§ 2 线性方程组的误差分析
/* Error Analysis for Linear system of Equations */
求解 时,A 和 的误差对解 有何影响? bxA ?? ? b? x?
? 设 A 精确,有误差,得到的解为,即 b? b?? xx ?? ??
bbxxA ???? ?? ??? )(
bAx ?? ?? 1??? |||||||||||| 1 bAx ?? ?? ??? ?
绝对误差放大因子
|||||||||||||||| xAxAb ??? ???又
||||
||||
||||
1
b
A
x ?? ??
||||
||||||||||||
||||
|||| 1
b
bAA
x
x ? ?? ? ?? ??? ?
相对误差放大因子
§ 2 Error Analysis for, bxA ?? ?
? 设 精确,A有误差,得到的解为,即 b? A? xx ?? ??
bxxAA ??? ??? ))(( ??
bxxAxxA ????? ???? )()( ???
)(1 xxAAx ??? ??? ???? ?
||||
||||
||||||||
||||||||
||||
||||
1
1
A
A
AA
AA
xx
x
?
?
?
?
???
??
?
?
?
?
??
?
bxAAxAA ??? ???? ??? )()(
xAxAA ?? ??? ???? )(
xAxAAIA ?? ??? ???? ? )( 1
xAAAAIx ?? ??? 111 )( ???????
Wait a minute …
Who said that ( I + A?1? A )
is invertible?
(只要 ? A充分小,使得
)1|||||||||||| 11 ??? ?? AAAA ??
||||
||||
||||||||1
||||
||||
||||||||
||||||||1
||||||||
||||
||||
1
1
1
1
A
A
AA
A
A
AA
AA
AA
x
x
?
?
?
??
???
??
?
??
?
??
?
?
?
?
?
?
是关键
的误差放大因子,称为
A的 条件数,记为 cond (A),
越 则 A 越病态,
难得准确解。
|||||||| 1?? AA
大
§ 2 Error Analysis for, bxA ?? ?
注, ? cond (A) 的具体大小与 || · || 的取法有关,但相对
大小一致。
? cond (A) 取决于 A,与解题方法无关。
???
?
???
? ?
?? ||||
||||
||||
||||
||||||||)(1
)(
||||
||||
b
b
A
A
AAAc o nd
Ac o nd
x
x ???? ??
?
??
常用条件数有,
cond (A)1 cond (A)? cond (A)2 )(/)(
m inm a x AAAA TT ???
特别地,若 A 对称,则
||m i n
||m a x)(
2 ?
??Ac o nd
条件数的性质,
? A可逆,则 cond (A)p ? 1;
? A可逆,? ? R 则 cond (? A) = cond (A) ;
? A正交,则 cond (A)2=1;
? A可逆,R正交,则 cond (RA)2 = cond (AR)2 = cond (A)2 。
§ 2 Error Analysis for, bxA ?? ?
精确解 为,
1
1??
?
???
?
??x?例,??
?
?
???
??
???
?
???
??
97.1
99.1,
98.099.0
99.01 bA ?
计算 cond (A)2 。 ??
?
???
?
?
?
?
1 0 0 0 09 9 0 0
9 9 0 09 8 0 0A?1 =
解,考察 A 的特征根
??? 0)d e t ( AI?
0 0 0 0 5 0 5 0 4.0
9 8 0 0 5 0 5 0 4.1
2
1 ?????
??
2
1
2)( ?
?Ac o n d 39206 >> 1
? 测试病态程度,
给 一个扰动 b?
???
?
???
?
?
???
?
?
3
4
10106.0
1097.0b??,其相对误差为
%01.0105 1 3.0|||| |||| 4
2
2 ??? ?
b
b? ?? 此时 精确解 为
???
?
???
?
?? 0203.1
3*x?
???
?
???
?
???? 0 2 0 3.2
2* xxx ???? ??
2
2
||||
||||
x
x??? 2.0102 > 200%
§ 2 Error Analysis for, bxA ?? ?
例,Hilbert 阵
?
?
?
?
?
?
?
?
?
?
?
?
?
?? 12
1
1
11
3
1
2
1
1
2
11
nnn
n
nH
cond (H2)? = 27 cond (H3)? ? 748
cond (H6)? = 2.9 ? 106 cond (Hn)?? ? as n ? ?
注,一般判断矩阵是否病态,并不计算 A?1,而由经验
得出。
? 行列式很大或很小(如某些行、列近似相关);
? 元素间相差大数量级,且无规则;
? 主元消去过程中出现小主元;
? 特征值相差大数量级。
§ 2 Error Analysis for, bxA ?? ?
? 近似解的误差估计及改善,
设 的近似解为,则一般有 bxA ?? ? *x? 0* ???? ??? xAbr
b
r
x
xx ??? ?? ||||
||||
||*|| ??? cond (A)
误差上限
? 改善方法,
Step 1,近似解 ?? bxA ?? ;1x?
Step 2,;11 xAbr ??? ??
Step 3,;
111 drdA
??? ??
Step 4,;
112 dxx ??? ??
若 可被精确解出,则有
就是精确解了。
1d
?
bAxAbAxx ????? 11112 )( ?? ????
2x?
经验表明,若 A 不是非常病态(例如,),
则如此迭代可达到机器精度;但若 A 病态,则此算法也
不能改进。
1)( ?? ?Ac o n d?
HW,p.66
#2,#4,#5
§ 3 Jacobi 法和 Gauss - Seidel 法
/* Jacobi & Gauss-Seidel Iterative Methods */
? Jacobi Iterative Method
?
?
?
??
?
?
????
????
????
nnnnnn
nn
nn
bxaxaxa
bxaxaxa
bxaxaxa
...
............
...
...
2211
22222121
11212111
? ?
? ?
? ??
?
?
?
?
?
?
?
?
?????
?????
?????
?? nnnnn
nn
n
nn
nn
bxaxa
a
x
bxaxa
a
x
bxaxa
a
x
1111
22121
22
2
11212
11
1
...
1
............
...
1
...
1
0?iia
写成 矩阵形式,
A =
L
U D bxULxD bxULDbxA ??? ???? ????? ????? )( )(
bDxULDx ??? 11 )( ?? ?????
B f?
Jacobi 迭代阵 bDxULDx kk ??? 1)(1)1( )( ??? ????
§ 3 Jacobi & Gauss-Seidel Iterative Methods
Algorithm,Jacobi Iterative Method
Solve given an initial approximation,
Input,the number of equations and unknowns n; the matrix entries a[ ][ ];
the entries b[ ]; the initial approximation X0[ ]; tolerance TOL;
maximum number of iterations Nmax,
Output,approximate solution X[ ] or a message of failure,
Step 1 Set k = 1;
Step 2 While ( k ? Nmax) do steps 3-6
Step 3 For i = 1,…,n
Set ; /* compute xk */
Step 4 If then Output (X[ ]);
STOP; /* successful */
Step 5 For i = 1,…,n Set X 0[ ] = X [ ]; /* update X0 */
Step 6 Set k ++;
Step 7 Output (Maximum number of iterations exceeded);
STOP,/* unsuccessful */
bxA ??? )0(x?
ii
n
j
ij
jiji
i a
Xab
X
?
?
?
?
? 1
)0(
T O LXXXX iini ???? ??? |0|m a x||0|| 1
What if aii = 0?
迭代过程中,A 的元素
不改变,故可以 事先调整 好 A 使得
aii ? 0,否则 A不可逆 。
必须等 X(k)完全计算
好了才能计算 X(k+1),因此
需要 两组向量 存储。
A bit wasteful,
isn’t it?
§ 3 Jacobi & Gauss-Seidel Iterative Methods
? Gauss - Seidel Iterative Method
)(1 1)(1)(414)(313)(212
11
)1(
1 bxaxaxaxaax
k
nn
kkkk ???????? ?
)(1 2)(2)(424)(323)1(121
22
)1(
2 bxaxaxaxaax
k
nn
kkkk ??????? ?? ?
)(1 3)(3)(434)1(232)1(131
33
)1(
3 bxaxaxaxaax
k
nn
kkkk ??????? ??? ?
)(1 )1( 11)1(33)1(22)1(11)1( nknnnknknkn
nn
k
n bxaxaxaxaax ???????
?
??
???? ?
… … … …
只存一组向量即可。
写成 矩阵形式, bDxUxLDx kkk ???? 1)()1(1)1( )( ???? ????
bxUxLD kk ??? ????? ? )()1()(
bLDxULDx kk ??? 1)(1)1( )()( ??? ??????
B f?Gauss-Seidel
迭代阵
A mathematician about his colleague,
" He made a lot of mistakes,but he made them
in a good direction,I tried to copy this,but I found
out that it is very difficult to make good mistakes,"
§ 3 Jacobi & Gauss-Seidel Iterative Methods
注,二种方法都存在 收敛性问题 。
有例子表明,Gauss-Seidel法收敛时,Jacobi法可能
不收敛;而 Jacobi法收敛时,Gauss-Seidel法也可能
不收敛。
p.76 #2 给出了例子。
收敛性分析将在下节课讨论。
§ 3 Jacobi & Gauss-Seidel Iterative Methods
Lab 07,Gauss-Seidel Method
Use the Gauss-Seidel method to solve a given n× n linear system
with an initial approximation and a given tolerance TOL,
Input
There are several sets of inputs,For each set,
The 1st line contains an integer 100 ? n ? 0 which is the size of a
matrix,n = ?1 signals the end of file,
The following n lines contain the
augmented matrix in the following format,
The numbers are separated by spaces and new lines,
The last line of each test case contains a real number TOL,which
is the tolerance for || · ||? norm,and an integer N ? 0 which is the
maximum number of iteration,
bxA ??? 0)0( ?? ?x
nnnn
n
n
baa
baa
baa
.,,
.,,.,,.,,.,,
.,,
.,,
1
2221
1111
§ 3 Jacobi & Gauss-Seidel Iterative Methods
Output /* ? represents a space */
? Each entry of the solution is to be printed as in the C fprintf,
fprintf(outfile,"%12.8f\n",x );
? If the matrix has a zero column,print the message, Matrix?has?a?zero?
column,??No ?unique?solution?exists.\n”,
? If the method fails to give a solution after N iterations,print the message
,Maximum?number?of? iterations?exceeded.\n”,
? If there is an entry of that is out of the range,print the message
,No? convergence.\n”,
The outputs of two test cases must be seperated by a blank line,
Sample Input
(? represents a space)
3
10?–1?0?9
–1?10?–2?7
0?–4?10?6
0.000000001?1000
3
3?–1?0?1
3?6?0?0
3?3?0?4
0.000000001?1000
–1
)(kx? ]2,2[ 127127?
Sample Output
(? represents a space)
??1.00000000
??1.00000000
??1.00000000
Matrix?has?a?zero?column.??No?unique
?solution?exists,
/* Error Analysis for Linear system of Equations */
求解 时,A 和 的误差对解 有何影响? bxA ?? ? b? x?
? 设 A 精确,有误差,得到的解为,即 b? b?? xx ?? ??
bbxxA ???? ?? ??? )(
bAx ?? ?? 1??? |||||||||||| 1 bAx ?? ?? ??? ?
绝对误差放大因子
|||||||||||||||| xAxAb ??? ???又
||||
||||
||||
1
b
A
x ?? ??
||||
||||||||||||
||||
|||| 1
b
bAA
x
x ? ?? ? ?? ??? ?
相对误差放大因子
§ 2 Error Analysis for, bxA ?? ?
? 设 精确,A有误差,得到的解为,即 b? A? xx ?? ??
bxxAA ??? ??? ))(( ??
bxxAxxA ????? ???? )()( ???
)(1 xxAAx ??? ??? ???? ?
||||
||||
||||||||
||||||||
||||
||||
1
1
A
A
AA
AA
xx
x
?
?
?
?
???
??
?
?
?
?
??
?
bxAAxAA ??? ???? ??? )()(
xAxAA ?? ??? ???? )(
xAxAAIA ?? ??? ???? ? )( 1
xAAAAIx ?? ??? 111 )( ???????
Wait a minute …
Who said that ( I + A?1? A )
is invertible?
(只要 ? A充分小,使得
)1|||||||||||| 11 ??? ?? AAAA ??
||||
||||
||||||||1
||||
||||
||||||||
||||||||1
||||||||
||||
||||
1
1
1
1
A
A
AA
A
A
AA
AA
AA
x
x
?
?
?
??
???
??
?
??
?
??
?
?
?
?
?
?
是关键
的误差放大因子,称为
A的 条件数,记为 cond (A),
越 则 A 越病态,
难得准确解。
|||||||| 1?? AA
大
§ 2 Error Analysis for, bxA ?? ?
注, ? cond (A) 的具体大小与 || · || 的取法有关,但相对
大小一致。
? cond (A) 取决于 A,与解题方法无关。
???
?
???
? ?
?? ||||
||||
||||
||||
||||||||)(1
)(
||||
||||
b
b
A
A
AAAc o nd
Ac o nd
x
x ???? ??
?
??
常用条件数有,
cond (A)1 cond (A)? cond (A)2 )(/)(
m inm a x AAAA TT ???
特别地,若 A 对称,则
||m i n
||m a x)(
2 ?
??Ac o nd
条件数的性质,
? A可逆,则 cond (A)p ? 1;
? A可逆,? ? R 则 cond (? A) = cond (A) ;
? A正交,则 cond (A)2=1;
? A可逆,R正交,则 cond (RA)2 = cond (AR)2 = cond (A)2 。
§ 2 Error Analysis for, bxA ?? ?
精确解 为,
1
1??
?
???
?
??x?例,??
?
?
???
??
???
?
???
??
97.1
99.1,
98.099.0
99.01 bA ?
计算 cond (A)2 。 ??
?
???
?
?
?
?
1 0 0 0 09 9 0 0
9 9 0 09 8 0 0A?1 =
解,考察 A 的特征根
??? 0)d e t ( AI?
0 0 0 0 5 0 5 0 4.0
9 8 0 0 5 0 5 0 4.1
2
1 ?????
??
2
1
2)( ?
?Ac o n d 39206 >> 1
? 测试病态程度,
给 一个扰动 b?
???
?
???
?
?
???
?
?
3
4
10106.0
1097.0b??,其相对误差为
%01.0105 1 3.0|||| |||| 4
2
2 ??? ?
b
b? ?? 此时 精确解 为
???
?
???
?
?? 0203.1
3*x?
???
?
???
?
???? 0 2 0 3.2
2* xxx ???? ??
2
2
||||
||||
x
x??? 2.0102 > 200%
§ 2 Error Analysis for, bxA ?? ?
例,Hilbert 阵
?
?
?
?
?
?
?
?
?
?
?
?
?
?? 12
1
1
11
3
1
2
1
1
2
11
nnn
n
nH
cond (H2)? = 27 cond (H3)? ? 748
cond (H6)? = 2.9 ? 106 cond (Hn)?? ? as n ? ?
注,一般判断矩阵是否病态,并不计算 A?1,而由经验
得出。
? 行列式很大或很小(如某些行、列近似相关);
? 元素间相差大数量级,且无规则;
? 主元消去过程中出现小主元;
? 特征值相差大数量级。
§ 2 Error Analysis for, bxA ?? ?
? 近似解的误差估计及改善,
设 的近似解为,则一般有 bxA ?? ? *x? 0* ???? ??? xAbr
b
r
x
xx ??? ?? ||||
||||
||*|| ??? cond (A)
误差上限
? 改善方法,
Step 1,近似解 ?? bxA ?? ;1x?
Step 2,;11 xAbr ??? ??
Step 3,;
111 drdA
??? ??
Step 4,;
112 dxx ??? ??
若 可被精确解出,则有
就是精确解了。
1d
?
bAxAbAxx ????? 11112 )( ?? ????
2x?
经验表明,若 A 不是非常病态(例如,),
则如此迭代可达到机器精度;但若 A 病态,则此算法也
不能改进。
1)( ?? ?Ac o n d?
HW,p.66
#2,#4,#5
§ 3 Jacobi 法和 Gauss - Seidel 法
/* Jacobi & Gauss-Seidel Iterative Methods */
? Jacobi Iterative Method
?
?
?
??
?
?
????
????
????
nnnnnn
nn
nn
bxaxaxa
bxaxaxa
bxaxaxa
...
............
...
...
2211
22222121
11212111
? ?
? ?
? ??
?
?
?
?
?
?
?
?
?????
?????
?????
?? nnnnn
nn
n
nn
nn
bxaxa
a
x
bxaxa
a
x
bxaxa
a
x
1111
22121
22
2
11212
11
1
...
1
............
...
1
...
1
0?iia
写成 矩阵形式,
A =
L
U D bxULxD bxULDbxA ??? ???? ????? ????? )( )(
bDxULDx ??? 11 )( ?? ?????
B f?
Jacobi 迭代阵 bDxULDx kk ??? 1)(1)1( )( ??? ????
§ 3 Jacobi & Gauss-Seidel Iterative Methods
Algorithm,Jacobi Iterative Method
Solve given an initial approximation,
Input,the number of equations and unknowns n; the matrix entries a[ ][ ];
the entries b[ ]; the initial approximation X0[ ]; tolerance TOL;
maximum number of iterations Nmax,
Output,approximate solution X[ ] or a message of failure,
Step 1 Set k = 1;
Step 2 While ( k ? Nmax) do steps 3-6
Step 3 For i = 1,…,n
Set ; /* compute xk */
Step 4 If then Output (X[ ]);
STOP; /* successful */
Step 5 For i = 1,…,n Set X 0[ ] = X [ ]; /* update X0 */
Step 6 Set k ++;
Step 7 Output (Maximum number of iterations exceeded);
STOP,/* unsuccessful */
bxA ??? )0(x?
ii
n
j
ij
jiji
i a
Xab
X
?
?
?
?
? 1
)0(
T O LXXXX iini ???? ??? |0|m a x||0|| 1
What if aii = 0?
迭代过程中,A 的元素
不改变,故可以 事先调整 好 A 使得
aii ? 0,否则 A不可逆 。
必须等 X(k)完全计算
好了才能计算 X(k+1),因此
需要 两组向量 存储。
A bit wasteful,
isn’t it?
§ 3 Jacobi & Gauss-Seidel Iterative Methods
? Gauss - Seidel Iterative Method
)(1 1)(1)(414)(313)(212
11
)1(
1 bxaxaxaxaax
k
nn
kkkk ???????? ?
)(1 2)(2)(424)(323)1(121
22
)1(
2 bxaxaxaxaax
k
nn
kkkk ??????? ?? ?
)(1 3)(3)(434)1(232)1(131
33
)1(
3 bxaxaxaxaax
k
nn
kkkk ??????? ??? ?
)(1 )1( 11)1(33)1(22)1(11)1( nknnnknknkn
nn
k
n bxaxaxaxaax ???????
?
??
???? ?
… … … …
只存一组向量即可。
写成 矩阵形式, bDxUxLDx kkk ???? 1)()1(1)1( )( ???? ????
bxUxLD kk ??? ????? ? )()1()(
bLDxULDx kk ??? 1)(1)1( )()( ??? ??????
B f?Gauss-Seidel
迭代阵
A mathematician about his colleague,
" He made a lot of mistakes,but he made them
in a good direction,I tried to copy this,but I found
out that it is very difficult to make good mistakes,"
§ 3 Jacobi & Gauss-Seidel Iterative Methods
注,二种方法都存在 收敛性问题 。
有例子表明,Gauss-Seidel法收敛时,Jacobi法可能
不收敛;而 Jacobi法收敛时,Gauss-Seidel法也可能
不收敛。
p.76 #2 给出了例子。
收敛性分析将在下节课讨论。
§ 3 Jacobi & Gauss-Seidel Iterative Methods
Lab 07,Gauss-Seidel Method
Use the Gauss-Seidel method to solve a given n× n linear system
with an initial approximation and a given tolerance TOL,
Input
There are several sets of inputs,For each set,
The 1st line contains an integer 100 ? n ? 0 which is the size of a
matrix,n = ?1 signals the end of file,
The following n lines contain the
augmented matrix in the following format,
The numbers are separated by spaces and new lines,
The last line of each test case contains a real number TOL,which
is the tolerance for || · ||? norm,and an integer N ? 0 which is the
maximum number of iteration,
bxA ??? 0)0( ?? ?x
nnnn
n
n
baa
baa
baa
.,,
.,,.,,.,,.,,
.,,
.,,
1
2221
1111
§ 3 Jacobi & Gauss-Seidel Iterative Methods
Output /* ? represents a space */
? Each entry of the solution is to be printed as in the C fprintf,
fprintf(outfile,"%12.8f\n",x );
? If the matrix has a zero column,print the message, Matrix?has?a?zero?
column,??No ?unique?solution?exists.\n”,
? If the method fails to give a solution after N iterations,print the message
,Maximum?number?of? iterations?exceeded.\n”,
? If there is an entry of that is out of the range,print the message
,No? convergence.\n”,
The outputs of two test cases must be seperated by a blank line,
Sample Input
(? represents a space)
3
10?–1?0?9
–1?10?–2?7
0?–4?10?6
0.000000001?1000
3
3?–1?0?1
3?6?0?0
3?3?0?4
0.000000001?1000
–1
)(kx? ]2,2[ 127127?
Sample Output
(? represents a space)
??1.00000000
??1.00000000
??1.00000000
Matrix?has?a?zero?column.??No?unique
?solution?exists,