,测量学, 学习辅导
,测量学,
同济大学 测量与国土信息工程系
第四章 距离测量
与
第 四 章
距离测量与三角高程测量
学 习 要 点
◆ 卷尺量距
◆ 视距测量
◆ 电磁波测距
◆ 三角高程测量
测距技术的发展
? 直接测距法
?步测:双步
≈1.5m
光学视距测量步弓、尺链
线尺、竹尺、
皮尺、钢尺 电磁波测距
? 间接测距法
距离测量方法概
述
?距离测量是测量的三项基本工作之一:
测定地面点之间的 水平距离 。
?距离测量的主要方法有:
钢卷尺量距 主要指钢卷尺量距
视距测量 利用测量仪器的视距丝测距
电磁波测距 测距仪测距
三角测量法 利用三角形的边角关系求距离
距离测量概述
?三角高程测量:
是间接测定两点间 高差 的方法。
卷尺量距概
述§ 4-1 卷尺量距
?精密量距方法
量距相对精度,1?10000?1?40000
主要用途,砼、钢结构等较精密工程的
放样等。
?一般量距方法
量距相对精度,1?2000?1?5000
主要用途,图根导线边长丈量、一般工
程的距离放样。
1.一般方法量距钢尺量距的作业要求
1.一般方法量距:
直 目估定线,保证量距时沿直线方向进行
平 地面平整,钢尺水平
准 每尺段端点标志精确
A
B
测钎
?
?
?
? ?
? ?
SAB=n?+ ? ?为整尺段长
?为余长
? 直线定向
? 1、两点间定线
2、过山头定线
3、延长直线
A
C1
B
C2
C
2.精密方法量距
2.精密方法量距:
尺长改正
0
' ? kDD k ???
? ?0' ttDD t ??? ?
'2
2
D
hD
h ???
温度改正
高差改正
(4-1-8)
(4-1-9)
(4-1-4)
?精密量距时采取的措施:
1.用检定过的钢尺;
2.经纬仪定线;
3.钉尺段桩,逐段量测;
4.对钢尺施加固定拉力;
5.对量距结果加三项改正数:
尺长鉴定
? 钢尺长度方程式
? ?
测量时的钢尺温度
设定的标准温度
钢尺的温度线膨胀系数
数际长度与名义长度的差在标准温度下,钢尺实
钢尺的名义长度
??
??
??
???
??
???????
t
t
l
ttlll
k
kt
0
0
000
?
?
弹性模量张力强度。 ????
?
EP
l
E
P
dl
钢是弹性体,在拉力作用下会变形(伸长)
简单的尺长鉴定
? 在平坦的地面(宜在室内,使两尺温度
相同)把待检定的尺子与高精度的标准
尺比较而求得 Δ′k
)((( 000000 )) ttllttll
lll
kk
t
???? ?????????
???
??
lkk ????? ?
kkl ? ?????
l
lt
? 检定场:在平整的条形场地两端地面埋
设两个稳定的标志,其间距比待检定钢
尺长度 n倍略短一些。高精度测量两标志
的间距作为标准长度 S标准 。
n
SS
k
'?
?? 标准
设尺子的温度膨胀系数已知。用待检定
的尺子(先假定 Δk=0),在工作时的正
常拉力下,测量检定场两标志的间距 S’。
从而可得
钢尺尺长鉴定
测
回
程序 丈量
时间
丈量
温度
t
温度
差
t - 2 0
测量值
m
温度改
正值
mm
改正后
的平距
m
1 往
返
9, 50 29, 3
29, 5
+ 9, 3
+ 9, 5
1 1 9, 9 7 3
1 1 9, 9 7 3
+ 1 3, 4
+ 1 3, 7
1 1 9, 9 8 6 4
1 1 9, 9 8 6 7
2 往
返
3 0, 4
3 0, 5
+ 1 0, 4
+ 1 0, 5
1 1 9, 9 7 0
1 1 9, 9 7 0
+ 1 5, 0
+ 1 5, 1
1 1 9, 9 8 5 0
1 1 9, 9 8 5 1
3 往
返
10, 4 0 3 0, 2
3 1, 1
+ 1 0, 2
+ 1 1, 1
1 1 9, 9 7 2
1 1 9, 9 7 3
+ 1 4, 7
+ 1 6, 0
1 1 9, 9 8 6 7
1 1 9, 9 8 9 0
L ˊ = 1 1 9, 9 8 6 5 L = 1 1 9, 9 7 9 3
mml
L
LL
l 8.130
120
2.7
0
???
?
??
??
??
mmtmmml )20(36.08.130 ????
尺号, 015 名义长度, 30m 膨胀系数,0.012
钢尺铺地丈量 (在标准拉力下)
mSSSSS htk 936.234' ????????
m
S
hhSSSS
h 0137.0'2''c o s'
2
22 ?????????? ?
? ? mttSS t 0 2 0 9.0)204.27(3036.0943.234' 0 ???????????? ?
m
l
SS kk 0141.0
30
8.1943.234'
0
?????????
mmtmmml )20(36.08.130 ????
已知
量得
s′=234.943; t=27.4° ?; h=2.54
距离测量的误差源
? 尺长误差 系统
? 温度的影响 部分系统,部分偶然
? 倾斜的影响 系统
? 拉力不准引起的误差 部分系统,部分偶然
? 尺子垂曲与反曲引起的误差 系统
? 定线误差 系统
? 读数误差 偶然
?
22222 )( 曲定线倾斜尺长拉力温度读数 mmmmmmmm S ???????
§ 4-2光学测距
一、间接测距,视差法测距
? 间接测距可跨越障碍
b
s
?
r
?
?
s in
s inbs ?
φ bs
视差法测距:专用的基
线尺 +高精度的 φ角
))2/((2 ?tg
bs ?
视距测量二,视 距 测 量
视距测量 —— 利用测量望远镜的视距丝,间接测定
距离和高差的方法。
优点,测量速度快,不受地
形限制。
不足,精度低,距离相对误
差一般约为 1/300,高
差一般为分米级。
用途,主要用于地形图测绘
(地形点的距离与高差 )。
(一)视线水平时
? 十字丝板上有两根视距丝,它们在物镜光心
处的张角 φ基本是不变的。两根视距丝在物方
象的间距与距离成正比
? 一般制作仪器时令
cn
a
f
nS
s
n
f
a
????
?
?
'所以
lSaf 1 00')38.342 00 0(1 00 ????,所以分秒即 ?
一,视线水平时
视距测量
nD
ban
ab 1 0 0?
?? (尺间隔)
?读数要求,上下丝读数 a,b读至毫米,中丝 ? 读至厘米,
仪器高 i 量至厘米。
1.视距公式,(4-2-1)
(4-2-2)
2.高差公式,(4-2-4)
(4-2-5) liHhHH lih
AAB ?????
??
二,视线倾斜
时视距测量
公式二,视线倾斜时视距测量公式
??
?
?
2c o s10 0c o s'
c o s10 0'
c o s'
nSD
nS
nn
??
??
?
则
(4-2-8)
1.视距公式:
liDlihh
Dh
??????
?
?
?
t a n'
t a n'
2.高差公式,高差主值
(4-2-9)AB高差
n’为水准尺与视线
垂直时的尺间隔
'n
三,视距测量观
测和计算
观测,在测站安置经纬仪,对中、整平、量仪器高;
在测点竖水准尺,瞄准 (要求三丝都能读数 )。
读数,每个测点读四个读数
上丝读数 a 读至 毫米
下丝读数 b 读至 毫米
中丝读数 ? 读至 厘米
竖盘读数 L 读至 分
三,视距测量观测和计算
视距测量通常只测盘左(或盘右),测量前
要对竖盘指标差进行检验与校正。
视距测
量表视距测量表
? ?
liDHhHH
liDh
baD
AAp ??????
???
??
?
?
?
t a n
t a n
c o s1 0 0 2计算公式
§ 4-3电磁波测距
1941年瑞典物理学家 Bergstrand在研究光速时
开发了高精度测量 t的技术
1948年瑞典 AGA厂推出了第一台光波测距仪
随着需求的增长和光学、微电子学的发展使
电磁波测距的技术迅速发展。进一步推进了测量学
的发展
尽管 GPS应用很广,短程电磁波测距仪仍然大有用途
一、基本原理
DCtD 22
1?
A B
D
出射光
入射光
依据测定时间的方法不同,光电测距有如
下几种:
1、变频法
2、相位法
3、干涉法
4、脉冲法
二、电磁波测距仪的分类
1、按载波分
2、按测程分
短程 <3km 中程 3- 5km 远程 >15km
3、按精度分为 1( <5mm),2(5-10mm),3(11-20mm)级
DBAm d ???测距仪的精度指标:
( B 用 ppm表示 mm/km)
?微波测距仪
?激光测距仪
?红外光测距仪
三、光电脉冲法测距
计数显示
电子门
时标脉冲
触
发
器
脉冲发射
脉冲接收
反
射
器
D BA
时间测定,1、脉冲计数测时
2、模拟-数字测时(电容充电)
已知:
时标脉冲频率,f=15 Mhz
电磁波速度,v=3× 10 8 m/s
时标脉冲个数,n=100
求:距离 D
D= 1/f × n× v / 2= 1000 米
脉冲测距举例
电磁波测距原理
? 按电磁波理论:
? 光是电磁横波,其数学表达式为
它表达了光波在转播空间任一位置上电磁振动的状态。
其中:
波动过程就是振动的相位沿波动方向移动的过程。
)s i n ( 0?? ?? tAEE 的大小为电矢量 ?
? ?
fCCT
f
C
T
T
ff
f
t
A
??
???
????
???
?
?
??;播的距离称为波长;波在一个振动周期内传
变化一次的时间;是周期,即正弦波循环
是频率,;以弧度为单位;的值,是单位时间内相位变化
是初始相位;是相位;
是振幅;
1
2
00
S
?
)
2
(
2
)(
2
1
2
1
?
??
??
?
?????? NNCtS
T
fC
f
C
CT
?
?
?
??
??
?
?
?
?
2
?
?
?
??? TNTt
相
位
测
量
要测量测距信号( U1)与参考信号( U2)之间的相位差 Δφ
1) 滤波,取出调制波(频率低)的信号
2) 混频,把调制波信号与“本振”信号混合,经处理后可以得
到频率更低(以便于更精确测量相位差),但相位依旧的差
分信号
相位测量
3)把正弦波处理成方波
4)把 U1和 U2分别接在 门
电路 的两个触发器上,
U2负跳变时把与门打开,
U1负跳变时把与门关闭。
在门开启的这段时间内
让 计数脉冲 通过,从而
可以测得 Δφ。
U2
U1
电磁波测距原理
? 设光从发射器发出,抵达反光镜后返回仪器的接收
器,称为信号 2。而从发射器发出的光分出一路直接
进入处理装置,称为信号 1。这两个信号之间存在相
位差 Δφ和整周数 N。
? 利用相位器可测定 Δφ,但而不能求得“整周数 N”。
因此只可以求得“余长”,而不能求得整长。
是余尺长称为光尺长,而
?
???
?
??
222
22
?
?
?
?
?
?
?
? ?
?? NS
电磁波测距原理
? 测距仪把一定波长的电磁波从 A点射向 B点,
经 B点的反光棱镜反射后由测距仪接收,射出
与接收波之间的相位差 [可用微电子技术自动
测量 ]是电磁波在 AB点之间往返时间的函数 —
— [表达式 ]。用它可以算得测距仪至反光镜之
间斜距长度的, 尾数, 。用几个不同波长的
电磁波 [调制波 ]测量同一段距离可以既扩大测
程又保持精度。
测程和精度
? 测相的精度是有限的。例如可以把 Δφ细分 1000倍,
则测量的精度为测尺的 1/1000。设,这
时最小读数为 cm。若要提高读数精度,就应缩短
电子尺。但由于凭一个 Δφ无法求得整尺段数 N,
即不知待测距离的大数。就是说,用短的电子尺
测量精度高但测程小 。如果用长的电子尺能扩大
测程,但由于细分技术的限制,不能求得精确的
尾数。即 测程大但进度低 。如果用两个频率的波
(两个不同的电子尺)进行测量,一个用来测量
距离的大数,另一个用于精确测量距离的尾数。
就可以既扩大测程又保证精度。如果需要还可以
用更多的频率测量。
m102 ??电子尺
数字拼接
? 用 f1=150kHz,
测得距离 986.4m
? 用 f2=15MHz,
测得距离 6.574m
两组数字拼接为 986.574m
mfCfC 1 0 0 022,??? ??
mfCfC 1022,??? ??
内光路
? 当内光路棱镜移到出光
口时测量到内光路的
“距离”
? 移开内光路棱镜后测量
到外光路的“距离”
? 外光路“距离”减去内
光路“距离”后才是需
要测量的距离。
? 这是消除仪器系统误差
的重要措施之一
加
常
数
? 测距仪的机械中心与调制波发射和接收的等效面
不一致;测距仪的机械中心与内光路等效面不一
致使仪器产生(与所测距离长短无关的)加常数。
? 加常数通过检定可以求得。
乘常数
? 电磁波测距好象是用电子尺丈量的。如
果电子尺不准就会产生系统误差。这就
是乘常数。
? 乘常数主要是由调制频率偏离设计值引
起的。乘常数是尺度比例系数,可以经
检定求得。
与测程有关的因素
? 测程主要取决于接收光的强度能保证测
相的精度。而接收光的强度与下述因素
有关:
? 激光器的功率
? 激光发散角的大小
? 大气对光的吸收程度
? 反光镜的有效面积和其几何精度
? 接收镜筒的口径
? 接收光电元器件的灵敏度等
电磁波测距
成果的处理
1)仪器常数改正
乘常数改正数
加常数改正数
2)气象改正
3)倾斜改正
RSS R ??? '
CSc ??
使用。
在手算时也有辅助表格等工 具可
改正数。象参数后对所测距 离加
站上的气传感器,可自动感知测
有的函数。现在多数仪器气压
,,气温是波长气象改正系数
p
tA
ASS
A
?
??? '
? ? '21co s' 2ShSS ????? ?
倾斜的附加
改正数
? 如果测距仪望远镜高度与经
纬仪望远镜的高度不一致,
则在视线倾斜时会产生附加
改正数。因为这时测距仪的
中心会偏离测站中心,而反
光镜中心却多半不会作相同
的偏离。
? 测距仪望远镜与经纬仪望远
镜同轴的仪器没有这项改正
数。
???
?
2s i n
2
c o ss i n
s i n'
d
dS
dS
d
d
???
??
水平距离的变化为
这时斜距的变化为
电磁波测距成果的处理
3)气象改正
电子尺长是光速的函数
而光速又是折射率的函数
空气的折射率首先与波长有关
物理学家测算得
f
C
22 ?
?
n
CC 0?
421 ???
CBAn ????
777
2
10136.010288.161004.2 8 7 6
%03.007600
??? ??????
?????
CBA
COmmH gemmH gPCt
,,
,,,
在标准大气条件下
3)气象改正
空气的折射率也与气象条件有关
仪器制造者根据仪器所用电磁波的波长并顾及一般工作时的
参考温度及标准气压的湿度设定空气的折射率。
如果实际工作时的大气条件与此参考条件相同,就不加气象
改正数。否则要相对于参考折射率加改正数。
。表格等工具计算改正数得的气象参数借助辅助
个点上测改正数。也可以根据几数,自动对所测距离加
的气象参器,可自动感知测站上现在多数仪器带有传感
是空气膨胀系数
折射率就是标准大气条件下的式中
16.273
1
10
1
55.0
7601
1
1
0
70
?
?
?
??
?
?
??
?
?
??
g
g
q
n
t
eP
t
n
n
倾斜的附加
改正数
? 如果测距仪望远镜高度与经
纬仪望远镜的高度不一致,
则在视线倾斜时会产生附加
改正数。因为这时测距仪的
中心会偏离测站中心,而反
光镜中心却多半不会作相同
的偏离。
? 测距仪望远镜与经纬仪望远
镜同轴的仪器没有这项改正
数。
???
?
s i nc o st a n
t a n'
ddS
dS
d
d
???
??
水平距离的变化为
这时斜距的变化为
电子全站仪图电子全站仪
棱
镜
全
站
仪
三角高程测
量§ 4-4 三角高程测量
● 掌握三角高程测量的基本原理和计算方法;
● 熟悉三角高程测量的作业方法。
?已知两点之间的 水平距离 D(或斜距 S),观测 垂直角 ?,
从而计算高差。
?使用于山区或不便于进行水准测量的地区。
?三角高程测量要求考虑地球曲率的影响。
一,三角高程测量原理
二,较远距离的三角高程测量
三,三角高程测量的其他特点
三角高程测量是一种 间接测定 两点之间 高差 的方法
一,三角高程测量
原理一,三角高程测量原理
B点的高程:
ABAB hHH ??
已知 AB水平距离 D,A点高程 HA,在测站 A观测
垂直角 ?,则:
或 liSh liDh ABAB ??? ??? ??s int a n
( S为斜距)
在距离 200米以内,把大地水准面看成水平面
二,一般情况下的
三角高程测量二,一般情况下的三角高程测量
距离较远时,考虑地球曲率差和大气折光差对高差
的影响,应对观测得到的高差加,两差,改正:
R
D
kf
R
D
f
2
2
2
2
2
1
??
??球差改正:
气差改正:
? ? RDkfff 21 221 ????
两差改正:
( k=0.14)
R
s
fff
2
86.0
2
21 ???
flish
flitgDh
ab
ab
?????
?????
?
?
s i n
顾及两差改正时, 三角高程测量的高差计算
公式为,
三、三角高程测量的观测与计算
( 一 ) 三角高程测量的观测
中横丝 切
竖泡居中
读 L,R算
(二)三角高程测量的计算
由三角高程测量的对向观测所求得的往,
返测高差 ( 经过两差改正 ) 之差 fΔh的允许
值 为
?
)(容 CMSf h ??? 10
(三)三角高程闭合线路计算
)(容 cmSf h ][5 2?
即 1KM 5cm
三,三角高
程测量的
其他特点
?三角高程测量两点距离较远时,应考虑加两差改正;
?两点间对向观测高差取平均,能抵消两差影响;
?三角高程测量通常组成附合或闭合路线,以检验精度;
?据有关研究,用电子全站仪进行三角高程测量,能
代替二等水准测量。
四、三角高程测量的其他特点
,测量学,
同济大学 测量与国土信息工程系
第四章 距离测量
与
第 四 章
距离测量与三角高程测量
学 习 要 点
◆ 卷尺量距
◆ 视距测量
◆ 电磁波测距
◆ 三角高程测量
测距技术的发展
? 直接测距法
?步测:双步
≈1.5m
光学视距测量步弓、尺链
线尺、竹尺、
皮尺、钢尺 电磁波测距
? 间接测距法
距离测量方法概
述
?距离测量是测量的三项基本工作之一:
测定地面点之间的 水平距离 。
?距离测量的主要方法有:
钢卷尺量距 主要指钢卷尺量距
视距测量 利用测量仪器的视距丝测距
电磁波测距 测距仪测距
三角测量法 利用三角形的边角关系求距离
距离测量概述
?三角高程测量:
是间接测定两点间 高差 的方法。
卷尺量距概
述§ 4-1 卷尺量距
?精密量距方法
量距相对精度,1?10000?1?40000
主要用途,砼、钢结构等较精密工程的
放样等。
?一般量距方法
量距相对精度,1?2000?1?5000
主要用途,图根导线边长丈量、一般工
程的距离放样。
1.一般方法量距钢尺量距的作业要求
1.一般方法量距:
直 目估定线,保证量距时沿直线方向进行
平 地面平整,钢尺水平
准 每尺段端点标志精确
A
B
测钎
?
?
?
? ?
? ?
SAB=n?+ ? ?为整尺段长
?为余长
? 直线定向
? 1、两点间定线
2、过山头定线
3、延长直线
A
C1
B
C2
C
2.精密方法量距
2.精密方法量距:
尺长改正
0
' ? kDD k ???
? ?0' ttDD t ??? ?
'2
2
D
hD
h ???
温度改正
高差改正
(4-1-8)
(4-1-9)
(4-1-4)
?精密量距时采取的措施:
1.用检定过的钢尺;
2.经纬仪定线;
3.钉尺段桩,逐段量测;
4.对钢尺施加固定拉力;
5.对量距结果加三项改正数:
尺长鉴定
? 钢尺长度方程式
? ?
测量时的钢尺温度
设定的标准温度
钢尺的温度线膨胀系数
数际长度与名义长度的差在标准温度下,钢尺实
钢尺的名义长度
??
??
??
???
??
???????
t
t
l
ttlll
k
kt
0
0
000
?
?
弹性模量张力强度。 ????
?
EP
l
E
P
dl
钢是弹性体,在拉力作用下会变形(伸长)
简单的尺长鉴定
? 在平坦的地面(宜在室内,使两尺温度
相同)把待检定的尺子与高精度的标准
尺比较而求得 Δ′k
)((( 000000 )) ttllttll
lll
kk
t
???? ?????????
???
??
lkk ????? ?
kkl ? ?????
l
lt
? 检定场:在平整的条形场地两端地面埋
设两个稳定的标志,其间距比待检定钢
尺长度 n倍略短一些。高精度测量两标志
的间距作为标准长度 S标准 。
n
SS
k
'?
?? 标准
设尺子的温度膨胀系数已知。用待检定
的尺子(先假定 Δk=0),在工作时的正
常拉力下,测量检定场两标志的间距 S’。
从而可得
钢尺尺长鉴定
测
回
程序 丈量
时间
丈量
温度
t
温度
差
t - 2 0
测量值
m
温度改
正值
mm
改正后
的平距
m
1 往
返
9, 50 29, 3
29, 5
+ 9, 3
+ 9, 5
1 1 9, 9 7 3
1 1 9, 9 7 3
+ 1 3, 4
+ 1 3, 7
1 1 9, 9 8 6 4
1 1 9, 9 8 6 7
2 往
返
3 0, 4
3 0, 5
+ 1 0, 4
+ 1 0, 5
1 1 9, 9 7 0
1 1 9, 9 7 0
+ 1 5, 0
+ 1 5, 1
1 1 9, 9 8 5 0
1 1 9, 9 8 5 1
3 往
返
10, 4 0 3 0, 2
3 1, 1
+ 1 0, 2
+ 1 1, 1
1 1 9, 9 7 2
1 1 9, 9 7 3
+ 1 4, 7
+ 1 6, 0
1 1 9, 9 8 6 7
1 1 9, 9 8 9 0
L ˊ = 1 1 9, 9 8 6 5 L = 1 1 9, 9 7 9 3
mml
L
LL
l 8.130
120
2.7
0
???
?
??
??
??
mmtmmml )20(36.08.130 ????
尺号, 015 名义长度, 30m 膨胀系数,0.012
钢尺铺地丈量 (在标准拉力下)
mSSSSS htk 936.234' ????????
m
S
hhSSSS
h 0137.0'2''c o s'
2
22 ?????????? ?
? ? mttSS t 0 2 0 9.0)204.27(3036.0943.234' 0 ???????????? ?
m
l
SS kk 0141.0
30
8.1943.234'
0
?????????
mmtmmml )20(36.08.130 ????
已知
量得
s′=234.943; t=27.4° ?; h=2.54
距离测量的误差源
? 尺长误差 系统
? 温度的影响 部分系统,部分偶然
? 倾斜的影响 系统
? 拉力不准引起的误差 部分系统,部分偶然
? 尺子垂曲与反曲引起的误差 系统
? 定线误差 系统
? 读数误差 偶然
?
22222 )( 曲定线倾斜尺长拉力温度读数 mmmmmmmm S ???????
§ 4-2光学测距
一、间接测距,视差法测距
? 间接测距可跨越障碍
b
s
?
r
?
?
s in
s inbs ?
φ bs
视差法测距:专用的基
线尺 +高精度的 φ角
))2/((2 ?tg
bs ?
视距测量二,视 距 测 量
视距测量 —— 利用测量望远镜的视距丝,间接测定
距离和高差的方法。
优点,测量速度快,不受地
形限制。
不足,精度低,距离相对误
差一般约为 1/300,高
差一般为分米级。
用途,主要用于地形图测绘
(地形点的距离与高差 )。
(一)视线水平时
? 十字丝板上有两根视距丝,它们在物镜光心
处的张角 φ基本是不变的。两根视距丝在物方
象的间距与距离成正比
? 一般制作仪器时令
cn
a
f
nS
s
n
f
a
????
?
?
'所以
lSaf 1 00')38.342 00 0(1 00 ????,所以分秒即 ?
一,视线水平时
视距测量
nD
ban
ab 1 0 0?
?? (尺间隔)
?读数要求,上下丝读数 a,b读至毫米,中丝 ? 读至厘米,
仪器高 i 量至厘米。
1.视距公式,(4-2-1)
(4-2-2)
2.高差公式,(4-2-4)
(4-2-5) liHhHH lih
AAB ?????
??
二,视线倾斜
时视距测量
公式二,视线倾斜时视距测量公式
??
?
?
2c o s10 0c o s'
c o s10 0'
c o s'
nSD
nS
nn
??
??
?
则
(4-2-8)
1.视距公式:
liDlihh
Dh
??????
?
?
?
t a n'
t a n'
2.高差公式,高差主值
(4-2-9)AB高差
n’为水准尺与视线
垂直时的尺间隔
'n
三,视距测量观
测和计算
观测,在测站安置经纬仪,对中、整平、量仪器高;
在测点竖水准尺,瞄准 (要求三丝都能读数 )。
读数,每个测点读四个读数
上丝读数 a 读至 毫米
下丝读数 b 读至 毫米
中丝读数 ? 读至 厘米
竖盘读数 L 读至 分
三,视距测量观测和计算
视距测量通常只测盘左(或盘右),测量前
要对竖盘指标差进行检验与校正。
视距测
量表视距测量表
? ?
liDHhHH
liDh
baD
AAp ??????
???
??
?
?
?
t a n
t a n
c o s1 0 0 2计算公式
§ 4-3电磁波测距
1941年瑞典物理学家 Bergstrand在研究光速时
开发了高精度测量 t的技术
1948年瑞典 AGA厂推出了第一台光波测距仪
随着需求的增长和光学、微电子学的发展使
电磁波测距的技术迅速发展。进一步推进了测量学
的发展
尽管 GPS应用很广,短程电磁波测距仪仍然大有用途
一、基本原理
DCtD 22
1?
A B
D
出射光
入射光
依据测定时间的方法不同,光电测距有如
下几种:
1、变频法
2、相位法
3、干涉法
4、脉冲法
二、电磁波测距仪的分类
1、按载波分
2、按测程分
短程 <3km 中程 3- 5km 远程 >15km
3、按精度分为 1( <5mm),2(5-10mm),3(11-20mm)级
DBAm d ???测距仪的精度指标:
( B 用 ppm表示 mm/km)
?微波测距仪
?激光测距仪
?红外光测距仪
三、光电脉冲法测距
计数显示
电子门
时标脉冲
触
发
器
脉冲发射
脉冲接收
反
射
器
D BA
时间测定,1、脉冲计数测时
2、模拟-数字测时(电容充电)
已知:
时标脉冲频率,f=15 Mhz
电磁波速度,v=3× 10 8 m/s
时标脉冲个数,n=100
求:距离 D
D= 1/f × n× v / 2= 1000 米
脉冲测距举例
电磁波测距原理
? 按电磁波理论:
? 光是电磁横波,其数学表达式为
它表达了光波在转播空间任一位置上电磁振动的状态。
其中:
波动过程就是振动的相位沿波动方向移动的过程。
)s i n ( 0?? ?? tAEE 的大小为电矢量 ?
? ?
fCCT
f
C
T
T
ff
f
t
A
??
???
????
???
?
?
??;播的距离称为波长;波在一个振动周期内传
变化一次的时间;是周期,即正弦波循环
是频率,;以弧度为单位;的值,是单位时间内相位变化
是初始相位;是相位;
是振幅;
1
2
00
S
?
)
2
(
2
)(
2
1
2
1
?
??
??
?
?????? NNCtS
T
fC
f
C
CT
?
?
?
??
??
?
?
?
?
2
?
?
?
??? TNTt
相
位
测
量
要测量测距信号( U1)与参考信号( U2)之间的相位差 Δφ
1) 滤波,取出调制波(频率低)的信号
2) 混频,把调制波信号与“本振”信号混合,经处理后可以得
到频率更低(以便于更精确测量相位差),但相位依旧的差
分信号
相位测量
3)把正弦波处理成方波
4)把 U1和 U2分别接在 门
电路 的两个触发器上,
U2负跳变时把与门打开,
U1负跳变时把与门关闭。
在门开启的这段时间内
让 计数脉冲 通过,从而
可以测得 Δφ。
U2
U1
电磁波测距原理
? 设光从发射器发出,抵达反光镜后返回仪器的接收
器,称为信号 2。而从发射器发出的光分出一路直接
进入处理装置,称为信号 1。这两个信号之间存在相
位差 Δφ和整周数 N。
? 利用相位器可测定 Δφ,但而不能求得“整周数 N”。
因此只可以求得“余长”,而不能求得整长。
是余尺长称为光尺长,而
?
???
?
??
222
22
?
?
?
?
?
?
?
? ?
?? NS
电磁波测距原理
? 测距仪把一定波长的电磁波从 A点射向 B点,
经 B点的反光棱镜反射后由测距仪接收,射出
与接收波之间的相位差 [可用微电子技术自动
测量 ]是电磁波在 AB点之间往返时间的函数 —
— [表达式 ]。用它可以算得测距仪至反光镜之
间斜距长度的, 尾数, 。用几个不同波长的
电磁波 [调制波 ]测量同一段距离可以既扩大测
程又保持精度。
测程和精度
? 测相的精度是有限的。例如可以把 Δφ细分 1000倍,
则测量的精度为测尺的 1/1000。设,这
时最小读数为 cm。若要提高读数精度,就应缩短
电子尺。但由于凭一个 Δφ无法求得整尺段数 N,
即不知待测距离的大数。就是说,用短的电子尺
测量精度高但测程小 。如果用长的电子尺能扩大
测程,但由于细分技术的限制,不能求得精确的
尾数。即 测程大但进度低 。如果用两个频率的波
(两个不同的电子尺)进行测量,一个用来测量
距离的大数,另一个用于精确测量距离的尾数。
就可以既扩大测程又保证精度。如果需要还可以
用更多的频率测量。
m102 ??电子尺
数字拼接
? 用 f1=150kHz,
测得距离 986.4m
? 用 f2=15MHz,
测得距离 6.574m
两组数字拼接为 986.574m
mfCfC 1 0 0 022,??? ??
mfCfC 1022,??? ??
内光路
? 当内光路棱镜移到出光
口时测量到内光路的
“距离”
? 移开内光路棱镜后测量
到外光路的“距离”
? 外光路“距离”减去内
光路“距离”后才是需
要测量的距离。
? 这是消除仪器系统误差
的重要措施之一
加
常
数
? 测距仪的机械中心与调制波发射和接收的等效面
不一致;测距仪的机械中心与内光路等效面不一
致使仪器产生(与所测距离长短无关的)加常数。
? 加常数通过检定可以求得。
乘常数
? 电磁波测距好象是用电子尺丈量的。如
果电子尺不准就会产生系统误差。这就
是乘常数。
? 乘常数主要是由调制频率偏离设计值引
起的。乘常数是尺度比例系数,可以经
检定求得。
与测程有关的因素
? 测程主要取决于接收光的强度能保证测
相的精度。而接收光的强度与下述因素
有关:
? 激光器的功率
? 激光发散角的大小
? 大气对光的吸收程度
? 反光镜的有效面积和其几何精度
? 接收镜筒的口径
? 接收光电元器件的灵敏度等
电磁波测距
成果的处理
1)仪器常数改正
乘常数改正数
加常数改正数
2)气象改正
3)倾斜改正
RSS R ??? '
CSc ??
使用。
在手算时也有辅助表格等工 具可
改正数。象参数后对所测距 离加
站上的气传感器,可自动感知测
有的函数。现在多数仪器气压
,,气温是波长气象改正系数
p
tA
ASS
A
?
??? '
? ? '21co s' 2ShSS ????? ?
倾斜的附加
改正数
? 如果测距仪望远镜高度与经
纬仪望远镜的高度不一致,
则在视线倾斜时会产生附加
改正数。因为这时测距仪的
中心会偏离测站中心,而反
光镜中心却多半不会作相同
的偏离。
? 测距仪望远镜与经纬仪望远
镜同轴的仪器没有这项改正
数。
???
?
2s i n
2
c o ss i n
s i n'
d
dS
dS
d
d
???
??
水平距离的变化为
这时斜距的变化为
电磁波测距成果的处理
3)气象改正
电子尺长是光速的函数
而光速又是折射率的函数
空气的折射率首先与波长有关
物理学家测算得
f
C
22 ?
?
n
CC 0?
421 ???
CBAn ????
777
2
10136.010288.161004.2 8 7 6
%03.007600
??? ??????
?????
CBA
COmmH gemmH gPCt
,,
,,,
在标准大气条件下
3)气象改正
空气的折射率也与气象条件有关
仪器制造者根据仪器所用电磁波的波长并顾及一般工作时的
参考温度及标准气压的湿度设定空气的折射率。
如果实际工作时的大气条件与此参考条件相同,就不加气象
改正数。否则要相对于参考折射率加改正数。
。表格等工具计算改正数得的气象参数借助辅助
个点上测改正数。也可以根据几数,自动对所测距离加
的气象参器,可自动感知测站上现在多数仪器带有传感
是空气膨胀系数
折射率就是标准大气条件下的式中
16.273
1
10
1
55.0
7601
1
1
0
70
?
?
?
??
?
?
??
?
?
??
g
g
q
n
t
eP
t
n
n
倾斜的附加
改正数
? 如果测距仪望远镜高度与经
纬仪望远镜的高度不一致,
则在视线倾斜时会产生附加
改正数。因为这时测距仪的
中心会偏离测站中心,而反
光镜中心却多半不会作相同
的偏离。
? 测距仪望远镜与经纬仪望远
镜同轴的仪器没有这项改正
数。
???
?
s i nc o st a n
t a n'
ddS
dS
d
d
???
??
水平距离的变化为
这时斜距的变化为
电子全站仪图电子全站仪
棱
镜
全
站
仪
三角高程测
量§ 4-4 三角高程测量
● 掌握三角高程测量的基本原理和计算方法;
● 熟悉三角高程测量的作业方法。
?已知两点之间的 水平距离 D(或斜距 S),观测 垂直角 ?,
从而计算高差。
?使用于山区或不便于进行水准测量的地区。
?三角高程测量要求考虑地球曲率的影响。
一,三角高程测量原理
二,较远距离的三角高程测量
三,三角高程测量的其他特点
三角高程测量是一种 间接测定 两点之间 高差 的方法
一,三角高程测量
原理一,三角高程测量原理
B点的高程:
ABAB hHH ??
已知 AB水平距离 D,A点高程 HA,在测站 A观测
垂直角 ?,则:
或 liSh liDh ABAB ??? ??? ??s int a n
( S为斜距)
在距离 200米以内,把大地水准面看成水平面
二,一般情况下的
三角高程测量二,一般情况下的三角高程测量
距离较远时,考虑地球曲率差和大气折光差对高差
的影响,应对观测得到的高差加,两差,改正:
R
D
kf
R
D
f
2
2
2
2
2
1
??
??球差改正:
气差改正:
? ? RDkfff 21 221 ????
两差改正:
( k=0.14)
R
s
fff
2
86.0
2
21 ???
flish
flitgDh
ab
ab
?????
?????
?
?
s i n
顾及两差改正时, 三角高程测量的高差计算
公式为,
三、三角高程测量的观测与计算
( 一 ) 三角高程测量的观测
中横丝 切
竖泡居中
读 L,R算
(二)三角高程测量的计算
由三角高程测量的对向观测所求得的往,
返测高差 ( 经过两差改正 ) 之差 fΔh的允许
值 为
?
)(容 CMSf h ??? 10
(三)三角高程闭合线路计算
)(容 cmSf h ][5 2?
即 1KM 5cm
三,三角高
程测量的
其他特点
?三角高程测量两点距离较远时,应考虑加两差改正;
?两点间对向观测高差取平均,能抵消两差影响;
?三角高程测量通常组成附合或闭合路线,以检验精度;
?据有关研究,用电子全站仪进行三角高程测量,能
代替二等水准测量。
四、三角高程测量的其他特点