Absorbed Dose Dose is a measure of the amount of energy from an ionizing radiation deposited in a mass of some material. ? SI unit used to measure absorbed dose is the gray (Gy). 1 J ? 1 Gy = kg ? Gy can be used for any type of radiation. ? Gy does not describe the biological effects of the different radiations. Dosimetric Quantities Quantity Definition New Units Old Units  Exposure Charge per unit mass of air 1 R = 2.58 x 10-4 C/kg --- Roentgen (R)  Absorbed dose to tissue T from radiation of type R DT,R Energy of radiation R absorbed per unit mass of tissue T 1 rad = 100 ergs/g 1 Gy = 1 joule/kg 1 Gy = 100 rads gray (Gy) Radiation absorbed dose (rad)  Equivalent dose to tissue T HT Sum of contributions of dose to T from different radiation types, each multiplied by the radiation weighting factor (wR) HT = ΣR wR DT,R Sievert (Sv) Roentgen equivalent man (rem)  Effective Dose E Sum of equivalent doses to organs and tissues exposed, each multiplied by the appropriate tissue weighting factor (wT) E = ΣT wT HT Sievert (Sv) rem   Radiological Protection For practical purposes of assessing and regulating the hazards of ionizing radiation to workers and the general population, weighting factors (previously called quality factors, Q) are used. A radiation weighting factor is an estimate of the effectiveness per unit dose of the given radiation relative a to low-LET standard. Weighting factors are dimensionless multiplicative factors used to convert physical dose (Gy) to equivalent dose (Sv) ; i.e., to place biological effects from exposure to different types of radiation on a common scale. A weighting factor is not an RBE. Weighting factors represent a conservative judgment of the envelope of experimental RBEs of practical relevance to low-level human exposure. Radiation Weighting factors Radiation Type and Energy Range Radiation Weighting Factor, WR  X and γ rays, all energies 1  Electrons positrons and muons, all energies 1  Neutrons:   < 10 keV 5  10 keV to 100 keV 10  > 100 keV to 2 MeV 20  > 2 MeV to 20 MeV 10  > 20 MeV 5  Protons, (other than recoil protons) and energy > 2 MeV, 2-5  α particles, fission fragments, heavy nuclei 20  [ICRU 60, 1991] For radiation types and energies not listed in the Table above, the following relationships are used to calculate a weighting factor.  [Fig. 1 in ICRP, 1991] Q = 1.0 L < 10 keV/μm Q = 0.32L – 2.2 10 ≤ L ≤ 100 keV/μm Q = 300/(L)1/2 L ≥ 100 keV/μm L = unrestricted LET in water (keV/ μm ) Radiation Typical LET values 1.2 MeV 60Co gamma 0.3 keV/μm 250 kVp x rays 2 keV/μm 10 MeV protons 4.7 keV/μm 150 MeV protons 0.5 keV/μm 14 MeV neutrons 12 keV/μm Heavy charged particles 100-2000 keV/μm 2.5 MeV alpha particles 166 keV/μm 2 GeV Fe ions 1,000 keV/μm Tissue weighting factors Tissue Tissue Weighting Factor, WT Gonads 0.20 Red bone marrow 0.12 Colon 0.12 Lung 0.12 Stomach 0.12 Bladder 0.05 Breast 0.05 Liver 0.05 Esophagus 0.05 Thyroid 0.01 Bone surfaces 0.01 Remainder 0.05 (ICRU 60, 1991; NCRP 116, 1993) Committed Equivalent Dose: for radionuclides incorporated into the body, the integrated dose over time. 50 years for occupational exposure, 70 years for members of the general public. Committed Effective Dose: effective dose integrated over 50 or 70 years. Measurement of Exposure: photons Ionizations in air for electromagnetic radiation only  Measures charge (coulombs) produced by ionizations in air at STP. The unit of exposure in air is the Roentgen: 1 R = 2.58 x 10-4 C/kg Absorbed dose in air   Response is energy independent (~300 keV-2 MeV) Compton scattering dominant in air and low-Z wall The Bragg-Gray Principle Goal: determine absorbed dose in tissue exposed to radiation. B-G principle relates dose in gas to dose in material. Tissue dose: Dosimeter material is tissue equivalent (same elemental composition).  Conditions ? Electronic equilibrium: wall thickness > maximum range of secondary charged particles. ? Wall thickness not great enough to attenuate the radiation. ? Wall and gas have similar electron scattering properties. Measurement of Absorbed Dose: photons The tissue-equivalent ionization chamber Graphite/CO2 carbon is approximately tissue equivalent  NgW Dw = Dg = m Dw = dose to the wall Dg = dose to the gas Ng = number of ionizations in the gas W = energy needed to produce an ion pair in the gas m = mass of the gas Absorbed Dose from a charged particle beam    Dose Calculations Alpha and Low energy Beta emitters distributed in tissue. A radionuclide, ingested or inhaled, and distributed in various parts of the body is called an internal emitter. Many radionuclides follow specific metabolic pathways, acting as a chemical element, and localize in specific tissues. E.g., iodine concentrates in the thyroid radium and strontium are bone seekers tritium will distribute throughout the whole body in body water cesium tends to distribute throughout the whole body. If an internally deposited radionuclide emits particles that have a short range, then their energies will be absorbed in the tissue that contains them. Let: A = the activity concentration in Bq g-1, of the radionuclide in the tissue E = the average alpha or beta particle energy, in MeV per disintegration The rate of energy absorption per gram tissue is A E (MeV g-1 s-1). The absorbed dose rate is:  Point Source of Gamma Rays  ? D= Dose rate ? Ψ= energy fluence rate (MeV/cm2 sec) C = activity (Bq) E = energy per decay (MeV) μen/ρ = mass energy-absorption coefficient of air (cm2g-1) (~ same for photons between ~60keV and 2MeV) Beam of Photons Dose = energy absorbed/mass  (μen/ρ) = mass energy absorption coefficient (cm2/g) N = photon fluence (photons/cm2) E = energy per photon ρ= density x = thickness A = area Absorbed dose from neutrons ? Elastic scatter (higher energies) ? Capture (thermal neutrons) Thermal neutrons ΦNσE D = ρ Φ = thermal neutron fluence (n/cm2) N = atom density (cm-3) σ = capture cross section (for each element) E = energy from capture reaction ρ = tissue density The major thermal neutron capture reactions in tissue 14N(n,p) 14C σ = 1.7 barns Q = 0.626 MeV Ep = 0.58 MeV, range in water ~ 8 μm EC = 0.04 MeV Energy is deposited locally 1H(n,γ)2H σ = 0.33 barns 2.22 MeV gamma (μ/ρ) = 0.05 cm2/g (μen/ρ) = 0.025 cm2/g contribution to dose depends on the size of the “target” Principle elements in soft tissue of unit density Element Atoms cm-3 Capture cross section, σ H 5.98 x 1022 0.33 barns O 2.45 x 1022 0.00019 barns C 9.03 x 1021 0.0035 barns N 1.29 x 1021 1.70 barns Absorbed dose from fast neutrons Scattering: assume average energy lost is ? Emax First collision dose ? Representative of the absorbed dose when the mean free path is large compared to the target. ? Expressed as dose delivered per individual neutron ? Units are those of dose per neutron/cm2 (Gy cm2 ) NσS Qave D = ρ N = atom density (cm-3) σS = scattering cross section (for each element) Qave = average energy transferred in collision (? Emax) ρ = tissue density Must calculate dose for each element. E.g., Calculate the first collision dose for a 5 MeV neutron with tissue hydrogen. 5 MeV neutron σS = 1.61 barns N = 5.98 x 1022 cm-3 Mean energy per scattering collision, Qave = 2.5 MeV D = 3.88 x 10-11 Gy cm2