜于作反滤层的天然料场或确定人工筛选的任务。
??? (3)对砂砾反滤料确定反滤层的厚度和层数;
??? (4)鉴定反滤料的透水性,对土工织物反滤层还应鉴定淤堵性;
??? (5)有纵向渗流时,鉴定沿反滤层和被保护土层接触面的冲刷稳定性。
??? (五)砂砾料反滤层的设计与施工
??? 1.反滤料的选择
??? 对于被保护土的第一层反滤料,建议用下列方法确定:
D15/d85≤4~5
D15/d15≥5
式中:D15为过筛重量占15%时的反滤料粒径,d85为过筛重量占85%时的被保护土的颗粒直径;d15为过筛重量占15%时的被保护土的颗粒粒径。
??? 当选择第二、三层反滤料时,可同样按以上方法确定。但选择第二层反滤时第一层反滤为被保护土,选择第三层反滤时第二层反滤为被保护土。
??? 对以下情况,建议作某些简化后仍可以用上述方法初步选择反滤料,然后再通过试验确定。
??? (1)对不均匀系数η较大的被保护土,可取η≤5~8的细粒部分的d85为计算粒径。对不连续级配土,应取级配曲线平段以下(一般是1~5毫米以下)的粒组的d85。
? (2)对不均匀系数η>5~8的砂砾石作为第一层反滤时:①选用小于5毫米以下的细粒部分的D15作为计算粒径;②要求大于5毫米的砾石含量应≤60%。
(3)不能用上述方法确定的反滤料应通过反滤试验确定。
??? 2.反滤层厚度的确定
??? 反滤层的厚度应根据反滤料的级配、料源、用途、施工方法等情况综合考虑确定。水平反滤层的最小厚度可采用30cm,垂直或倾斜反滤层的最小厚度可采用50cm。采用推土机平料时,最小水平宽度宜不小于3.0m。
??? 3.施工要求
??? 反滤料应具有要求的级配,且小于0.1毫米的颗粒含量不大于5%,并有要求的透水性。质地应致密坚硬,具有高度的抗水性和抗风化能力,风化料一般不能用作反滤料,如必须应用时应进行充分论证。反滤料宜尽量利用天然砂砾料筛选,在缺乏天然砂砾料时,也可以采用人工砂石料,但应选用抗水性和抗风化能力强的母岩轧制。
??? 铺反滤层前应采用挖除法将基面整平,对个别低洼处采用与基面相同的土料或第一层反滤料进行填平。铺筑时应由底部向上逐层铺设,并保证层次清楚,互不混杂,不得从高出顺坡倾倒,以免发生填筑分离。对反滤层必须进行压实,在施工中应防止雨水冲泥等污染反滤料。
??? (六)土工织物反滤层的设计
??? 由于土工织物具有良好的过滤性和透水性,比传统的砂砾反滤料有很多优点,因此在反滤排水工程中得到广泛应用。
??? 1.设计考虑
??? (1)滤土准则
??? 为保证被保护土的颗粒不被渗流带出土工织物,应满足:
??? 粗粒土: O95≤d85
??? 粘粒土: O95≤210μm
??? 式中:O95为筛余率95%时的土工织物孔径;d85为过筛重量占85%时的被保护土的颗粒直径。
??? (2)渗透准则
??? 为保证渗流能够畅通地通过土工织物,应满足:O90>d15 、kg>10ks
式中:O90为筛余率90%时的土工织物孔径;d15为过筛重量占15%时的被保护土的颗粒直径;kg为土工织物的渗透系数;ks为被保护土的渗透系数。
? (3)防淤堵准则(梯度比准则)
??? 为防止土工织物被淤堵,应满足:GR〈3
式中:GR为梯度比,应通过梯度比试验确定。
? (4)、透水料的粒径、尺寸应满足畅通排水的条件。
??? 2.料和施工要点
??? (1)土工织物滤层必须和透水料一起使用才能形成反滤排水体。透水料应不带尖角,以免顶破土工织物,透水料的粒径和厚度应满足设计要求。
??? (2)铺设前应对土工织物进行质量复检,如材质是否均匀,强度、渗透和抗淤堵性能等是否满足设计要求。
??? (3)铺设时应避免土工织物折叠、打皱等。幅间搭接宜采用专用设备缝合,搭接宽度不小于5cm。
??? (4)铺设时应避免土工织物破损,一旦发现,应予剔除废弃,不得使用。同时还应避免泥土或杂物弄赃土工织物,以免影响渗透效果。
??? (5)土工织物应得到有效保护,施工时防止被阳光长时间照射,以防老化。
??? 二、堤身除险加固工程的设计与施工
?? 堤身渗透破坏的除险加固措施主要有:临水坡斜墙防渗、堤身垂直防渗、贴坡排水、透水后戗(压浸台)、水平排水等,对堤身缺陷可以采用回填或灌浆的办法进行处理。
??? (一)防渗斜墙
??? 1.设计考虑
??? 对临水侧有铺盖或地基有垂直防渗的情况,斜墙应与其连成一体,构成完整的防渗体系,以提高防渗效果。
??? 斜墙的尺寸应根据散浸的范围、出渗点的高度和渗水的严重程度经计算确定,长度至少超过渗水段两端各5m,高度应超过设防水位0.5~1.0m。
??? 对粘土斜墙,垂直于堤坡方向的厚度为1~2m,坡度与原堤身相当或稍缓。为防止粘土斜墙干裂、冻裂和其它侵害的影响,应设壤土保护层,一般情况,保护层高于墙顶1.0~1.5m,垂直堤坡方向的厚度为0.8m。粘土斜墙断面示意图参见第二章。
??? 如果缺乏粘土材料,可以用土工膜作隔渗层建造斜墙。土工膜应满足强度、抗腐蚀和抗老化等要求。土工膜应设置保护层。断面示意图参见第二章。
??? 2.从施工考虑
??? 施工时应首先清除边坡和坡脚附近的杂草、树木等杂物,清除厚度10~20cm,并适当整平。
??? 斜墙应选用粘性较大的土料且不得含植物根茎等杂质,填筑压实度应不小于0.94,含水率与最优含水率的允许偏差为±3%。
??? 当用土工膜作隔渗层建造斜墙时,土工膜幅间的拼接应采取焊接或粘接方式,确保施工质量,并注意施工中不要损坏土工膜。另外还需保证土工膜与堤身牢固接合,并采取防止生物破坏的措施。详细内容参见第二章。
??? (二)堤身垂直防渗
??? 垂直防渗的位置宜布置在临水堤脚或堤顶尽量靠近临水侧,并与堤身防渗体连成一体。根据近几年的实践,比较经济合理有效的堤身垂直防渗技术有:锥探灌浆、劈裂灌浆、和垂直铺塑等。设计和施工的有关细节参见第五章。
??? 1.锥探灌浆
??? 在堤顶采用梅花形方式布孔并进行充填灌浆。实践证明,锥探灌浆是处理堤身隐患的一个比较有效的方法,但由于钻孔数量多往往造价较高。
??? 2.劈裂灌浆
??? 沿堤顶轴线单排布孔,利用灌浆压力将堤身沿其走向劈开并灌浆,从而在堤身内沿其走向形成一厚度10cm左右的防渗幕。同时还具有压密堤身和充填洞穴的作用,可获得事半功倍的效果。该方法已经在许多堤防和土坝中得到应用,效果明显。
??? 3.垂直铺塑
??? 在堤顶沿大堤走向用开槽机在堤身内垂直成槽,然后铺设土工膜并用粘土浆回填,从而达到降低堤身渗流量和浸润线的目的。该方法已经在黄河大堤上采用并取得较好的效果。
?? (三)贴坡排水
??? 为避免渗水对堤坡的冲刷和渗流出口发生流土破坏,可以采用贴坡反滤进行处理。施工时应清除堤坡表面的草皮、杂物,清除深度10~20cm,贴坡反滤的高度应高出最高的渗流出逸点0.5~1.0m,长度应超出散浸堤段两端至少3m。根据反滤材料不同,有以下两种方法可供选用:
??? 1.砂砾料贴坡排水
??? 砂砾料贴坡排水的各层厚度如图3-11所示。褥垫排水的设计、材料的选用、反滤层铺设施工等的有关细节,请参见反滤层的设计与施工。
??? 2.土工织物贴坡排水(图3-12)
??? 在清理好的堤坡上先铺满足反滤要求的土工织物,机械缝合的搭接宽度不小于5cm,然后再铺一般的透水料,厚度大于40~50cm,最后用上压石块保护。
图3-11 砂砾料贴坡排水示意图
图3-12 土工织物反滤层贴坡排水示意图
??? (四)透水后戗(图3-13)
??? 亦称透水压浸平台。它既能防止散浸造成的渗透破坏,又能加大堤身断面从而达到稳定堤坡的目的。一般适用于散浸严重、堤身断面单薄、背水坡较陡、外滩狭窄的情况。
??? 透水后戗应采用比堤身透水性大的材料填筑,高度应高出渗水的最高出逸点0.5~1.0m,顶宽2~4m,坡度1:3~1:5,长度应超出散浸堤段两端各5m。戗体材料渗透性大断面可小一些,相反则应大一些。当堤身较高时可采用两级或多级戗台。
??? 施工时应清除堤坡上的草皮和杂物,清除深度10~20cm。填筑戗体时应进行压实,相对密度不小于0.65。
图3-13 透水后戗示意图
? (五)水平排水
??? 这种方法只有在堤坝加高培厚和增设压渗台时才可能应用。水平排水不但可以降低堤身的浸润线,对透水堤基还可以有效降低堤基的出逸比降,但会使堤基的渗流量有所增加。采用水平排水可以减小压渗戗台的工程量,如图14所示。
图3-14 水平排水的效果示意图
?? 水平排水的长度、厚度应根据渗流计算来确定。
??? 当采用砂砾料做水平排水体的材料时,材料的选择和施工要求应按照反滤层的设计和施工要求严格执行。
?? 当采用土工织物做反滤层时,采用一般的透水材料即可。但土工织物的选择与施工必须按照反滤层的设计与施工要求严格执行。
?? (六)堤身洞穴的开挖回填(图3-15)
??? 对埋藏较浅的洞穴可以用开挖回填的办法进行处理。施工时先将洞穴内的松土挖出,然后分层填土夯实,直到填满洞穴、恢复堤身原状为止。如洞穴位于临水侧,须采用透水性小于原堤的土料进行回填,如位于背水坡,宜采用透水性能不小于原堤身的土料进行回填。
图3-15 陷坑与洞穴的除险加固示意图
?? (七)堤身除险加固的其它方法
??? 对埋藏较深的洞穴和其它隐患(接触界面、堤身疏松等)可以采用充填和劈裂等灌浆方法进行除险加固。有关内容参见第五章。
??? 三、堤基除险加固工程的设计与施工
??? 堤基除险加固的措施有:临水侧防渗铺盖、垂直防渗、背水侧压渗盖重、排水减压沟和减压井等。
??? (一)临水侧防渗铺盖
??? 如果封闭式垂直防渗幕墙不尽合理,背水侧又无条件做压渗盖重,而临水侧有稳定的外滩时,可以采用临水侧防渗铺盖来减小背水侧堤基的出逸比降和地基渗流量,但其效果有一定限度。对近似均质透水堤基,临水侧铺盖的效果比较明显,当表层地层的渗透系数小于深部地层较多时,临水侧铺盖的效果将降低。
??? 1.设计考虑
??? 采用临水侧防渗铺盖时,一般应结合背水侧的渗流控制措施,如压渗盖重和减压沟或减压井,以达到有效控制堤基渗流、防止管涌破坏和经济合理的目的。临水侧防渗铺盖的效果取决于其长度、厚度和垂直向的渗透系数,并与堤基土体的分层性及渗透性有关,设计时应通过计算确定,并应满足地基、铺盖以及铺盖与地基之间的渗透稳定要求。当利用天然弱透水层作为防渗铺盖时,应查明天然弱透水层及下卧透水层的分布、厚度、级配、渗透系数和允许渗透比降等情况,在天然铺盖不足的部位应采用人工铺盖进行补强。在缺乏防渗土料的地区可以用土工膜做防渗材料,但土工膜的上部必须设置保护层。
??? 铺盖土料应具有一定的防渗性能,通常其渗透系数最好不大于1×10-5cm/s,如果渗透系数过大,即使加长铺盖其防渗效果也不会有大的增加。铺盖应采用不等厚形式,远离堤脚处应薄一些,但不应小于0.5~1.0m,近堤脚处应厚一些,并应考虑与堤身防渗连成一体。
??? 铺盖设计时,一般先根据净水头和堤基的允许水力比降初步确定所需的等效长度,然后通过经济比较选择铺盖的长度、厚度和铺盖的渗透系数,最后对铺盖本身的渗透稳定性进行校核。对粉质壤土修筑的铺盖,其允许水力比降为4~6。有关铺盖渗流计算的详细内容请参考有关资料。
??? 2.施工考虑
??? 当已经存在不透水的天然铺盖时,应对其进行仔细检查,看是否存在缺失区、树根孔洞、塌坑等通向透水地基的渗流通道,如果有,应采用不透水材料进行充填或覆盖。外滩取土必须在铺盖长度范围以外,以保证铺盖的整体防渗功能。铺盖施工应采用分层铺筑的方法,依靠运输与摊铺机械的行使压实。铺盖与堤身防渗斜墙连接处宜选用相同的材料。
??? (二)垂直防渗
??? 垂直防渗特别适用于地基透水层较薄、隔水层较浅的情况,此时可以做成封闭式防渗幕墙,堤基的渗流量和扬压力可以得到有效控制,从而可以达到根治堤基渗透破坏的目的(图3-16)。对双层或多层透水地基且透水层较深的情况,悬挂式垂直防渗幕墙的效果很差(图3-17),封闭式垂直防渗难度大且造价太高,不宜采用。对多层地基且存在浅层弱透水层的情况(图3-18),可以考虑半封闭式垂直防渗,但必须在勘察资料充分并经渗流计算充分论证后方可采用。垂直防渗应布置在临水堤脚或堤顶靠临水侧。
图3-16 封闭式垂直防渗墙的渗流控制效果 单位:m
图3-17 悬挂式垂直防渗墙的渗流控制效果 单位:m
图3-18 半封闭式垂直防渗墙的渗流控制效果 单位:m
实线:有防渗墙时的浸润线和10%水头间隔的等势线
虚线:无防渗墙时的浸润线和10%水头间隔的等势线
??? 江西宜春地区赣东大堤鸡婆畲险段,堤基表层为厚2m左右的土层,其下为透水砂层和砂卵石层,厚约12m,其下为基岩,98年汛前经用射水法做混凝土防渗墙后,解决了久治不愈的堤基管涌问题。另外哈尔滨大堤采用高喷灌浆方法做垂直防渗,效果也很好。
??? 垂直防渗幕墙可以采用射水法、锯槽法、轮铣法、高喷灌浆等成墙技术进行施工。详细内容请参见第五章。
??? (三)背水侧压渗盖重
??? 当没有必要采用封闭式垂直防渗幕墙或其造价太高时,可以采用背水侧压渗盖重的方法,来防止堤基渗流对表土层的渗透破坏。如果所需盖竽太长,应考虑与减压沟井联合使用的方法。其他的背水侧渗流控制措施,对堤身高度较大的情况,可以设置两层压渗盖重平台。这种方法在堤防工程中广为应用,效果明显。
??? 压渗盖重的形式很多,可以由不透水的变换到完全自由排水的。其形式的选择,取决于材料的料源及每种形式的费用大小。
1.设计考虑
??? (1)对均质透水堤基且背水侧没有天然铺盖的情况(图3-19),是否需要设置背水侧压渗盖重,可以根据布莱蠕变比进行近似判断。
图3-19 布莱蠕变比计算示意图
???CB=(X1+L+X)/h
式中:CB 为布莱蠕变比;X1为铺盖的有效长度(m);L 为大堤底宽(m);X 为背水压渗盖重戗体的宽度(m);h 为大堤的净水头(m)。
??? 布莱蠕变比的允许最小值列于表3-5。如果蠕变比大于该最小值就不需要设置背水压渗盖重。如果蠕变比低于最小值,则需要背水压渗盖重,其宽度应使蠕变比高于所允许的最小值。但应注意,压渗盖重宜采用比地基透水性大的材料修建,其厚度应满足不发生渗透破坏的要求。
表 3-5 建于透水地基上的堤防的最小布莱蠕变比
堤基材料
布莱蠕变比最小值
极细砂或粉土
细到中砂
粗 砂
小砾石或砂与砾石
18
15
12
9
??? 当堤基由几种不同地层组成时,需转化为具有某一有效厚度与渗透系数的单一土层,然后应用上述公式进行计算。
??? (2)对背水侧有天然铺盖的情况,背水侧压渗盖重的厚度应能够使盖重末端的剩余水头小于容许值,并使各处的渗透比降不至引起渗透变形,且隆起的安全系数K至少为2.0,其厚度计算如图3—20所示,计算公式为:
Ti=[Khiρi-(Gs-1)(1-n)T1ρw]/ρ
图3-20 盖重计算示意图
式中:Ti 为i处的盖重厚度(m);hi 为根据渗流计算求得的i处的表土层的承压水头(m);Gs 为表土层的比重;n 为表土层的孔隙率; T1 为表层土的厚度(m);ρ为盖重土的密度(kN / m3);ρW为水的密度(kN / m3);K 为安全系数,流土的安全系数为2.0。
??? 必须指出,盖重的宽度除进行必要的计算外,应重视对历史险情的实地调查,盖重通常应不小于历史险情出现的范围,并应根据具体地形地质条件和堤防的重要程度选用。一般至少为50m,但也不应超过200m。根据长江荆江大堤的经验,控制宽度为200m,此宽度可控制历史管涌险情的90%以上,对堤外有民垸的宽滩堤段,控制宽度为100m。长江安徽同马大堤、江西赣江赣东大堤的盖重宽度为100m。黄河堤防背水侧放淤固堤宽度,险工段为100m,平工段为50m。
??? 2.施工考虑
??? 堤防背水侧压渗盖重的施工可因地制宜,可以采用不透水直到透水的材料。用弱透水材料修建盖重时应分层铺填,并依靠运输或摊铺机械的行驶压实。用砂筑成的盖重,现场压实相对密度应不小于65%,在堤坡与盖重的交界附近,应采取适当措施避免堤坡上的冲刷物淤塞戗体。
??? 在近几年的堤防工程实践中,采用吹填(长江)和放淤固堤(黄河)的方法取得了成功,既加固了大堤,又对河道起到了一定的清淤作用,造价也相对较低,具有推广应用价值。
??? (四)排水沟
??? 排水沟比较适用于:双层结构、表土层较薄、下卧透水层较均匀的地基,透水性均匀的单层结构地基以及上层透水性大于下层的双层结构地基。参见附录中的实例7。
??? 1.设计考虑
??? 在理论上,排水沟的位置应尽量靠近堤脚,这样其排水效果最好。但出于堤防抢险的安全性考虑,排水沟一般要与背水侧压渗盖重联合使用,此时排水沟应布置在盖重的端部。排水沟的几何尺寸取决于预计的渗流量、期望的渗流控制效果、施工的实际情况以及排水沟开挖地点的材料稳定性,并且要挖穿表层弱透水层。同时排水沟的周边应设置反滤排水层,以防排水沟发生渗透破坏。排水沟的渗流控制效果应通过理论或数值计算确定,请参考有关资料。
??? 2.施工考虑
??? 在排水沟的施工中,应对反滤料及反滤层的施工提出严格要求,严格按反滤料的级配标准选择反滤料,并按反滤料的施工要求进行施工。在铺填反滤料时,必须防止由降雨冲刷引起的淤塞。
??? (五)排水减压井
??? 减压井比较适用于表土层和透水层均较厚的双层堤基、多层堤基以及含水层成层性显著或透镜体较多的地基。此时采用封闭式垂直防渗幕墙成本太高或不可能,悬挂式垂直防渗效果很差,减压沟由于开挖较深也不宜采用。当然,对表土层较薄的双层或多层地基也可以使用排水减压井。实践表明,如果减压井不被淤堵,其渗流控制效果非常显著。逐渐适用于所有地基情况。图21~23给出了三种堤基情况下减压井的减压效果示意图,同是还可以参考附录中的实例7和实例8。
??? 减压井一般和其它渗流控制措施如防渗铺盖、压渗盖重、排水明沟等结合使用。
图3-21 减压井的减压效果示意图(一) 单位:m
(双层堤基,透水层较厚)
图3-22 减压井的减压效果示意图(二) 单位:m
(多层堤基,有较浅的相对不透水层)
图3-23 减压井的减压效果示意图(三) 单位:m
(双层堤基,透水层较浅)
图3-21、3-22、3-23中:
实线:有减压井时的浸润线和10%水头间隔的等势线
虚线:无减压井时的浸润线和10%水头间隔的等势线
??? 1.设计考虑
??? (1)井系设计
??? 井系设计的任务是:确定井径、井距、井深、井口高程,计算渗流量及井间渗透压力,使其小于允许值。
??? ①考虑的因素
??? 在确定是否需要减压井以及排水井的设计中,需要考虑的因素有:背水侧表土层的特征;需要进行渗流控制的透水堤基的渗透性、分层性及深度;作用于大堤的净水头;所考虑的减压井系统的尺寸;背水侧堤脚处允许的扬压力安全系数;透水堤基的允许渗流量等。某些因素,如净水头,可以比较精确地确定,而另外一些因素,如渗透性与成层性则很难估计。减压井的设计应以对渗透系数的最佳估计为基础,然后考虑到设计中所用的渗透系数值有可能不准确,而采用若干个渗透系数值进行敏感性分析,以确保所采用的设计足以截住渗流与降低扬压力至要求的程度。
??? ②设计步骤
??? 一般而言,减压井的设计程序包括:确定没有减压井时背水堤基的水头值;将此水头值与所期望的相应于给定安全系数的水头值进行比较;设计一减压井系统,将水头减小至期望值。因为有很多的井系设计方案(包括井径、井距和贯入深度、井口高程等)可以满足要求,因此井系设计方案并不是唯一的,目标是选择一种比较经济、尺寸合理并能达到预期效果的方案。通常,设计者先是选择井的直径和贯入深度,然后确定井间距,求出井系造价,然后再对不同贯入深度进行上述计算,最终找到更加经济的井系设计方案。
??? ③设计要求
??? 减压井系统应尽量布置在背水堤脚附近,以便有效控制堤基渗流。但从堤防抢险的安全性考虑,减压井一般是布置在背水侧压渗盖重端部,并与明沟相通,渗水通过明沟排走。
??? 减压井的间距一般为15~20m。
??? 减压井的透水管段应设在主要的透水层,在堤基为分层结构时更是如此。透水段的长度应大于主要透水层厚度的25%,一般多采用50~75%。
??? 井径应能允许最大设计流量通过而不发生过大的水头损失,并且直径不应小于15cm。井径宜大不宜小。
??? 井口高程越低,减压效果越好,但井口高程应高于井不排水时排水沟中可能出现的最高水位,以防泥水倒灌。
??? (2)井的结构和材料
??? 减压井一般由进水花管、升水管和井口、井帽和出水口三部分组成(图3-24)。井管应采用耐腐蚀的材料,如聚乙烯或塑料管。为防止或延缓减压井的淤堵,管径应大一些。花管外应填反滤料,花管开孔率一般为10~20%,开孔可采用圆孔、条形孔等形式,反滤料与孔眼尺寸由下式确定:
??? 圆孔式过滤管:D85/d≥1.0
??? 条孔式过滤管:d85/b≥1.2
??? 式中:d85为土料重量过筛率为85%的粒径;d为圆孔的最大允许孔径;b为条孔的最大允许宽度。
??? 减压井的反滤料应满足以下要求:在最大工作水头下,地基土料不被渗透水流带入井内,或只带入某允许粒径以下的颗粒但最终形成天然反滤;应具有较大的透水性,使渗流经过反滤层、花管时不产生过大的水头损失;反滤料颗粒不允许进入花管,粒径不应大于层厚的1/5,不均匀系数最好不大于5~6,必要时可采用多层反滤,但回填时宜用分层筒逐节填充,逐节下沉,到井底后再在周围填入最外滤层,反滤料回填时应分层夯实,避免分离。另外尚可以采用土工织物作反滤料,但应作专门设计。
图3-24 减压井结构图
??? 2.施工考虑
?? 减压井的施工包括:造孔、下井管、回填反滤料(指外填反滤料结构形式的过滤器而言)、鼓水冲井、抽水洗井、抽水试验、井口工程等工序。钻孔过程中应摸清地层的变化情况,保证滤水管布置在合适的地层中。井管间应连接好,不得有缝隙,以防漏砂。回填反滤料可采用导管法,以防离析。回填反滤料后应立即进行冲井和洗井,目的是破碎泥皮,洗出反滤料中的泥沙,促进含水层中的较细颗粒进入井内排出,使较粗颗粒排列在反滤料的周围,形成天然反滤,防止或延缓使用过程中淤堵。然后进行抽水试验,量测流量和出砂量,检验井的效果。最后进行井口工程的实施。
??? 3.管理考虑
??? 实践表明,竣工初期减压井的效果很好,随着时间的推移,由于透水段的机械和化学淤堵,减压井的流量逐渐减小,这也是影响减压井推广应用的最主要原因。使用过程中应避免减压井管被堵塞和淤塞,为防止或延缓过滤器淤堵,根据需要可定期进行洗井。