Solution: 7.9.3.7
Σ
G
C
G
P
+
R
C
Figure 1: Cascade Compensation with UnityFeedback
For the system of Figure 1
G
p
=
10
s(s+1)
: and G
c
=
K(s+1)
s +6
:
The MATLAB program:
%
% K=16
%
k=16
b=k
v1 = [1,0]
v2 = [1,0]
v3 = [1,6]
%v4 = [1,18]
denom = conv(v2,v3)
%denom = conv(denom,v4)
top = [0,0,b]
bot = top + denom
bot = conv(bot,v1)
roots(bot)
a=bot
[w,s,v] = residue(b,a)
%
% K=18
%
k=18
b=k
v1 = [1,0]
v2 = [1,0]
v3 = [1,6]
%v4 = [1,18]
denom = conv(v2,v3)
1
%denom = conv(denom,v4)
top = [0,0,b]
bot = top + denom
bot = conv(bot,v1)
roots(bot)
a=bot
[w,s,v] = residue(b,a)
%
% K=20
%
k=20
b=k
v1 = [1,0]
v2 = [1,0]
v3 = [1,6]
%v4 = [1,18]
denom = conv(v2,v3)
%denom = conv(denom,v4)
top = [0,0,b]
bot = top + denom
bot = conv(bot,v1)
roots(bot)
a=bot
[w,s,v] = residue(b,a)
generates the output:
k=
16
b=
16
v1 =
1 0
v2 =
1 0
2
v3 =
1 6
denom =
1 6 0
top =
0 0 16
bot =
1 6 16
bot =
1 6 16 0
ans =
0
-3.00000000000000 + 2.64575131106459i
-3.00000000000000 - 2.64575131106459i
a=
1 6 16 0
w=
-0.50000000000000 + 0.56694670951384i
-0.50000000000000 - 0.56694670951384i
1.00000000000000
3
s=
-3.00000000000000 + 2.64575131106459i
-3.00000000000000 - 2.64575131106459i
0
v=
[]
k=
18
b=
18
v1 =
1 0
v2 =
1 0
v3 =
1 6
denom =
1 6 0
top =
0 0 18
4
bot =
1 6 18
bot =
1 6 18 0
ans =
0
-3.00000000000000 + 3.00000000000000i
-3.00000000000000 - 3.00000000000000i
a=
1 6 18 0
w=
-0.50000000000000 + 0.50000000000000i
-0.50000000000000 - 0.50000000000000i
1.00000000000000
s=
-3.00000000000000 + 3.00000000000000i
-3.00000000000000 - 3.00000000000000i
0
v=
[]
k=
5
20
b=
20
v1 =
1 0
v2 =
1 0
v3 =
1 6
denom =
1 6 0
top =
0 0 20
bot =
1 6 20
bot =
1 6 20 0
ans =
6
0
-3.00000000000000 + 3.31662479035540i
-3.00000000000000 - 3.31662479035540i
a=
1 6 20 0
w=
-0.50000000000000 + 0.45226701686665i
-0.50000000000000 - 0.45226701686665i
1.00000000000000
s=
-3.00000000000000 + 3.31662479035540i
-3.00000000000000 - 3.31662479035540i
0
v=
[]
EDU>
All that is left is to presentthedata.
K=16
T
c
(s)=
16
(s+3;j2:646)(s+3+j2:646)
Then
c(t)=[1+2jMje
;2:65t
cos(2:88t+ )]1(t):
M =
(s+3; j2:646)
16
(s+3; j2:646)(s+3+j2:646)
s=;3+j2:646
= ;0:5+j0:567
= 0:756
6
2:293
7
Then
c(t)=[1+1:512e
;3t
cos(2:646t+2:293)]1(t):
K=18
T
c
(s)=
18
(s+3;j3)(s+3+j3)
Then
c(t)=[1+2jMje
;3t
cos(3t+)]1(t):
M =
(s+3; j3)
18
s(s+3;j3)(s+3+j3)
s=;3+j3
= ;0:5+j0:5
= 0:707
6
;2:356
Then
c(t)=[1+1:414e
;3t
cos(3t+2:356)]1(t):
K=20
T
c
(s)=
20
(s+3;j3:317)(s+3+j3:317)
Then
c(t)=[1+2jMje
;3t
cos(3:317t+ )]1(t):
M =
(s+3; j3:317)
20
s(s+3; j3:317)(s+3+j3:317)
s=;3+j3:317
= ;0:5+j0:4523
= 0:674
6
2:406
Then
c(t)=[1+1:348e
;3t
cos(3:317t+2:406)]1(t):
Fig. 2 shows the three responses. As can be seen they are reasonably close.
8
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0.00 1.00 2.00 3.00
Time in Seconds
K = 2.0
K = 1.8
K = 1.6
Figure 2: Time Response for Nominal Gain 10%
9