Solution 4.6.5.4
(a)
The closed loop system is
T
c
(s) =
K
c
s(s +2)
1+
K
c
s(s +2)
=
K
c
s
2
+2s + K
c
:
The characteristic equation, in terms of K
c
,is
p(s)=s
2
+2s + K
c
:
The desired characteristic equation is
p(s)=(s +1;j)(s+1+j)=s
2
+2s +2:
Thus to obtain the desired poles wemust have
K
c
=2:
The closed loop transfer function is thus
T
c
(s)=
2
s
2
+2s +2
:
The MATLAB dialogue
EDU>tc = zpk([],[-1-j*1 -1+j*1],2)
Zero/pole/gain:
2
--------------
(s^2 + 2s+2)
EDU>step(tc)
EDU>print -deps sr4654a.eps
EDU>
creates the step response shown if Figure 1.
1
Time (sec.)
A
mp
li
tu
d
e
Step Response
0 1 2 3 4 5 6
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 1: Step response of compensated system
2
(b)
The closed loop transfer function is
T
c
(s) =
K
c
(s +3)
s(s +2)(s + p)
1+
K
c
(s +3)
s(s +2)(s+ p)
=
K
c
(s +3)
s
3
+(p +2)s
2
+(2p+ K
c
)s +3K
p
:
The characteristic equation, in terms of K
c
,is
p(s)=s
3
+(p+2)s
2
+(2p+ K
c
)s +3K
c
:
The desired characteristic equation is
p(s)=(s +4)
2
(s + q)=s
3
+(8+q)s
2
+ (16+ 8q)s +16q:
Equating coecients in likepowers of s weobtainthe equations
8+q = p +2
16+ 8q = 2p + K
c
3K
c
= 16q
These equations can be rearranged as:
q ;p = ;6
8q ;2p;K
c
= ;16
16q;3K
c
= 0
In matrix form wehave
2
6
4
1 ;1 0
8 ;2 ;1
16 0 ;3
3
7
5
2
6
4
q
p
K
c
3
7
5 =
2
6
4
;6
;16
0
3
7
5:
The MATLAB program,
a=4
z=3
A=[1-1 0;;2*a -2 -1;;a^2 0 -z]
b=[2-2*a;; -a^2;; 0]
x=inv(A)*b
3
ageneralization of the specic problem weare trying to solve, yields the
output
a=
4
z=
3
A=
1 -1 0
8 -2 -1
16 0 -3
b=
-6
-16
0
x=
-6
0
-32
EDU>
yields a solution, but it is not a satisfactory solution. However, if wemove
the zero slightly,froms = ;3tos = ;2:5, weget
a=
4
4
z=
2.5000
A=
1.0000 -1.0000 0
8.0000 -2.0000 -1.0000
16.0000 0 -2.5000
b=
-6
-16
0
x=
10
16
64
EDU>
whichisaviable solution, namely
G
c
(s)=
64(s +2:5)
s +16
:
As another example wecould leavethezero at s = ;3and let the double
pole of the characteristic equation be a s = ;5. In that case weget
a=
5
5
z=
3
A=
1 -1 0
10 -2 -1
25 0 -3
b=
-8
-25
0
x=
27.0000
35.0000
225.0000
EDU>
whichisalsosatisfactory,yielding
G
c
(s)=
225(s+3)
s +35
:
Chapter 5 will shed a good deal of lightonwhysome solutions are good
and some bad, and will also showushowtochoose viable solutions. For
G
c
(s)=
64(s +2:5)
s +16
;;
the MATLAB dialogue
6
EDU>gcgp = zpk([-2.5],[0 -2 -16],64)
Zero/pole/gain:
64 (s+2.5)
--------------
s(s+2) (s+16)
EDU>tc = feedback(gcgp,1)
Zero/pole/gain:
64 (s+2.5)
--------------
(s+10) (s+4)^2
EDU>step(tc)
EDU>print -deps sr4654b.eps
EDU>
creates the step response shown if Figure 2.
7
Time (sec.)
A
mp
li
tu
d
e
Step Response
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 2: Step response for z =2:5
8