Examples of Estimation Filters
from Recent Aircraft Projects at MIT
November 2004
Sanghyuk Park and Jonathan How
Vehicles & Navigation Sensors
OHS (Outboard
Horizontal Stabilizer)
Navigation Sensors (Piccolo from Cloudcap Tech)
? GPS Motorola M12
? Inertial
? 3 Tokin CG-16D rate gyros
? 3 ADXL202 accelerometers
Navigation Sensors
?Air Data
? GPS Receiver (Marconi, Allstar)
? Dynamic & absolute pressure sensor ? Inertial Sensors
? Air temperature sensor
- Crossbow 3-axis Accelerometer,
? MHX 910/2400 radio modem
Tokin Ceramic Gyro (MINI) or
? MPC555 CPU
Crossbow IMU (OHS)
? Pitot Static Probe: measures
? Crista Inertial Measurement Unit airspeed
? 3 Analog Devices ADXL accelerometers
? Altitude Pressure Sensor
? 3 ADXRS MEMs rate sensors
Complementary Filter (CF)
Often, there are cases where you have two different measurement sources for
estimating one variable and the noise properties of the two measurements
are such that one source gives good information only in low frequency region
while the other is good only in high frequency region.
? You can use a complementary filter !
Example : Tilt angle estimation using accelerometer and rate gyro
≈
∫
rate)(angular dt
- not good in long term
due to integration
outputaccel.
?
?
?
+
τ
τ
?
?
?
s
1
examplefor,
s
=
est
θ
accelerometer rate gyro
High Pass Filter
??
θ
θ
1
g
- not proper during fast motion
?
?
?
τ
=
?
?
?
1
s+
?
sin
1
- only good in long term
Low Pass Filter
?
?
?
?
?
?
≈
θ
Complementary Filter(CF) Examples
? CF1. Roll Angle Estimation
? CF2. Pitch Angle Estimation
? CF3. Altitude Estimation
? CF4. Altitude Rate Estimation
CF1. Roll Angle Estimation
? High freq. : integrating roll rate (p) gyro output
? Low freq. : using aircraft kinematics
- Assuming steady state turn dynamics,
roll angle is related with turning rate, which is close to yaw rate (r)
L sin φ = mV?
L ≈ mg
V
φ ≈ r
g
≈ ? r
sinφ ≈φ
Roll
CF setup
Rate
Gyro
Yaw
Rate
Gyro
1
s
HPF
LPF
V
g
+
+
Roll
angle
estimate
p
r
φ
CF2. Pitch Angle Estimation
? High freq. : integrating pitch rate (q) gyro output
? Low freq. : using the sensitivity of accelerometers to gravity direction
-“gravity aiding”
In steady state
A
X
= g sin θ
?
x
θ = tan
1
?
?
?
?
A ?
?
A
Z
? = g cosθ
?
A
z ?
?
A
X
, A
Z
? outputs ter accelerome
? Roll angle compensation is needed
CF setup
q
meas
≈ q
meas
cosφθ
est
θ
φ
est
est
+
+
s
1
HPF
A
A
x
? ?
?
x
θ = tan
1
?
?
?
A
cosφ
est
?
?
ssz
φ
est
?
A
z ?
LPF
CF3. Altitude Estimation
? Motivation : GPS receiver gives altitude output, but it has ~0.4 seconds of delay.
In order of overcome this, pressure sensor was added.
? Low freq. : from GPS receiver
? High freq. : from pressure sensor
CF setup & flight data
h
Sensor Pressure from
LPF
HPF
+
+
h
h
KF GPS from
est
CF4. Altitude Rate Estimation
? Motivation : GPS receiver gives altitude rate, but it has ~0.4 seconds of delay.
In order of overcome this, inertial sensor outputs were added.
? Low freq. : from GPS receiver
? High freq. : integrating acceleration estimate in altitude direction
from inertial sensors
CF setup
a
z Angular Transform
a
h
s
1
HPF
a
est
,
est
θ
φ
+
+
h
est
y
a
x
LPF
h
KF GPS from
A
x
0
?
?
?
?? ?
a
x
?
?
?
?
=
?
?
?
?
?
?
?
?
?
φ[
est
θ[
]
est
?
?
]
?
?
A A
x z
?
outputs ter accelerome ,
A
y
A
z
0: note a
y
]φ[
est
, θ[
est
]
matrices tion transforma angular :
?
?
?
?
?
?
?
?
? g
a
z
Kalman Filter(KF) Examples
? KF1. Manipulation of GPS Outputs
? KF2. Removing Rate Gyro Bias Effect
KF 1. Manipulation of GPS Outputs
Background & Motivation
? Stand-alone GPS receiver gives position and velocity
? These are obtained by independent methods :
? position ? pseudo-ranges
? velocity ? Doppler effect
and are certainly related (x
= v)
? Kalman filter can be used to combine them !
? Motivation :
Typical Accuracies
Position ~ 30 m
Velocity ~ 0.15 m/s
Many GPS receivers provide high quality velocity information
? Use high quality velocity measurement to improve position estimate
KF 1. Kalman Filter Setup
x
2
ν += vv
meas
av
dt
d
=
1
ω= j
dt
d
Measurements Filter Dynamics
1
ν += xx
meas
ja
dt
d
=
vx
dt
d
=
North
East
Down
est
x
meas
v
est
v
meas
a
est
a
v
j
ii
ων ,
x
: velocity
: acceleration : jerk
: position
: white noises
:a
est
? noisy, but not biased
? combined with rate gyros in removing the gyro biases (KF2)
KF 2. Removing Rate Gyro Bias Effect
Background & Motivation
? In aircraft control, roll angle control is commonly used in inner-loop to create required
lateral acceleration which is commanded from guidance outer-loop
? Biased roll angle estimate can cause steady-state error in cross-track
1
s
HPF
LPF
V
g
Roll
Rate
Gyro
Yaw
Rate
Gyro
+
+
Roll
angle
estimate
p
r
φ
Drawback : biased estimate
Complementary filter with roll & raw gyros (CF1)
Single-Antenna GPS Based
Aircraft Attitude Determination
- Richard Kornfeld, Ph.D. (1999)
Drawback : sampling rate limit (GPS),
typical filter time constant ~ 0.5 sec.
rVga
s
?≈?≈ φ p≈φ
KF 2. Kalman Filter Setup
s
a
V
p
ii
ων ,
r
φ : velocity
: roll rate : yaw rate
: bank angle
: white noises
2
ν++=
pmeas
biaspp
2
ω=p
dt
d
3
ω=
p
bias
dt
d
Measurement Equations Filter Dynamics
meas
p
( )
est
p
bias
()
est
s
a
1
νφ += ga
s
3
νφ ++=
rmeas
bias
V
g
r
meas
r
4
ω=
r
bias
dt
d
1
ωφ += p
dt
d
est
p
( )
est
r
bias
est
φ
: acceleration in sideways direction
from Rate Gyros
from GPS Kalman Filter
KF 2. Simulation Result
? Simulation for 10 degree bank angle hold
? Roll rate gyro bias=0.03 rad/s, yaw rate gyro bias = 0.02 rad/s were used in simulation
References
? Applied Optimal Estimation
Edited by Arthur Gelb, MIT Press, 1974
? Fundamentals of Kalman Filtering – A Practical Approach
Paul Zarchan & Howard Musoff, Progress in Astronautics and Aeronautics Vol. 190
? Avionics and Control System Development for Mid-Air Rendezvous of Two Unmanned Aerial Vehicles
Sanghyuk Park, Ph.D. Thesis, MIT, Feb. 2004
? Fundamentals of High Accuracy Inertial Navigation
Averil Chatfield, Progress in Astronautics and Aeronautics Vol. 174
? Applied Mathematics in Integrated Navigation Systems
R. Rogers, AIAA Education Series, 2000
? The Impact of GPS Velocity Based Flight Control on Flight Instrumentation Architecture
Richard Kornfeld, Ph.D. Thesis, MIT, Jun. 1999
? Autonomous Aerobatic Maneuvering of Miniature Helicopters
Valdislav Gavrilets, Ph.D. Thesis, MIT, May 2003