Solution 5.8.6.6
The loop transfer function is
GH(s)=
K(s+3)
s(s+ 1)(s+15)
To nd the closed loop poles that lie along the rayfrom the origin at angle
45
to the negativereal axis, wesearch along the rayuntil wend where
the root locus crosses this line. The pointwhere the root locus crosses the
vertical line is the point where the angle condition is satised. Referring to
Figure 1 weseethat wemust nd s = ;x+ jx suchthat
Im(s)
Re(s)XX
X
-1
-3-15
s + 1 s
s + 15
α
θ
1
θ
3
θ
2
-x
x
s + 3
Figure 1: Satisfying angle condition
;
1
;
2
;
3
= ;180
:
The MATLAB program
z=3;;
p1 = 0;;
p2 =1;;
p3 = 15;;
s=-3+j*3
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-2.9 + j*2.9
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-3.3+j*3.3
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
1
x 3 2.9 3.3 3.5 3.3675
6
GH ;182:7
;183:6
;180:43
;179:3
;180:03
Table 1: Searchfor satisfaction of angle condition
s ;13 ;10 ;8 ;9 ;9:25 ;9:375 ;9:27
K 31.2 64.29 78.4 72 70.21 69.29 70.06
Table 2: Searchfor third closed loop pole
s=-3.5 +j*3.5
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-3.4 + j*3.4
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-3.35 + j*3.35
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-3.36 + j*3.36
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-3.365 + j*3.365
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-3.3675 + j*3.3675
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
generates the Table 1. Thus the root locus crosses the horizontal line for
s = ;3:3675+j3:3675. The gain that places twoofthe closed loop poles at
s = ;3:3675j3:3675 is
K =
jsjjs+1jjs+15j
js+3j
s=;3:3675+j3:3675
= 70:08:
To nd the third closed loop pole wesearchalong the real axis to the right
of s = ;15 looking for this same value of gain. The calculation is exactly the
same, weare just using dierenct values of s Table 2 summarizes this search.
Thus the third pole is at s = ;5:467, and the characteristic polynomial is
p(s)=(s+9:27)(s+3:3675; j3:3675)(s+3:3675+j3:3675)
Wecancheck this result with the MATLAB dialogue
2
EDU>g = zpk([-3],[0 -1 -15],70.06)
Zero/pole/gain:
70.06 (s+3)
--------------
s(s+1) (s+15)
EDU>tc = feedback(g,1)
Zero/pole/gain:
70.06 (s+3)
------------------------------
(s+9.27) (s^2 + 6.73s + 22.67)
EDU>p =[1 6.73 22.67]
p=
1.0000 6.7300 22.6700
EDU>roots(p)
ans =
-3.3650+ 3.3685i
-3.3650- 3.3685i
EDU>
and weseethat weare reasonably close.
3