2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
$?s
?B [±s
? c?s¥à
QD9
?s¥à
QD?é
?s'à
QaZED?1?
M?
à
Q?sT1
T¥Ks?′? ???D′? ??s
^B?
b
ZEX±sEs?síBEM
9DuWMDb
s?
TD??
T¥£
üb
?l
?l b
!f
)(xf μ?>uW
μ?l
Oμ?
?],[ ba
?iséuW |?
],[ ba
n
xxx,,,
10
L
:
1?
=?
iii
xxx
i
i
x?= maxλ
?| ],[
1 iii
xx
∈ξ
T
T
∑
=
=
n
i
iin
xfS
1
)(ξ
? K i
O K′DuW
s�i?
sxfS
n
i
iin
=?= ∑
=
→→
1
00
)(limlim ξ
λλ
],[ ba [ ]
iii
xx,
1?
∈ξ |′¥?i?í1
5?f
)(xf
uW
V
?K ′ ?1f
],[ ba sxfS
n
i
iin
=?= ∑
=
→→
1
00
)(limlim ξ
λλ
)(xf uW
¥s
:T],[ ba
sSdxxfbaI
n
b
a
f
===
→
∫
0
lim)(),(
λ
ba,sY? 1s¥/ a
K
)(xf ? 1$f
x?1s? WM
?s¥
′Ds?WM
¥?|í1'
b
∫∫
=
b
a
b
a
dttfdxxf )()(
f
¥ V?Hq
? ? bf
μ?>uW V ¥A1 Hq
^f
],[ ba )(xf
μ
?b
],[ ba
£
!·° Iù
T? www.tsinghuatutor.com - 1 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
? ? bf
μ?>uW V¥ sHq
@/
Hq-B' V
],[ ba
)(xf uW
??μ?],[ ba
)(xf uW
μ?OoμμK?W?],[ ba
)(xf uW
??],[ ba
?s?l Iù?¥?¨ ?¨s
Tp+?K
na
è5
?s¥?é#è¨2
∫∫
=
a
b
b
a
dxxfdxxf )()(
suW¥ VF?
∫∫∫
+=∈?
b
c
c
a
b
a
dxxfdxxfdxxfRc )()()(,
$
f
@L??
[]
∫∫∫
+=+
b
a
b
a
b
a
dxxgBdxxfAdxxBgxAf )()()()(
??
|?? Vf
],[,0)( baxxf ∈?≥
5
b0)( ≥
∫
b
a
dxxf
? Vf
)(),( xgxf
@ )()( xgxf ≥
5
b
∫∫
≥
b
a
b
a
dxxgdxxf )()(
+Y ?dμ ? ?f
)(xf
?1
, 5 b],[ ba 0)( >
∫
b
a
dxxf
? )(xf
V
5],[ ba )(xf
9 V
O],[ ba
∫∫
≤
b
a
b
a
dxxfdxxf )()(
′? ?? Vf
)(xf
@
],[ ba
Mxfm ≤≤ )(
5
)()()( abMdxxfabm
b
a
≤≤?
∫
éB?
?f
)(xg
dμ V
5
?11??é],[ ba
∫∫∫
≤≤
b
a
b
a
b
a
dxxgMdxxgxfdxxgm )()()()(
s? ′? ??f
)(xf
??
],[ ba )(xg
| ?|O
V
5
],[ ba
),,( ba∈?ξ
P
£
!·° Iù
T? www.tsinghuatutor.com - 2 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
∫∫
=
b
a
b
a
dxxgfdxxgxf )()()()( ξ
+Y
1)( ≡xg
H
],,[ ba∈?ξ
P
))(()( abfdxxf
b
a
=
∫
ξ
__________
],[
)()(
)(
xff
ab
dxxf
ba
b
a
==
∫
ξ
ü (′
Y
L
VéB?£
ü ),,(
0
ba∈?ξ
P
2
? ?b
? )(xf
^ V¥f
5 ],[ aa? 0)( =
∫
a
a
dxxf
? )(xf
^ V¥
}f
5
b
],[ aa?
∫∫
=
aa
a
dxxfdxxf
0
)(2)(
? )(xf
^ V¥?
ùf
M?
ù1 T5?i
^
L
Aμa
∫∫
=
+ TTa
a
dxxfdxxf
0
)()(
? ? ?f
)(xf
@ 0)( =
∫
b
a
dxxf 5i ),(
0
bax ∈
P¤
0)(
0
=xf b
£
üZE ??′? ? £
üZE ? ??f
¥|?
?dμ ??f
)(xf
@ 50)( =
∫
b
a
dxxf
0)(],,[ ≡∈? xfbax b
£
üZE? ??f
¥|?Ds¥|?Q£
è
! dxxI
∫
= 2
0
1
)sin(sin
π
dxxI
∫
= 2
0
2
)cos(sin
π
5 "
"
21
1 II << b
#
21
1 II >> b
$
21
II = b
% 1
21
>> II
<3>? )
2
,0(
π
∈x xx <sin O 19f
?
^xsin
,sin)sin(sin xx <
£
!·° Iù
T? www.tsinghuatutor.com - 3 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
dxxI
∫
= 2
0
1
)sin(sin
π
1sin2
0
=<
∫
dx
π
7 1hf
5μ ?
^xcos xx sin)cos(sin >
dxxI
∫
= 2
0
2
)cos(sin
π
1
2
0
1cos Idxx >=>
∫
π
b
è 9s ¥S?
∫
2
0
2
2
dxe
xx
3
[]
( )
[]
( ) 12min,02max
2
2,0
2
2,0
=?=?
∈∈
xxxx
xx
22
2
0
02
0
22
0
11
2
=≤≤=
∫∫∫
dxedxedxee
xx
è
! dxxxxM )1(ln
221
1
++=
∫
dx
x
xx
N
∫
+
+
=
1
1
2
3
1
∫
+
=
1
1
22
3
)1(
1
dx
x
x
P
5 "
b
"
NMP << b #
PNM << b
$
NPM << b %
MPN << b
3?? M 1f
?uW¥s#1
0)12(212
1
2
1
0
1
0
2
2
2
>?=+=
+
=
∫
x
x
dx
N
0
)1(
1
2
22
1
0
<
+
=
∫
dx
x
P
[ NMP << b
di ??
D%
TD?s¥9
di ??
D%
T#?¨
? ? b
di ??
D%
T
? )(xf
^
¥ ??f
1],[ ba )(xF )(xf
¥B?e
f
5iè
C
P
],[ ba
CdttfxF
x
a
+=
∫
)()(
],[ bax∈?
£
!·° Iù
T? www.tsinghuatutor.com - 4 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
b
a
b
a
xFaFbFCbFdxxf )()()()()(
=?=?=
∫
T?1
di ??
D%
T+Yμ
)()()( afbfdxxf
b
a
=
′
∫
b
di ??
D%
T
P¤?s¥9
1p??sù5pef
ù5b
?¨
di ??
D%
Tá
ì V[YV??sp¥?s¥′b
è p b
∫
2
0
|1| dxx
3
∫∫∫
+?=?
2
1
1
0
2
0
)1()1(|1| dxxdxxdxx
1
22
2
1
2
1
0
2
=?
+?
= x
xx
x
??s
?l¥f
?s9
?+Y?is
sb
è p,sin1
0
∫
π
dxx
3
∫∫
=?
ππ
00
2
cos
2
sin.sin1 dx
xx
dxx
∫∫?
+
=
π
π
π
2
2
0
2
cos
2
sin
2
sin
2
cos dx
xx
dx
xx
.424?=
è
!
>+
≤?
=
01
01
)(
xx
xx
xf
p b
∫
1
1
)( dxxf
3 3EB )(xf u W
=μ?B ?W?
yN]1,1[? ]1,1[? uW
=? i
ef
?
¨
di ??
D%
T ?¨uW¥ VF?μ
∫∫∫
+=
1
0
0
1
1
1
)()()( dxxfdxxfdxxf
=sY V[¨
di ??
D%
T
]1,0[],0,1[?
£
!·° Iù
T? www.tsinghuatutor.com - 5 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
2
3
2
)(
0
1
2
0
1
=?
=
∫
x
x
dxxf
2
3
2
)(
1
0
2
1
0
=?
+=
∫
x
x
dxxf
# b
∫
1
1
)( dxxf
3E= )(xf
^ ]1,1[? ¥f
∫
1
1
)( dxxf
è p dx
x
xx
∫
+
+
2
2
2
cos1
cos)1(
π
π
b
3 dx
x
x
dx
x
xx
∫∫
+
=
+
+
2
0
2
2
2
2
cos1
cos
2
cos1
cos)1(
ππ
π
b
12
12
ln
2
1
sin2
)(sin
2 2
0
2
+
=
=
∫
dx
x
xd
π
V[°¤¨X±sEaDíEs?sE9
?sb
M
9DE
?BDíE¥'
±
^
X±sZE
)()()( afbfdxxf
b
a
=
′
∫
b
a
b
a
xfdxxxf ))(()())(( =
′
′
∫
?=DíE¥'
±
^
β
α
β
α
))(()())(()( tFdtttfdxxf
b
a
=
′
=
∫∫
?
1p )(xf D )(t?
′
?? )(tx?= μ Qf
)(
1
xt
=?
O
)(),( β?α? == ba
CxFdxxf +=
∫
)()( b
£
!·° Iù
T? www.tsinghuatutor.com - 6 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
D
í
E
¥
×
1
?
¨
-
B
^
u
W
M
D
[
?
M
s
u
W
1+?
"¥¥MDb
è p
∫
3
7 u =
7 u =
? 3=u
∫
3
4
2
x
dx
∫
= 2
3
2
arccos
π
∫
=
b
a
f
dxxfbaI )(),(
dttxtxfdxxf
b
a
)())(()(
1
0
′
∫∫
7
ab
ax
t
=
dttxtxfdxxf
d
c
b
a
)())(()(
′
∫∫
7 ccd
ab
ax
t +?
= )(
μ Q| MD xt?= ?
MD
x
t b
1
=
<W¨?s¥iD·sb
£
!·° Iù
T?
3
4
2
4x
dx
b
x?
∫
3
4
2
4x
dx
∫
4
3
2
4u
du
tsec2
5 tdtdu sectan2=
H
3
2
arccos=t
? 4=u
H
3
π
=t
=
4
∫∫
=
2
3
2
arccos
4
3
2
tan2
sectan2
4
π
dt
t
tt
u
du
2
cos
cos
dt
t
t
www.tsinghuatutor.com - 7 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
∫
+
+
= 2
3
2
arccos
sin
sin1
1
sin1
1
2
1
π
td
tt
7 ty sin=
V°¤ ?¨X±sE
∫?
+
+
2
3
2
arccos
sin
sin1
1
sin1
1
2
1
π
td
tt
2
3
3
5
2
3
3
5
1
1
ln
2
1
1
1
1
1
2
1
u
u
dy
yy?
+
=?
+
+
=
∫
2ln)53ln()32ln( ++?+= b
è
! () ( )
∫
=?
4
0
2
2cos
π
dxxfxxf
p ()
∫
2
0
π
dxxf b
<3>,() Idxxf =
∫
2
0
π
7 ux =2 5 dudx
2
1
=
()=
∫
4
0
2
π
dxxf () Iduuf
2
1
2
1
2
0
=
∫
π
b
?
T () ( )
∫
=?
4
0
2
2cos
π
dxxfxxf
H|s¤?
() Idx
I
dxxxf
42
]cos[ 2
0
2
0
2
π
ππ
==?
∫∫
'
IdxxI
4
cos2
0
2
π
π
=?
∫
£
!·° Iù
T? www.tsinghuatutor.com - 8 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
# dxxII
∫
=? 2
0
2
cos
4
π
π
422
1 ππ
=?=
yN ==
∫
dxxfI 2
0
)(
π
π
π
4
b
è
!
^
¥ ??f
5
%b)(xf ],[10
"
∫∫
=
ππ
π
00
)(sin)(sin dxxfdxxxf
#
∫∫
=
ππ
π
00
)(sin2)(sin dxxfdxxxf
$
∫∫
=
ππ
π
00
)(sin
2
)(sin dxxfdxxxf
%
∫∫
=
ππ
π
00
)(sin
2
)(sin dxxfdxxxf
<3>
7 dtdxtx?=?=,π
∫∫
=
0
0
)(sin)()(sin
π
π
π dttftdxxxf
∫∫
+?=
ππ
π
00
)(sin)(sin dttfdtttf
M[¤?s?1 %b
s?sE
! )(xf D )(xg
′
?? 1],[ ba )(xF )(xf
¥B?ef
5
],[ ba
∫∫
′
=
b
a
b
a
b
a
dxxgxFxgxFdxxgxf )()()()()()( è
p
∫
e
e
xdx
1
ln
3 ( )
∫∫
=
e
e
e
e
e
e
xxdxxxdx
1
1
1
lnlnln
e
dx
e
e
e
e
21
1
=?
=
∫
b
£
!·° Iù
T? www.tsinghuatutor.com - 9 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
è £
ü
∫
2
0
sin
π
xdx
n
∫
= 2
0
cos
π
xdx
n
ip
∫
= 2
0
sin
π
xdxJ
n
n
b
£
7
tx?=
2
π
∫
=
0
cos
π
tdtJ
n
n
2
∫
= 2
0
cos
π
xdx
n
b
∫∫
==
2
0
1
2
0
)cos(sinsin
ππ
xxdxdxI
nn
n
))(1(
cossin)1(cossin
2
2
0
22
2
0
1
nn
nn
IIn
xdxxnxx
=
+?=
∫
π
π
2
1
=
nn
I
n
n
I
′L,3,2=n 1,
2
10
== JJ
π
b
?
2T? 1s¥? w
T è¨ ?w
T μB??w =??w ì
T ?· ¥
^
[ ?w
TV
Us 2T A? ó ′ B? ?wì
T3 μB? ′ =? ?w ì
T3 μ
=?′?
??!¥9
ì
Tb
2T VB
,¤?/
L¨?
T
1
!)!12(
!)!2(
,
2!)!2(
!)!12(
122
+
=?
=
+
n
n
I
n
n
I
nn
π
bL,3,2,1=n
è =
+?
=
∫
dx
xee
I
xx
2
0
5cossin
8
sin
π
b
"
4
π
b #
15
1
b $
8
π
b %
30
1
b
???Dsà
Q ?'¤?s?
£
!·° Iù
T? www.tsinghuatutor.com - 10 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
15
1
3
2
5
4
8
1
==I ê #
è X ? dt
t
e
A
t
∫
+
=
1
0
1
5 =
+
∫
dt
t
e
t
1
0
2
)1(
s ?
A
e
+?
2
1 b
3 y1 dt
t
e
A
t
∫
+
=
1
0
1
[
∫∫
+
+
+
=
+
1
0
1
0
1
0
2
11)1(
dt
t
e
t
e
dt
t
e
ttt
A
e
+?=
2
1 b
è
! 1??
9
n
∫
1
0
2
)1( dxxx
n
<3>
ZE
∫
1
0
2
)1( dxxx
n
dxxx
nn
xx
n
n
∫
+
+
+
+
+
=
1
0
1
1
0
12
)1(
1
2
1
)1(
dxxx
nnnn
xx
n
n
∫
+
+
++
+
++
=
1
0
2
1
0
2
)1(
)2)(1(
2
)2)(1(
)1(
)3)(2)(1(
2
)3)(2)(1(
)1(2
1
0
3
+++
=
+++
=
+
nnnnnn
x
n
ZE
7 dtdxtx?==?,1 5μ
£
!·° Iù
T? www.tsinghuatutor.com - 11 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
∫
1
0
2
)1( dxxx
n
3
1
2
2
1
1
)1(
1
0
2
+
+
+
+
=?=
∫
nnn
dttt
n
MKs
M
Ks
! )(xf
V
],[ ba ],,[ bax∈? i·B ¥
L
D -?
yN M
K s ? l
B ?f
:T
á
ì?1M
Ksb
∫
x
a
dttf )(
∫
x
a
dttf )(
∫
=
x
a
dttfxF )()(
? ?
? )(xf
V
5M
Ks
?l¥f
??b
],[ ba
∫
=
x
a
dttfxF )()( ],[ ba
? ?B?
^)(xF )(xf
¥ef
b],[ ba
? )(xf
??
5M
Ks
?l¥f
V?
O
],[ ba
∫
=
x
a
dttfxF )()( ],[ ba
())()( xfdttf
dx
d
x
a
=
∫
b
?i B?
^)(xF )(xf
¥B?ef
b
],[ ba
£
ü
],,[ bax∈?
∫
=
x
a
dttfxF )()( 5
∫
+
=?
xx
x
dttfxF )()(
y1 )(xf
V
y N
μ? '],[ ba )(xf ],[ ba ],,[ bax∈? i
0>M
P¤ Mxf ≤)( ?
^
xMdttfxF
xx
x
≤≤?≤
∫
+
)()(0
? C/? ? V¤ 0)(lim
0
=?
→?
xF
x
yN
∫
=
x
a
dttfxF )()(
??],[ ba
£
!·° Iù
T? www.tsinghuatutor.com - 12 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
()
∫
x
a
dttf
dx
d
)(
[]
∫∫
=
+
→?
x
a
xx
a
x
dttfdttf
x
)()(
1
lim
0
[]
∫
+
→?
=
xx
x
x
dttf
x
)(
1
lim
0
∫
+
→?
=
xx
x
x
dt
x
f )(
lim
0
ξ
)()(lim
0
xff
x
==
→?
ξ
T? ξ1 xD xx?+ -W¥B?
£
ü¨?s?′? ? b
è
! ?dttfxF
x
∫
=
0
)()(
≤<?
≤≤?
=
.20,2
,01,
)(
2
2
xx
xe
xf
x
5
=<%>b)(xF ]2,1[?
"
^ )(xf ¥ef
#
V?
$
? ?? %
???? V?b
3 )(xf
^
μ?B ?W?¥ Vf
àμef
b]2,1[?
M/Ks μ]"¥?é
∫
b
x
dttf )(
? ?
? )(xf
V
5M /Ks],[ ba
∫
=
b
x
dttftF )()(
^
??f
? )(xf
? ?
5 M/K s
^ V ?f
b
O
],[ ba
∫
b
x
dttf )(
£
!·° Iù
T? www.tsinghuatutor.com - 13 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
())()( xfdttf
dx
d
b
x
=
∫
ˉMKs
∫
)(
)(
)(
x
x
dttf
β
α
? ?
? )(xf
V
],[ ba )(),( xx βα
??5
ˉMKs
],[ ba
∫
)(
)(
)(
x
x
dttf
β
α
^ ??f
b
? )(xf
?? ],[ ba )(),( xx βα
V?
5
ˉMKs
],[ ba
∫
)(
)(
)(
x
x
dttf
β
α
^ V?f
?
1
() )())(()())(()(
)(
)(
xxfxxfdttf
dx
d
x
x
ααββ
β
α
′
′
=
∫
MKs¥M1ù5
; ? M Ks ?l
B?f
*
1 B í ±s? f
¥
μ
MK s9 ]"
V[é?b è?á
ì V[) ?/
ù5
MK s ? l ¥f
T1 íkl
¨ ¥9
ArE 5 MK s? l¥f
Kù
5?¥?¨b
MKs?l¥f
¥???#′ù5
MKs?l¥f
¥
ü àZ 7
MKs?l¥f
¥sù5
1?ef
¥Bt×12
2
??f
-ef
A1
}f
b
2
??
}f
-ef
A1f
Dè
-?oμB?1f
b0=C
2
???
ùf
-ef
A1?
ùf
DL?
-O?
ù?Mb
???
ùf
)(xf -ef
1?
ùf
¥ 1Hq
^
0)(
0
=
∫
T
dxxf ? 0>T 1?
ùb
2
μ?B ?W?¥f
àμef
b
2
μ?= ?W?¥f
V[μef
b
2
MKsV
U¥f
?B?
^ef
b
è£
ü ??
}f
-ef
A1f
Dè
-b
<£>:
∫
=
x
a
dttfxF )()(
1£if
P¤)(xG CxGxF += )()(
? )()( xfxF =
′
C1è
b
£
!·° Iù
T? www.tsinghuatutor.com - 14 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
! 1£
∫
=
x
dttfxG
0
)()( )(xG
@
)()( xGxG?=?
A? CxGxF += )()( ? )()( xfxf =? yN
)( xG?
∫
=
x
dttf
0
)(
7 tu?= ?
^¤?
∫
=?
x
udufxG
0
)()()(
∫
=
x
uduf
0
)()( )(xG?= b
è
! )(xf
^ ? ?¥?
ù1 T ¥f
£
ü
∫∫
=
+ TaT
a
dxxfdxxf
0
)()(
£
ü£EBy1
^ ??f
| T1M
)(xf a
0)()()( =?+=
∫
+
afaTfdxxf
da
d
aT
a
∫
+aT
a
dxxf )(1?M
1è
7?a 0=a
H
Cdxxfdxxf
TaT
a
==
∫∫
+
0
)()(
yN Cdxxfdxxf
TaT
a
==
∫∫
+
0
)()( ?i¥ (? ?a
£E=
∫
+aT
a
dxxf )(
∫∫∫
+
++=
aT
T
T
a
dxxfdxxfdxxf )()()(
0
0
∫
∫∫∫
=
++=
T
aT
a
dxxf
dxTxfdxxfdxxf
0
00
0
)(
)()()(
?£EB1p )(xf
^ ??f
£E=?1p )(xf
^ Vf
è
! )(xf
^[ T 1?
ù¥ ??f
£
ü )(xf ef
A1?
ùf
DL?f
bax+ -O?
ù?Mb
???
ùf
)(xf -ef
1?
ùf
¥ 1Hq
^
0)(
0
=
∫
T
dxxf ? 0>T 1?
ùb
£
! )()( xfTxf =+
£
!·° Iù
T? www.tsinghuatutor.com - 15 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
CdttfxF
x
+=
∫
0
)()(
o3£i Rba ∈,D[ T 1?
ù¥ ??f
)(xg
P¤
baxxgxF ++= )()(
CaxaxdttfxF
x
+?+=
∫
0
)()(
Caxdtatf
x
++?=
∫
0
))((
| Cb=
∫
=
x
dtatfxg
0
))(()(
baxxgxF ++= )()( b
o3
7 )()( xgTxg =+
p Ra ∈,' Vb
∫
+
=+
Tx
dtatfTxg
0
))(()(
∫∫
+
+?=
Tx
x
x
dtatfdtatf ))(())((
0
aTdttfxg
T
+=
∫
0
)()(
7 3¤0)(
0
=?
∫
aTdttf
T
Rdttf
T
a
T
∈=
∫
0
)(
1
b
?X?Hq¤? b[
£
üV? V
Ib0=a
è
! dttxf
x 2cos1
0
sin)(
∫
=
65
)(
65
xx
xg += 5?
H0→x )(xf
^
)(xg ¥
b
"
?¨íkl
b #
ú¨íkl
b
$
?Níkl
b %
]¨?d?Níkl
s? #
è
! ),0[)(),( +∞∈Cxgxf 0)( >xf )(xg ?? 9
F
£
!·° Iù
T? www.tsinghuatutor.com - 16 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
5
dttf
dttgtf
x
x
x
)(
)()(
)(
0
0
∫
∫
=? <>
"
??9Fb #
),0[ +∞ ),0[ +∞
??h
$
??9F)1,0[ + ),1[ +∞
??h
b
%
??h
??9Fb)1,0[ + ),1[ +∞
3??
[]
2
0
00
)(
)()()()()()(
)(
dttf
dttgtfxfdttfxgxf
x
x
xx
∫
∫∫
=
′
[]
,0
)(
)]()()[()(
2
0
0
>
=
∫
∫
dttf
dttgxgtfxf
x
x
[ )(x?
??9F
s? "
),0[ +∞
è
!,0)( >xf [ ]ba,
??
£
üf
[]
∫∫
+=
x
b
x
a
dttfdttfxF
1
)()()(
[
μM?μB?
,?b]ba,
£
ü,0)( >xf [ ]ba,
??
5 )(xF [ ]ba,
??O V?
0
)(
1
)()( >+=
′
xf
xfxF
)(xF [ ]ba,
??9?y1
0)()(,0
)(
1
)( >=<=
∫∫
b
a
a
b
dttfbFdt
tf
aF
? ??f
,?? ? V?
)(xF [ ]ba,
μO?μB?
,?b
è ??è
¥′
Pcba,,
£
!·° Iù
T? www.tsinghuatutor.com - 17 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
0
)1ln(
sin
lim
3
0
≠=
+
∫
→
c
dt
t
t
xax
x
b
x
<3>
n5?s
K1
,Aμ
0
)1ln(
lim
3
0
=
+
∫
→
x
b
x
dt
t
t
b?
^ 0=b b
Q
∫
+
→
x
b
x
dt
t
t
xax
)1ln(
sin
lim
3
0
)1ln(
)cos(
lim
)1ln(
cos
lim
3
0
3
0
x
xax
x
x
xa
xx
+
=
+
=
→→
0
cos
lim
2
0
≠=
=
→
c
x
xa
x
Aμ
2
1
,1 =?= ca b
è
! )(xf
V?),0[ ∞+ 0)0( =f Qf
1 )(xg
p
xxf
exdttg
2)(
0
)(
∫
= )(xf b
<3>??
T
§1?
∫
=
)(
0
2
)(
xf x
exduug
xp?
?i? xxfg =))(( ¤?
,2)(
2 xx
exxexfx +=
′
K? 0≠x 5μ
xx
xeexf +=
′
2)(
s¤? C)1()( ++=
x
exxf ? 0)0( =f #
)0(1)(lim
0
fCxf
x
=+=
+
→
3 1?=C ?
^
b1-)1()(
x
exxf +=
è
! )(xf 1 ??dμf
μv? ¥è
C? #bx≤≤1
£
!·° Iù
T? www.tsinghuatutor.com - 18 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
)(0 xfy ≤≤ ??u×¥
1 21
2
+b p )(xf b
<3>? 21)(
2
1
+=
∫
bdxxf
b
¤
21)(
2
1
+=
∫
xdttf
x
|
T
H p?¤x
1
)(
2
+
=
x
x
xf b
è X ? )(xf ),( +∞?∞
1
}f
O
dttfttxF
x
∫
=
0
)()2(sin)( 5
^<">)(xF
"a
}f
#af
$a?
ùf
%a[
??f
??
^b
cμ?
¥s
s|
=cμ?
¥ù5
^B ?×15?? ?ù5aa31?
p?
b
??ZEμ
?
??
[y0?
TCs|
=
H5|c?
¥y0M?s|?
?íE|c?
¥?sM?s|?
5??M
9Db
è =?
∫
x
dttx
dx
d
0
2
)2cos( b
<3>
7 dudtutx?==?,2 5
∫∫
=?=
x
x
x
x
duuduuxI
2 2
2
2
coscos)( b
=
′
)(xI
22
cos)2cos(2 xx? b
è
! )(xf ??X? 1)1( =f O
2
0
arctan
2
1
)2( xdttxtf
x
=?
∫
p b
∫
2
1
)( dttf
<3>
n5) ??
7 dudttux?==?,2 ?
^
∫
x
dttxtf
0
)2(
∫
=
x
x
duufux
2
)()2(
∫
=
x
x
duufx
2
)(2
∫
x
x
duuuf
2
)(
2
arctan
2
1
x=
£
!·° Iù
T? www.tsinghuatutor.com - 19 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
p?
¤
)(2)2(4)(2
2
xxfxxfduuf
x
x
+
∫
4
1
)()2(4
x
x
xxfxxf
+
=+?
'μ
4
2
1
)()(2
x
x
xxfduuf
x
x
+
+=
∫
7 ?i?1=x 1)1( =f ¤?
4
3
)(
2
1
=
∫
dttf b
è
! )(xf ),( +∞?∞
??:
∫
=
x
dttftxxF
0
)()2()(
k£
? )(xf 1
}f
5 9
^
}f
)(xF
? )(xf ???95 ???hb)(xF
<£>
! )(xf 1
}f
I
n
∫
=?
x
dttftxxF
0
)()2()(
7 dudtut?=?=,5μ
∫
=+=?
x
xFduufuxxF
0
)()()2()( # 1
}f
)(xF
! )(xf ???9 I
n
[]
′
=
′
∫∫
xx
dtttfdttfxxF
00
)(2)()(
)(2)()(
0
xxfxxfdttf
x
∫
+=
∫
=
x
xxfdttf
0
)()(
)]()([ xffx?= ξ
? ξ D -W?
^0 x
?
H0>x 0)(,0)()( ≥
′
≥? xFxff ξ
?
H0<x 0)(,0)()( ≥
′
≤? xFxff ξ
?
H yN0=x 0)0( =
′
F ),( +∞?∞
μ 0)( ≥
′
xF b
[ ???hb)(xF
£
!·° Iù
T? www.tsinghuatutor.com - 20 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
è X ? )(xf ??O A
x
xf
x
=
→
)(
lim
0
!
p
∫
=
1
0
)()( dtxtfxF )(xF
′
i)
)(xF
′
¥ ???b
<3>
n5?X? )(xf ???#K?
T?μ 0)0( =f
Q
7 0,,≠== x
x
du
dtxtu 5μ
=
≠
=
∫
00
0)(
1
)(
0
x
xduuf
x
xF
x
?
H0≠x
∫
=
′
x
duuf
xx
xf
xF
0
2
)(
1)(
)(
1 ??f
b
22
)(
lim
)(
lim)0(
0
2
0
0
A
x
xf
x
duuf
F
x
x
x
===
′
→→
∫
=
≠?
=
′
∫
0
2
0,)(
1)(
)(
0
2
x
A
xduuf
xx
xf
xF
x
uduf
xx
xf
xF
x
xxx
∫
→→→
=
′
0
2
000
)(
1
lim
)(
lim)(lim
)0(
22
F
AA
A
′
==?=
yN )) ??b )(xF
′
),( +∞?∞
è
!
)(xf
1X? V?f
)(xg
1
)(xf
¥Qf
5
=?
∫
)(
)(
xfx
x
dtxtxg
dx
d
"
£
!·° Iù
T? www.tsinghuatutor.com - 21 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
" )()(
2)(
0
xfxdttg
xf
′
+
∫
# )()(
2)(
0
xfxdttg
xf
′
∫
$ )()(
)(
0
xfxdttg
xf
′
+
∫
% )()(
)(
0
xfxdttg
xf
′
∫
<3>:
∫∫
=?=
)()(
)()()(
xfx
x
xfx
x
dtxtgxdtxtxgxI
T
?¥s
7 dudtuxt ==?,
∫
=
)(
0
)()(
xf
duugxxI
))())((()()(
)(
0
xfxfxgduugxI
xf
′
+=
′
∫
))())((()(
)(
0
xfxfxgduug
xf
′
+=
∫
)()(
2)(
0
xfxduug
xf
′
+=
∫
"
è =
+
∫
+∞→
x
x
t
x
dt
e
t
2
1
ln
lim b
s? b0 0>?X
P? 0>> Xx
H
x
x
x
t
e
xx
dt
e
t
+
≤
+
≤
∫
1
2ln
1
ln
0
2
?¨C/? ?¤? 0
1
ln
lim
2
=
+
∫
+∞→
x
x
t
x
dt
e
t
b
s8 è5
è X? ?? wL )(xfy =1?? )0()0,( ≠aa ?
5
%b
∫
∈?
c
c
dxxafRc )(,
" dxxaf
c
∫
0
)2(2 #
dxxaf
c
∫
0
)2(2
$
%
0dxxcf
a
∫
0
)(2
£
!·° Iù
T? www.tsinghuatutor.com - 22 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
<3>?+il V¤?ê %
wL )(xfy =1?? ?b)0()0,( ≠aa
[/
^+?¨?uWMD¥ è5b
è X?
¥ ??wL1?°L],[ ba )(xfy =
2
ba
x
+
= ?
£
ü
∫∫
+
= 2 )(2)(
ba
a
b
a
dxxfdxxf
<£>
∫∫∫
+
+
+=
b
ba
ba
a
b
a
dxxfdxxfdxxf
2
2 )()()(
??1?°L)(xfy =
2
ba
x
+
= ?
aBsμ
∫
+
b
ba
dxxf
2
)(
∫
+
+=
b
ba
dxxbaf
2
)(
7 xbat?+= 5 dtdx?= ?
^¤?
∫∫
++
=?+
a
ba
b
ba
dttfdxxbaf
22
)()(
∫
+
=
2
ba
a
dttf )(
[
∫∫
+
= 2 )(2)(
ba
a
b
a
dxxfdxxf b
è p ¥KvKl′bdtetxf
x t
∫
=
2
0
)2()(
<3> )(xf 1
}f
o3p ),[ +∞0
¥KvKl′b
7 2,0)2(2)(
2
2
==?=
′
xexxxf
x
1·B?O
? 20 << x
H,0)( >
′
xf
? 2>x
H,0)( <
′
xf yN 2=x 1v′?'Kv′?b
Kv′1
22
0
1)2()2(
+=?=
∫
edtetf
t
b
=
+∞→
)(lim xf
x
dtet
t
∫
∞+?
0
)2(
112)2(
00
=?=+=
∞+
∞+
tt
eet
? 0)0( =f yN 1Kl′?Kl′1 b0=x
è
! )(xf
V±],[ ba )(xf
′
dh£
ü
£
!·° Iù
T? www.tsinghuatutor.com - 23 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
)]()([
2
)( bfaf
ab
dxxf
b
a
+
≤
∫
b
£
!],[ bax∈?
∫
+
=
x
a
dttfxfaf
ax
xF )()]()([
2
)(
0)( =aF
5o?ù? ¥???
£
ü b)(xF 0)()( =≥ aFxF
)()(
2
)]()([
2
1
)( xfxf
ax
xfafxF?
′
++=
′
)()(
2
)]()([
2
1
xfxf
ax
xfaf?
′
+?=
)(
2
)(
2
)(
xf
ax
f
xa
′
+
′
= ξ
)]()([
2
ξfxf
ax
′
′
=
),( xa∈ξ
)(xf
′
dh
? 0)( ≥
′
xF
0)()( =≥ aFxF b
è£
ü
∫∫
+
≤
+
2
0
2
0
22
1
cos
1
sin
ππ
dx
x
x
dx
x
x
<£>
ZE
∫∫
+
+
+
= 2
4
2
4
0
2
1
cossin
1
cossin
π
π
π
dx
x
xx
dx
x
xx
I
?=?s
7 xt?=
2
π
5μ
£
!·° Iù
T? www.tsinghuatutor.com - 24 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
∫
+
= 2
0
2
1
cossin
π
dx
x
xx
I
∫∫
+
+
+
= 4
0
2
4
0
2
)
2
(1
sincos
1
cossin
ππ
π
dt
t
tt
dx
x
xx
∫
+
+
= 4
0
2
2
]
)
2
(1
1
1
1
)[cos(sin
π
π
dt
t
t
tt
0
)
2
(1)1(
)
4
)(cos(sin
4
0
22
2
<
++
=
∫
π
π
π
π
dt
tt
ttt
ZE
∫
+
= 2
0
2
1
cossin
π
dx
x
xx
I
∫∫
+
+
+
= 2
4
2
4
0
2
1
cossin
1
cossin
π
π
π
dx
x
xx
dx
x
xx
I
∫
+
= 4
0
2
1
)cos(sin
1
1
π
ξ
dxxx
∫
+
+ 2
4
2
2
)cos(sin
1
1
π
π
ξ
dxxx
? )
2
,
4
(),
4
,0(
21
ππ
ξ
π
ξ ∈∈
?= ?s
7 xt?=
2
π
5
μ
£
!·° Iù
T? www.tsinghuatutor.com - 25 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
∫
+
+
= 4
0
2
2
2
1
)cos(sin)
1
1
1
1
(
π
ξξ
dxxxI
0)21)(
1
1
1
1
(
2
2
2
1
<?
+
+
=
ξξ
è Z? 01
0
cos0
2
2
=++
∫∫
x
tx
dtedtt ¥?¥?
1 #
b
"
#
b $
b %
b
3A
! dtedttxf
t
x
x
2
0
2
cos
2
0
1)(
∫∫
++=
π
μ 0)0(
0
1
2
<=
∫
dtef
t
01)1(
1
0
2
>+=
∫
dttf
[ )1,0(∈?ξ
P 0)( =ξf
? 0
2
sin
2
1)(
2
cos
2
2
>?++=
′
x
e
x
xxf
π
ππ
[μO ?μ
B??b
è
! 1>k
f ]1,0[
??
= V?O
@)1,0(
0)()1(
1
0
1
==
∫
dxxfxekf
k
x
£
üà
iB? )1,0(∈ξ
P¤ )()1()(
1
ξξξ ff
=
′
b
<£>?s?′? ?¤ )()1(
1
ξξ
ξ
fef
= )
1
,0(
ξ
ξ∈
! )()(
1
xfxex
x?
=? 5 )(x? ]1,[
1
ξ
?? )1,(
1
ξ
= V?
O )1()1()(
1
f==?ξ?
yNi )1,0(),1(
1
∈ ξξ
P¤
£
!·° Iù
T? www.tsinghuatutor.com - 26 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
0)()()()(
111
=
′
+?=
′
ξξξξξξ?
ξξξ
fefefe
?
^0
1
≠
ξ
e 0)()()( =
′
+? ξξξξξ fff
[ )()1()(
1
ξξξ ff
=
′
b
è
! )(xf ]
2
,0[
π
??O
@
0)(cos
2
0
2
=?
∫
dxxfx
π
£
ü
? )(xf )
2
,0(
π
= V?5i )
2
,0(
π
ξ∈
P¤
ξξξ tan)(2)( ff =
′
? )(xf
′
)
2
,0(
π
= ?? 5i )
2
,0(
π
ξ∈ D )
2
,0(
π
η∈
sY
P¤
ξξξ tan)(2)( ff =
′
D ηηη tan)()( ff =
′
<£>
n5? 0)(cos2
0
2
=?
∫
dxxfx
π
5 )
2
,0(
0
π
∈?x
P¤
?0)(cos
00
2
=xfx 0)(,0cos
00
=?≠ xfx b
6??s?′? ?¤?|£ùf
)(cos)(
2
xxfx =? 5 )(x? ]
2
,0[
π
? ? )
2
,0(
π
= V
?O 0)
2
(,0)(
0
==
π
x
yN )
2
,0()
2
,(
0
ππ
ξ?∈? x
P¤
£
!·° Iù
T? www.tsinghuatutor.com - 27 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
0)(cos)(cossin2)(
2
=+?=
′
ξξξξξξ? ff
'μ ξξξ tan)(2)( ff =
′
n5?s?s
=?
∫
dxxfx )(cos2
0
2
π
0))(cos)(sincos2(
2
2
0
=
′
+
∫
dxxfxxfxxx
π
?$f
¥ ???5i )
2
,0(
π
ξ∈
P¤
0))(cos)(sincos2(
2
=
′
+ ξξξξξξ ff Q
,0cos ≠ξξ Aμ
0))(cos)(sin2 =
′
ξξξξ ff
'μ ξξξ tan)(2)( ff =
′
b
6?s?s
=?
∫
dxxfx )(cos2
0
2
π
xdxfx sin)(cos2
0
∫
π
dxxxfxfxx ))(sin)((cossin2
0
′
=
∫
π
0sin))(sin)((cos 2
0
=
′
=
∫
dxxff
π
ηηηη ?
)
2
,0(
π
η∈ b
6?,01sin2
0
≠=?
∫
dxx
π
yN
0))(sin)(cos =
′
ηηηη ff
'μ ηηη tan)()( ff =
′
b
£
!·° Iù
T? www.tsinghuatutor.com - 28 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
è
! ()
∫
+
= 2,sin
π
x
x
dttxf
£
ü ( )xf
^[ π1?
ù¥?
ùf
p ( )xf ¥′×b
3
()
∫
+
+
=+
π
π
π 2
3
,sin
x
x
dttxf
! π+=ut 5μ
()
∫
+
+=+ 2 )sin(
π
ππ
x
x
duuxf
∫
+
== 2 )(sin
π
x
x
xfduu
# ( )xf
^[ π1?
ù¥?
ùf
b
y1 xsin ( )+∞∞?,
?? ? i? ( )xf ¥?
ù 1 π# o3
[ ]π,0
)
′×by1
() )sin()cos()sin()
2
sin( xxxxxf?=?+=
′
π
7
( ) 0=
′
xf ¤,
4
3
,
4
21
ππ
== xx O
∫
==
4
3
4
2sin
4
π
π
π
tdtf
∫∫∫
=?==
π
π
π
π
π
π
π
4
3
4
5
4
5
4
3
,22sinsinsin
4
3
tdttdtdttf
? () () ( )
∫∫
=?=== 2
0
2
3
,1sin,1sin0
π π
π
π dttftdtf y7
( )xf ¥Kl′
^ 22? Kv′
^ 2 # ( )xf ¥′×
^
[ ].2,22? b
£
!·° Iù
T? www.tsinghuatutor.com - 29 - bvD ? S
L 1101 è 62781785
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
$?s
?B [±s
? c?s¥à
QD9
?s¥à
QD?é
?s'à
QaZED?1?
M?
à
Q?sT1
T¥Ks?′? ???D′? ??s
^B?
b
ZEX±sEs?síBEM
9DuWMDb
s?
TD??
T¥£
üb
?l
?l b
!f
)(xf μ?>uW
μ?l
Oμ?
?],[ ba
?iséuW |?
],[ ba
n
xxx,,,
10
L
:
1?
=?
iii
xxx
i
i
x?= maxλ
?| ],[
1 iii
xx
∈ξ
T
T
∑
=
=
n
i
iin
xfS
1
)(ξ
? K i
O K′DuW
s�i?
sxfS
n
i
iin
=?= ∑
=
→→
1
00
)(limlim ξ
λλ
],[ ba [ ]
iii
xx,
1?
∈ξ |′¥?i?í1
5?f
)(xf
uW
V
?K ′ ?1f
],[ ba sxfS
n
i
iin
=?= ∑
=
→→
1
00
)(limlim ξ
λλ
)(xf uW
¥s
:T],[ ba
sSdxxfbaI
n
b
a
f
===
→
∫
0
lim)(),(
λ
ba,sY? 1s¥/ a
K
)(xf ? 1$f
x?1s? WM
?s¥
′Ds?WM
¥?|í1'
b
∫∫
=
b
a
b
a
dttfdxxf )()(
f
¥ V?Hq
? ? bf
μ?>uW V ¥A1 Hq
^f
],[ ba )(xf
μ
?b
],[ ba
£
!·° Iù
T? www.tsinghuatutor.com - 1 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
? ? bf
μ?>uW V¥ sHq
@/
Hq-B' V
],[ ba
)(xf uW
??μ?],[ ba
)(xf uW
μ?OoμμK?W?],[ ba
)(xf uW
??],[ ba
?s?l Iù?¥?¨ ?¨s
Tp+?K
na
è5
?s¥?é#è¨2
∫∫
=
a
b
b
a
dxxfdxxf )()(
suW¥ VF?
∫∫∫
+=∈?
b
c
c
a
b
a
dxxfdxxfdxxfRc )()()(,
$
f
@L??
[]
∫∫∫
+=+
b
a
b
a
b
a
dxxgBdxxfAdxxBgxAf )()()()(
??
|?? Vf
],[,0)( baxxf ∈?≥
5
b0)( ≥
∫
b
a
dxxf
? Vf
)(),( xgxf
@ )()( xgxf ≥
5
b
∫∫
≥
b
a
b
a
dxxgdxxf )()(
+Y ?dμ ? ?f
)(xf
?1
, 5 b],[ ba 0)( >
∫
b
a
dxxf
? )(xf
V
5],[ ba )(xf
9 V
O],[ ba
∫∫
≤
b
a
b
a
dxxfdxxf )()(
′? ?? Vf
)(xf
@
],[ ba
Mxfm ≤≤ )(
5
)()()( abMdxxfabm
b
a
≤≤?
∫
éB?
?f
)(xg
dμ V
5
?11??é],[ ba
∫∫∫
≤≤
b
a
b
a
b
a
dxxgMdxxgxfdxxgm )()()()(
s? ′? ??f
)(xf
??
],[ ba )(xg
| ?|O
V
5
],[ ba
),,( ba∈?ξ
P
£
!·° Iù
T? www.tsinghuatutor.com - 2 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
∫∫
=
b
a
b
a
dxxgfdxxgxf )()()()( ξ
+Y
1)( ≡xg
H
],,[ ba∈?ξ
P
))(()( abfdxxf
b
a
=
∫
ξ
__________
],[
)()(
)(
xff
ab
dxxf
ba
b
a
==
∫
ξ
ü (′
Y
L
VéB?£
ü ),,(
0
ba∈?ξ
P
2
? ?b
? )(xf
^ V¥f
5 ],[ aa? 0)( =
∫
a
a
dxxf
? )(xf
^ V¥
}f
5
b
],[ aa?
∫∫
=
aa
a
dxxfdxxf
0
)(2)(
? )(xf
^ V¥?
ùf
M?
ù1 T5?i
^
L
Aμa
∫∫
=
+ TTa
a
dxxfdxxf
0
)()(
? ? ?f
)(xf
@ 0)( =
∫
b
a
dxxf 5i ),(
0
bax ∈
P¤
0)(
0
=xf b
£
üZE ??′? ? £
üZE ? ??f
¥|?
?dμ ??f
)(xf
@ 50)( =
∫
b
a
dxxf
0)(],,[ ≡∈? xfbax b
£
üZE? ??f
¥|?Ds¥|?Q£
è
! dxxI
∫
= 2
0
1
)sin(sin
π
dxxI
∫
= 2
0
2
)cos(sin
π
5 "
"
21
1 II << b
#
21
1 II >> b
$
21
II = b
% 1
21
>> II
<3>? )
2
,0(
π
∈x xx <sin O 19f
?
^xsin
,sin)sin(sin xx <
£
!·° Iù
T? www.tsinghuatutor.com - 3 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
dxxI
∫
= 2
0
1
)sin(sin
π
1sin2
0
=<
∫
dx
π
7 1hf
5μ ?
^xcos xx sin)cos(sin >
dxxI
∫
= 2
0
2
)cos(sin
π
1
2
0
1cos Idxx >=>
∫
π
b
è 9s ¥S?
∫
2
0
2
2
dxe
xx
3
[]
( )
[]
( ) 12min,02max
2
2,0
2
2,0
=?=?
∈∈
xxxx
xx
22
2
0
02
0
22
0
11
2
=≤≤=
∫∫∫
dxedxedxee
xx
è
! dxxxxM )1(ln
221
1
++=
∫
dx
x
xx
N
∫
+
+
=
1
1
2
3
1
∫
+
=
1
1
22
3
)1(
1
dx
x
x
P
5 "
b
"
NMP << b #
PNM << b
$
NPM << b %
MPN << b
3?? M 1f
?uW¥s#1
0)12(212
1
2
1
0
1
0
2
2
2
>?=+=
+
=
∫
x
x
dx
N
0
)1(
1
2
22
1
0
<
+
=
∫
dx
x
P
[ NMP << b
di ??
D%
TD?s¥9
di ??
D%
T#?¨
? ? b
di ??
D%
T
? )(xf
^
¥ ??f
1],[ ba )(xF )(xf
¥B?e
f
5iè
C
P
],[ ba
CdttfxF
x
a
+=
∫
)()(
],[ bax∈?
£
!·° Iù
T? www.tsinghuatutor.com - 4 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
b
a
b
a
xFaFbFCbFdxxf )()()()()(
=?=?=
∫
T?1
di ??
D%
T+Yμ
)()()( afbfdxxf
b
a
=
′
∫
b
di ??
D%
T
P¤?s¥9
1p??sù5pef
ù5b
?¨
di ??
D%
Tá
ì V[YV??sp¥?s¥′b
è p b
∫
2
0
|1| dxx
3
∫∫∫
+?=?
2
1
1
0
2
0
)1()1(|1| dxxdxxdxx
1
22
2
1
2
1
0
2
=?
+?
= x
xx
x
??s
?l¥f
?s9
?+Y?is
sb
è p,sin1
0
∫
π
dxx
3
∫∫
=?
ππ
00
2
cos
2
sin.sin1 dx
xx
dxx
∫∫?
+
=
π
π
π
2
2
0
2
cos
2
sin
2
sin
2
cos dx
xx
dx
xx
.424?=
è
!
>+
≤?
=
01
01
)(
xx
xx
xf
p b
∫
1
1
)( dxxf
3 3EB )(xf u W
=μ?B ?W?
yN]1,1[? ]1,1[? uW
=? i
ef
?
¨
di ??
D%
T ?¨uW¥ VF?μ
∫∫∫
+=
1
0
0
1
1
1
)()()( dxxfdxxfdxxf
=sY V[¨
di ??
D%
T
]1,0[],0,1[?
£
!·° Iù
T? www.tsinghuatutor.com - 5 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
2
3
2
)(
0
1
2
0
1
=?
=
∫
x
x
dxxf
2
3
2
)(
1
0
2
1
0
=?
+=
∫
x
x
dxxf
# b
∫
1
1
)( dxxf
3E= )(xf
^ ]1,1[? ¥f
∫
1
1
)( dxxf
è p dx
x
xx
∫
+
+
2
2
2
cos1
cos)1(
π
π
b
3 dx
x
x
dx
x
xx
∫∫
+
=
+
+
2
0
2
2
2
2
cos1
cos
2
cos1
cos)1(
ππ
π
b
12
12
ln
2
1
sin2
)(sin
2 2
0
2
+
=
=
∫
dx
x
xd
π
V[°¤¨X±sEaDíEs?sE9
?sb
M
9DE
?BDíE¥'
±
^
X±sZE
)()()( afbfdxxf
b
a
=
′
∫
b
a
b
a
xfdxxxf ))(()())(( =
′
′
∫
?=DíE¥'
±
^
β
α
β
α
))(()())(()( tFdtttfdxxf
b
a
=
′
=
∫∫
?
1p )(xf D )(t?
′
?? )(tx?= μ Qf
)(
1
xt
=?
O
)(),( β?α? == ba
CxFdxxf +=
∫
)()( b
£
!·° Iù
T? www.tsinghuatutor.com - 6 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
D
í
E
¥
×
1
?
¨
-
B
^
u
W
M
D
[
?
M
s
u
W
1+?
"¥¥MDb
è p
∫
3
7 u =
7 u =
? 3=u
∫
3
4
2
x
dx
∫
= 2
3
2
arccos
π
∫
=
b
a
f
dxxfbaI )(),(
dttxtxfdxxf
b
a
)())(()(
1
0
′
∫∫
7
ab
ax
t
=
dttxtxfdxxf
d
c
b
a
)())(()(
′
∫∫
7 ccd
ab
ax
t +?
= )(
μ Q| MD xt?= ?
MD
x
t b
1
=
<W¨?s¥iD·sb
£
!·° Iù
T?
3
4
2
4x
dx
b
x?
∫
3
4
2
4x
dx
∫
4
3
2
4u
du
tsec2
5 tdtdu sectan2=
H
3
2
arccos=t
? 4=u
H
3
π
=t
=
4
∫∫
=
2
3
2
arccos
4
3
2
tan2
sectan2
4
π
dt
t
tt
u
du
2
cos
cos
dt
t
t
www.tsinghuatutor.com - 7 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
∫
+
+
= 2
3
2
arccos
sin
sin1
1
sin1
1
2
1
π
td
tt
7 ty sin=
V°¤ ?¨X±sE
∫?
+
+
2
3
2
arccos
sin
sin1
1
sin1
1
2
1
π
td
tt
2
3
3
5
2
3
3
5
1
1
ln
2
1
1
1
1
1
2
1
u
u
dy
yy?
+
=?
+
+
=
∫
2ln)53ln()32ln( ++?+= b
è
! () ( )
∫
=?
4
0
2
2cos
π
dxxfxxf
p ()
∫
2
0
π
dxxf b
<3>,() Idxxf =
∫
2
0
π
7 ux =2 5 dudx
2
1
=
()=
∫
4
0
2
π
dxxf () Iduuf
2
1
2
1
2
0
=
∫
π
b
?
T () ( )
∫
=?
4
0
2
2cos
π
dxxfxxf
H|s¤?
() Idx
I
dxxxf
42
]cos[ 2
0
2
0
2
π
ππ
==?
∫∫
'
IdxxI
4
cos2
0
2
π
π
=?
∫
£
!·° Iù
T? www.tsinghuatutor.com - 8 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
# dxxII
∫
=? 2
0
2
cos
4
π
π
422
1 ππ
=?=
yN ==
∫
dxxfI 2
0
)(
π
π
π
4
b
è
!
^
¥ ??f
5
%b)(xf ],[10
"
∫∫
=
ππ
π
00
)(sin)(sin dxxfdxxxf
#
∫∫
=
ππ
π
00
)(sin2)(sin dxxfdxxxf
$
∫∫
=
ππ
π
00
)(sin
2
)(sin dxxfdxxxf
%
∫∫
=
ππ
π
00
)(sin
2
)(sin dxxfdxxxf
<3>
7 dtdxtx?=?=,π
∫∫
=
0
0
)(sin)()(sin
π
π
π dttftdxxxf
∫∫
+?=
ππ
π
00
)(sin)(sin dttfdtttf
M[¤?s?1 %b
s?sE
! )(xf D )(xg
′
?? 1],[ ba )(xF )(xf
¥B?ef
5
],[ ba
∫∫
′
=
b
a
b
a
b
a
dxxgxFxgxFdxxgxf )()()()()()( è
p
∫
e
e
xdx
1
ln
3 ( )
∫∫
=
e
e
e
e
e
e
xxdxxxdx
1
1
1
lnlnln
e
dx
e
e
e
e
21
1
=?
=
∫
b
£
!·° Iù
T? www.tsinghuatutor.com - 9 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
è £
ü
∫
2
0
sin
π
xdx
n
∫
= 2
0
cos
π
xdx
n
ip
∫
= 2
0
sin
π
xdxJ
n
n
b
£
7
tx?=
2
π
∫
=
0
cos
π
tdtJ
n
n
2
∫
= 2
0
cos
π
xdx
n
b
∫∫
==
2
0
1
2
0
)cos(sinsin
ππ
xxdxdxI
nn
n
))(1(
cossin)1(cossin
2
2
0
22
2
0
1
nn
nn
IIn
xdxxnxx
=
+?=
∫
π
π
2
1
=
nn
I
n
n
I
′L,3,2=n 1,
2
10
== JJ
π
b
?
2T? 1s¥? w
T è¨ ?w
T μB??w =??w ì
T ?· ¥
^
[ ?w
TV
Us 2T A? ó ′ B? ?wì
T3 μB? ′ =? ?w ì
T3 μ
=?′?
??!¥9
ì
Tb
2T VB
,¤?/
L¨?
T
1
!)!12(
!)!2(
,
2!)!2(
!)!12(
122
+
=?
=
+
n
n
I
n
n
I
nn
π
bL,3,2,1=n
è =
+?
=
∫
dx
xee
I
xx
2
0
5cossin
8
sin
π
b
"
4
π
b #
15
1
b $
8
π
b %
30
1
b
???Dsà
Q ?'¤?s?
£
!·° Iù
T? www.tsinghuatutor.com - 10 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
15
1
3
2
5
4
8
1
==I ê #
è X ? dt
t
e
A
t
∫
+
=
1
0
1
5 =
+
∫
dt
t
e
t
1
0
2
)1(
s ?
A
e
+?
2
1 b
3 y1 dt
t
e
A
t
∫
+
=
1
0
1
[
∫∫
+
+
+
=
+
1
0
1
0
1
0
2
11)1(
dt
t
e
t
e
dt
t
e
ttt
A
e
+?=
2
1 b
è
! 1??
9
n
∫
1
0
2
)1( dxxx
n
<3>
ZE
∫
1
0
2
)1( dxxx
n
dxxx
nn
xx
n
n
∫
+
+
+
+
+
=
1
0
1
1
0
12
)1(
1
2
1
)1(
dxxx
nnnn
xx
n
n
∫
+
+
++
+
++
=
1
0
2
1
0
2
)1(
)2)(1(
2
)2)(1(
)1(
)3)(2)(1(
2
)3)(2)(1(
)1(2
1
0
3
+++
=
+++
=
+
nnnnnn
x
n
ZE
7 dtdxtx?==?,1 5μ
£
!·° Iù
T? www.tsinghuatutor.com - 11 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
∫
1
0
2
)1( dxxx
n
3
1
2
2
1
1
)1(
1
0
2
+
+
+
+
=?=
∫
nnn
dttt
n
MKs
M
Ks
! )(xf
V
],[ ba ],,[ bax∈? i·B ¥
L
D -?
yN M
K s ? l
B ?f
:T
á
ì?1M
Ksb
∫
x
a
dttf )(
∫
x
a
dttf )(
∫
=
x
a
dttfxF )()(
? ?
? )(xf
V
5M
Ks
?l¥f
??b
],[ ba
∫
=
x
a
dttfxF )()( ],[ ba
? ?B?
^)(xF )(xf
¥ef
b],[ ba
? )(xf
??
5M
Ks
?l¥f
V?
O
],[ ba
∫
=
x
a
dttfxF )()( ],[ ba
())()( xfdttf
dx
d
x
a
=
∫
b
?i B?
^)(xF )(xf
¥B?ef
b
],[ ba
£
ü
],,[ bax∈?
∫
=
x
a
dttfxF )()( 5
∫
+
=?
xx
x
dttfxF )()(
y1 )(xf
V
y N
μ? '],[ ba )(xf ],[ ba ],,[ bax∈? i
0>M
P¤ Mxf ≤)( ?
^
xMdttfxF
xx
x
≤≤?≤
∫
+
)()(0
? C/? ? V¤ 0)(lim
0
=?
→?
xF
x
yN
∫
=
x
a
dttfxF )()(
??],[ ba
£
!·° Iù
T? www.tsinghuatutor.com - 12 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
()
∫
x
a
dttf
dx
d
)(
[]
∫∫
=
+
→?
x
a
xx
a
x
dttfdttf
x
)()(
1
lim
0
[]
∫
+
→?
=
xx
x
x
dttf
x
)(
1
lim
0
∫
+
→?
=
xx
x
x
dt
x
f )(
lim
0
ξ
)()(lim
0
xff
x
==
→?
ξ
T? ξ1 xD xx?+ -W¥B?
£
ü¨?s?′? ? b
è
! ?dttfxF
x
∫
=
0
)()(
≤<?
≤≤?
=
.20,2
,01,
)(
2
2
xx
xe
xf
x
5
=<%>b)(xF ]2,1[?
"
^ )(xf ¥ef
#
V?
$
? ?? %
???? V?b
3 )(xf
^
μ?B ?W?¥ Vf
àμef
b]2,1[?
M/Ks μ]"¥?é
∫
b
x
dttf )(
? ?
? )(xf
V
5M /Ks],[ ba
∫
=
b
x
dttftF )()(
^
??f
? )(xf
? ?
5 M/K s
^ V ?f
b
O
],[ ba
∫
b
x
dttf )(
£
!·° Iù
T? www.tsinghuatutor.com - 13 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
())()( xfdttf
dx
d
b
x
=
∫
ˉMKs
∫
)(
)(
)(
x
x
dttf
β
α
? ?
? )(xf
V
],[ ba )(),( xx βα
??5
ˉMKs
],[ ba
∫
)(
)(
)(
x
x
dttf
β
α
^ ??f
b
? )(xf
?? ],[ ba )(),( xx βα
V?
5
ˉMKs
],[ ba
∫
)(
)(
)(
x
x
dttf
β
α
^ V?f
?
1
() )())(()())(()(
)(
)(
xxfxxfdttf
dx
d
x
x
ααββ
β
α
′
′
=
∫
MKs¥M1ù5
; ? M Ks ?l
B?f
*
1 B í ±s? f
¥
μ
MK s9 ]"
V[é?b è?á
ì V[) ?/
ù5
MK s ? l ¥f
T1 íkl
¨ ¥9
ArE 5 MK s? l¥f
Kù
5?¥?¨b
MKs?l¥f
¥???#′ù5
MKs?l¥f
¥
ü àZ 7
MKs?l¥f
¥sù5
1?ef
¥Bt×12
2
??f
-ef
A1
}f
b
2
??
}f
-ef
A1f
Dè
-?oμB?1f
b0=C
2
???
ùf
-ef
A1?
ùf
DL?
-O?
ù?Mb
???
ùf
)(xf -ef
1?
ùf
¥ 1Hq
^
0)(
0
=
∫
T
dxxf ? 0>T 1?
ùb
2
μ?B ?W?¥f
àμef
b
2
μ?= ?W?¥f
V[μef
b
2
MKsV
U¥f
?B?
^ef
b
è£
ü ??
}f
-ef
A1f
Dè
-b
<£>:
∫
=
x
a
dttfxF )()(
1£if
P¤)(xG CxGxF += )()(
? )()( xfxF =
′
C1è
b
£
!·° Iù
T? www.tsinghuatutor.com - 14 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
! 1£
∫
=
x
dttfxG
0
)()( )(xG
@
)()( xGxG?=?
A? CxGxF += )()( ? )()( xfxf =? yN
)( xG?
∫
=
x
dttf
0
)(
7 tu?= ?
^¤?
∫
=?
x
udufxG
0
)()()(
∫
=
x
uduf
0
)()( )(xG?= b
è
! )(xf
^ ? ?¥?
ù1 T ¥f
£
ü
∫∫
=
+ TaT
a
dxxfdxxf
0
)()(
£
ü£EBy1
^ ??f
| T1M
)(xf a
0)()()( =?+=
∫
+
afaTfdxxf
da
d
aT
a
∫
+aT
a
dxxf )(1?M
1è
7?a 0=a
H
Cdxxfdxxf
TaT
a
==
∫∫
+
0
)()(
yN Cdxxfdxxf
TaT
a
==
∫∫
+
0
)()( ?i¥ (? ?a
£E=
∫
+aT
a
dxxf )(
∫∫∫
+
++=
aT
T
T
a
dxxfdxxfdxxf )()()(
0
0
∫
∫∫∫
=
++=
T
aT
a
dxxf
dxTxfdxxfdxxf
0
00
0
)(
)()()(
?£EB1p )(xf
^ ??f
£E=?1p )(xf
^ Vf
è
! )(xf
^[ T 1?
ù¥ ??f
£
ü )(xf ef
A1?
ùf
DL?f
bax+ -O?
ù?Mb
???
ùf
)(xf -ef
1?
ùf
¥ 1Hq
^
0)(
0
=
∫
T
dxxf ? 0>T 1?
ùb
£
! )()( xfTxf =+
£
!·° Iù
T? www.tsinghuatutor.com - 15 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
CdttfxF
x
+=
∫
0
)()(
o3£i Rba ∈,D[ T 1?
ù¥ ??f
)(xg
P¤
baxxgxF ++= )()(
CaxaxdttfxF
x
+?+=
∫
0
)()(
Caxdtatf
x
++?=
∫
0
))((
| Cb=
∫
=
x
dtatfxg
0
))(()(
baxxgxF ++= )()( b
o3
7 )()( xgTxg =+
p Ra ∈,' Vb
∫
+
=+
Tx
dtatfTxg
0
))(()(
∫∫
+
+?=
Tx
x
x
dtatfdtatf ))(())((
0
aTdttfxg
T
+=
∫
0
)()(
7 3¤0)(
0
=?
∫
aTdttf
T
Rdttf
T
a
T
∈=
∫
0
)(
1
b
?X?Hq¤? b[
£
üV? V
Ib0=a
è
! dttxf
x 2cos1
0
sin)(
∫
=
65
)(
65
xx
xg += 5?
H0→x )(xf
^
)(xg ¥
b
"
?¨íkl
b #
ú¨íkl
b
$
?Níkl
b %
]¨?d?Níkl
s? #
è
! ),0[)(),( +∞∈Cxgxf 0)( >xf )(xg ?? 9
F
£
!·° Iù
T? www.tsinghuatutor.com - 16 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
5
dttf
dttgtf
x
x
x
)(
)()(
)(
0
0
∫
∫
=? <>
"
??9Fb #
),0[ +∞ ),0[ +∞
??h
$
??9F)1,0[ + ),1[ +∞
??h
b
%
??h
??9Fb)1,0[ + ),1[ +∞
3??
[]
2
0
00
)(
)()()()()()(
)(
dttf
dttgtfxfdttfxgxf
x
x
xx
∫
∫∫
=
′
[]
,0
)(
)]()()[()(
2
0
0
>
=
∫
∫
dttf
dttgxgtfxf
x
x
[ )(x?
??9F
s? "
),0[ +∞
è
!,0)( >xf [ ]ba,
??
£
üf
[]
∫∫
+=
x
b
x
a
dttfdttfxF
1
)()()(
[
μM?μB?
,?b]ba,
£
ü,0)( >xf [ ]ba,
??
5 )(xF [ ]ba,
??O V?
0
)(
1
)()( >+=
′
xf
xfxF
)(xF [ ]ba,
??9?y1
0)()(,0
)(
1
)( >=<=
∫∫
b
a
a
b
dttfbFdt
tf
aF
? ??f
,?? ? V?
)(xF [ ]ba,
μO?μB?
,?b
è ??è
¥′
Pcba,,
£
!·° Iù
T? www.tsinghuatutor.com - 17 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
0
)1ln(
sin
lim
3
0
≠=
+
∫
→
c
dt
t
t
xax
x
b
x
<3>
n5?s
K1
,Aμ
0
)1ln(
lim
3
0
=
+
∫
→
x
b
x
dt
t
t
b?
^ 0=b b
Q
∫
+
→
x
b
x
dt
t
t
xax
)1ln(
sin
lim
3
0
)1ln(
)cos(
lim
)1ln(
cos
lim
3
0
3
0
x
xax
x
x
xa
xx
+
=
+
=
→→
0
cos
lim
2
0
≠=
=
→
c
x
xa
x
Aμ
2
1
,1 =?= ca b
è
! )(xf
V?),0[ ∞+ 0)0( =f Qf
1 )(xg
p
xxf
exdttg
2)(
0
)(
∫
= )(xf b
<3>??
T
§1?
∫
=
)(
0
2
)(
xf x
exduug
xp?
?i? xxfg =))(( ¤?
,2)(
2 xx
exxexfx +=
′
K? 0≠x 5μ
xx
xeexf +=
′
2)(
s¤? C)1()( ++=
x
exxf ? 0)0( =f #
)0(1)(lim
0
fCxf
x
=+=
+
→
3 1?=C ?
^
b1-)1()(
x
exxf +=
è
! )(xf 1 ??dμf
μv? ¥è
C? #bx≤≤1
£
!·° Iù
T? www.tsinghuatutor.com - 18 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
)(0 xfy ≤≤ ??u×¥
1 21
2
+b p )(xf b
<3>? 21)(
2
1
+=
∫
bdxxf
b
¤
21)(
2
1
+=
∫
xdttf
x
|
T
H p?¤x
1
)(
2
+
=
x
x
xf b
è X ? )(xf ),( +∞?∞
1
}f
O
dttfttxF
x
∫
=
0
)()2(sin)( 5
^<">)(xF
"a
}f
#af
$a?
ùf
%a[
??f
??
^b
cμ?
¥s
s|
=cμ?
¥ù5
^B ?×15?? ?ù5aa31?
p?
b
??ZEμ
?
??
[y0?
TCs|
=
H5|c?
¥y0M?s|?
?íE|c?
¥?sM?s|?
5??M
9Db
è =?
∫
x
dttx
dx
d
0
2
)2cos( b
<3>
7 dudtutx?==?,2 5
∫∫
=?=
x
x
x
x
duuduuxI
2 2
2
2
coscos)( b
=
′
)(xI
22
cos)2cos(2 xx? b
è
! )(xf ??X? 1)1( =f O
2
0
arctan
2
1
)2( xdttxtf
x
=?
∫
p b
∫
2
1
)( dttf
<3>
n5) ??
7 dudttux?==?,2 ?
^
∫
x
dttxtf
0
)2(
∫
=
x
x
duufux
2
)()2(
∫
=
x
x
duufx
2
)(2
∫
x
x
duuuf
2
)(
2
arctan
2
1
x=
£
!·° Iù
T? www.tsinghuatutor.com - 19 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
p?
¤
)(2)2(4)(2
2
xxfxxfduuf
x
x
+
∫
4
1
)()2(4
x
x
xxfxxf
+
=+?
'μ
4
2
1
)()(2
x
x
xxfduuf
x
x
+
+=
∫
7 ?i?1=x 1)1( =f ¤?
4
3
)(
2
1
=
∫
dttf b
è
! )(xf ),( +∞?∞
??:
∫
=
x
dttftxxF
0
)()2()(
k£
? )(xf 1
}f
5 9
^
}f
)(xF
? )(xf ???95 ???hb)(xF
<£>
! )(xf 1
}f
I
n
∫
=?
x
dttftxxF
0
)()2()(
7 dudtut?=?=,5μ
∫
=+=?
x
xFduufuxxF
0
)()()2()( # 1
}f
)(xF
! )(xf ???9 I
n
[]
′
=
′
∫∫
xx
dtttfdttfxxF
00
)(2)()(
)(2)()(
0
xxfxxfdttf
x
∫
+=
∫
=
x
xxfdttf
0
)()(
)]()([ xffx?= ξ
? ξ D -W?
^0 x
?
H0>x 0)(,0)()( ≥
′
≥? xFxff ξ
?
H0<x 0)(,0)()( ≥
′
≤? xFxff ξ
?
H yN0=x 0)0( =
′
F ),( +∞?∞
μ 0)( ≥
′
xF b
[ ???hb)(xF
£
!·° Iù
T? www.tsinghuatutor.com - 20 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
è X ? )(xf ??O A
x
xf
x
=
→
)(
lim
0
!
p
∫
=
1
0
)()( dtxtfxF )(xF
′
i)
)(xF
′
¥ ???b
<3>
n5?X? )(xf ???#K?
T?μ 0)0( =f
Q
7 0,,≠== x
x
du
dtxtu 5μ
=
≠
=
∫
00
0)(
1
)(
0
x
xduuf
x
xF
x
?
H0≠x
∫
=
′
x
duuf
xx
xf
xF
0
2
)(
1)(
)(
1 ??f
b
22
)(
lim
)(
lim)0(
0
2
0
0
A
x
xf
x
duuf
F
x
x
x
===
′
→→
∫
=
≠?
=
′
∫
0
2
0,)(
1)(
)(
0
2
x
A
xduuf
xx
xf
xF
x
uduf
xx
xf
xF
x
xxx
∫
→→→
=
′
0
2
000
)(
1
lim
)(
lim)(lim
)0(
22
F
AA
A
′
==?=
yN )) ??b )(xF
′
),( +∞?∞
è
!
)(xf
1X? V?f
)(xg
1
)(xf
¥Qf
5
=?
∫
)(
)(
xfx
x
dtxtxg
dx
d
"
£
!·° Iù
T? www.tsinghuatutor.com - 21 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
" )()(
2)(
0
xfxdttg
xf
′
+
∫
# )()(
2)(
0
xfxdttg
xf
′
∫
$ )()(
)(
0
xfxdttg
xf
′
+
∫
% )()(
)(
0
xfxdttg
xf
′
∫
<3>:
∫∫
=?=
)()(
)()()(
xfx
x
xfx
x
dtxtgxdtxtxgxI
T
?¥s
7 dudtuxt ==?,
∫
=
)(
0
)()(
xf
duugxxI
))())((()()(
)(
0
xfxfxgduugxI
xf
′
+=
′
∫
))())((()(
)(
0
xfxfxgduug
xf
′
+=
∫
)()(
2)(
0
xfxduug
xf
′
+=
∫
"
è =
+
∫
+∞→
x
x
t
x
dt
e
t
2
1
ln
lim b
s? b0 0>?X
P? 0>> Xx
H
x
x
x
t
e
xx
dt
e
t
+
≤
+
≤
∫
1
2ln
1
ln
0
2
?¨C/? ?¤? 0
1
ln
lim
2
=
+
∫
+∞→
x
x
t
x
dt
e
t
b
s8 è5
è X? ?? wL )(xfy =1?? )0()0,( ≠aa ?
5
%b
∫
∈?
c
c
dxxafRc )(,
" dxxaf
c
∫
0
)2(2 #
dxxaf
c
∫
0
)2(2
$
%
0dxxcf
a
∫
0
)(2
£
!·° Iù
T? www.tsinghuatutor.com - 22 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
<3>?+il V¤?ê %
wL )(xfy =1?? ?b)0()0,( ≠aa
[/
^+?¨?uWMD¥ è5b
è X?
¥ ??wL1?°L],[ ba )(xfy =
2
ba
x
+
= ?
£
ü
∫∫
+
= 2 )(2)(
ba
a
b
a
dxxfdxxf
<£>
∫∫∫
+
+
+=
b
ba
ba
a
b
a
dxxfdxxfdxxf
2
2 )()()(
??1?°L)(xfy =
2
ba
x
+
= ?
aBsμ
∫
+
b
ba
dxxf
2
)(
∫
+
+=
b
ba
dxxbaf
2
)(
7 xbat?+= 5 dtdx?= ?
^¤?
∫∫
++
=?+
a
ba
b
ba
dttfdxxbaf
22
)()(
∫
+
=
2
ba
a
dttf )(
[
∫∫
+
= 2 )(2)(
ba
a
b
a
dxxfdxxf b
è p ¥KvKl′bdtetxf
x t
∫
=
2
0
)2()(
<3> )(xf 1
}f
o3p ),[ +∞0
¥KvKl′b
7 2,0)2(2)(
2
2
==?=
′
xexxxf
x
1·B?O
? 20 << x
H,0)( >
′
xf
? 2>x
H,0)( <
′
xf yN 2=x 1v′?'Kv′?b
Kv′1
22
0
1)2()2(
+=?=
∫
edtetf
t
b
=
+∞→
)(lim xf
x
dtet
t
∫
∞+?
0
)2(
112)2(
00
=?=+=
∞+
∞+
tt
eet
? 0)0( =f yN 1Kl′?Kl′1 b0=x
è
! )(xf
V±],[ ba )(xf
′
dh£
ü
£
!·° Iù
T? www.tsinghuatutor.com - 23 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
)]()([
2
)( bfaf
ab
dxxf
b
a
+
≤
∫
b
£
!],[ bax∈?
∫
+
=
x
a
dttfxfaf
ax
xF )()]()([
2
)(
0)( =aF
5o?ù? ¥???
£
ü b)(xF 0)()( =≥ aFxF
)()(
2
)]()([
2
1
)( xfxf
ax
xfafxF?
′
++=
′
)()(
2
)]()([
2
1
xfxf
ax
xfaf?
′
+?=
)(
2
)(
2
)(
xf
ax
f
xa
′
+
′
= ξ
)]()([
2
ξfxf
ax
′
′
=
),( xa∈ξ
)(xf
′
dh
? 0)( ≥
′
xF
0)()( =≥ aFxF b
è£
ü
∫∫
+
≤
+
2
0
2
0
22
1
cos
1
sin
ππ
dx
x
x
dx
x
x
<£>
ZE
∫∫
+
+
+
= 2
4
2
4
0
2
1
cossin
1
cossin
π
π
π
dx
x
xx
dx
x
xx
I
?=?s
7 xt?=
2
π
5μ
£
!·° Iù
T? www.tsinghuatutor.com - 24 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
∫
+
= 2
0
2
1
cossin
π
dx
x
xx
I
∫∫
+
+
+
= 4
0
2
4
0
2
)
2
(1
sincos
1
cossin
ππ
π
dt
t
tt
dx
x
xx
∫
+
+
= 4
0
2
2
]
)
2
(1
1
1
1
)[cos(sin
π
π
dt
t
t
tt
0
)
2
(1)1(
)
4
)(cos(sin
4
0
22
2
<
++
=
∫
π
π
π
π
dt
tt
ttt
ZE
∫
+
= 2
0
2
1
cossin
π
dx
x
xx
I
∫∫
+
+
+
= 2
4
2
4
0
2
1
cossin
1
cossin
π
π
π
dx
x
xx
dx
x
xx
I
∫
+
= 4
0
2
1
)cos(sin
1
1
π
ξ
dxxx
∫
+
+ 2
4
2
2
)cos(sin
1
1
π
π
ξ
dxxx
? )
2
,
4
(),
4
,0(
21
ππ
ξ
π
ξ ∈∈
?= ?s
7 xt?=
2
π
5
μ
£
!·° Iù
T? www.tsinghuatutor.com - 25 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
∫
+
+
= 4
0
2
2
2
1
)cos(sin)
1
1
1
1
(
π
ξξ
dxxxI
0)21)(
1
1
1
1
(
2
2
2
1
<?
+
+
=
ξξ
è Z? 01
0
cos0
2
2
=++
∫∫
x
tx
dtedtt ¥?¥?
1 #
b
"
#
b $
b %
b
3A
! dtedttxf
t
x
x
2
0
2
cos
2
0
1)(
∫∫
++=
π
μ 0)0(
0
1
2
<=
∫
dtef
t
01)1(
1
0
2
>+=
∫
dttf
[ )1,0(∈?ξ
P 0)( =ξf
? 0
2
sin
2
1)(
2
cos
2
2
>?++=
′
x
e
x
xxf
π
ππ
[μO ?μ
B??b
è
! 1>k
f ]1,0[
??
= V?O
@)1,0(
0)()1(
1
0
1
==
∫
dxxfxekf
k
x
£
üà
iB? )1,0(∈ξ
P¤ )()1()(
1
ξξξ ff
=
′
b
<£>?s?′? ?¤ )()1(
1
ξξ
ξ
fef
= )
1
,0(
ξ
ξ∈
! )()(
1
xfxex
x?
=? 5 )(x? ]1,[
1
ξ
?? )1,(
1
ξ
= V?
O )1()1()(
1
f==?ξ?
yNi )1,0(),1(
1
∈ ξξ
P¤
£
!·° Iù
T? www.tsinghuatutor.com - 26 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
0)()()()(
111
=
′
+?=
′
ξξξξξξ?
ξξξ
fefefe
?
^0
1
≠
ξ
e 0)()()( =
′
+? ξξξξξ fff
[ )()1()(
1
ξξξ ff
=
′
b
è
! )(xf ]
2
,0[
π
??O
@
0)(cos
2
0
2
=?
∫
dxxfx
π
£
ü
? )(xf )
2
,0(
π
= V?5i )
2
,0(
π
ξ∈
P¤
ξξξ tan)(2)( ff =
′
? )(xf
′
)
2
,0(
π
= ?? 5i )
2
,0(
π
ξ∈ D )
2
,0(
π
η∈
sY
P¤
ξξξ tan)(2)( ff =
′
D ηηη tan)()( ff =
′
<£>
n5? 0)(cos2
0
2
=?
∫
dxxfx
π
5 )
2
,0(
0
π
∈?x
P¤
?0)(cos
00
2
=xfx 0)(,0cos
00
=?≠ xfx b
6??s?′? ?¤?|£ùf
)(cos)(
2
xxfx =? 5 )(x? ]
2
,0[
π
? ? )
2
,0(
π
= V
?O 0)
2
(,0)(
0
==
π
x
yN )
2
,0()
2
,(
0
ππ
ξ?∈? x
P¤
£
!·° Iù
T? www.tsinghuatutor.com - 27 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
0)(cos)(cossin2)(
2
=+?=
′
ξξξξξξ? ff
'μ ξξξ tan)(2)( ff =
′
n5?s?s
=?
∫
dxxfx )(cos2
0
2
π
0))(cos)(sincos2(
2
2
0
=
′
+
∫
dxxfxxfxxx
π
?$f
¥ ???5i )
2
,0(
π
ξ∈
P¤
0))(cos)(sincos2(
2
=
′
+ ξξξξξξ ff Q
,0cos ≠ξξ Aμ
0))(cos)(sin2 =
′
ξξξξ ff
'μ ξξξ tan)(2)( ff =
′
b
6?s?s
=?
∫
dxxfx )(cos2
0
2
π
xdxfx sin)(cos2
0
∫
π
dxxxfxfxx ))(sin)((cossin2
0
′
=
∫
π
0sin))(sin)((cos 2
0
=
′
=
∫
dxxff
π
ηηηη ?
)
2
,0(
π
η∈ b
6?,01sin2
0
≠=?
∫
dxx
π
yN
0))(sin)(cos =
′
ηηηη ff
'μ ηηη tan)()( ff =
′
b
£
!·° Iù
T? www.tsinghuatutor.com - 28 - bvD ? S
L 1101 è 62781785
2005
£
!·°
TDn bê
ê?7<v0 1006 bvD ? S
L 1101 è 62781785
è
! ()
∫
+
= 2,sin
π
x
x
dttxf
£
ü ( )xf
^[ π1?
ù¥?
ùf
p ( )xf ¥′×b
3
()
∫
+
+
=+
π
π
π 2
3
,sin
x
x
dttxf
! π+=ut 5μ
()
∫
+
+=+ 2 )sin(
π
ππ
x
x
duuxf
∫
+
== 2 )(sin
π
x
x
xfduu
# ( )xf
^[ π1?
ù¥?
ùf
b
y1 xsin ( )+∞∞?,
?? ? i? ( )xf ¥?
ù 1 π# o3
[ ]π,0
)
′×by1
() )sin()cos()sin()
2
sin( xxxxxf?=?+=
′
π
7
( ) 0=
′
xf ¤,
4
3
,
4
21
ππ
== xx O
∫
==
4
3
4
2sin
4
π
π
π
tdtf
∫∫∫
=?==
π
π
π
π
π
π
π
4
3
4
5
4
5
4
3
,22sinsinsin
4
3
tdttdtdttf
? () () ( )
∫∫
=?=== 2
0
2
3
,1sin,1sin0
π π
π
π dttftdtf y7
( )xf ¥Kl′
^ 22? Kv′
^ 2 # ( )xf ¥′×
^
[ ].2,22? b
£
!·° Iù
T? www.tsinghuatutor.com - 29 - bvD ? S
L 1101 è 62781785