1
Chapter 14 Kinetic theory
The kinetic theory is a special aspect of the
statistical mechanics of large number of
particles. Suitable averages of the physical
characteristics and motions of individual
particles provide information about the
macroscopic behavior of the system as a
whole.
The dynamics of many-particle systems is
called statistical mechanics.
2
§ 14.1 The ideal gas
1. Newton’s model of gas—static model
The corpuscular particles of gas occupy fixed
positions and filled the entire space between
them.
Repel force
↓∝↑?∝ VPVrF 1,1
2
2. Kinetic model (Daniel Bernoulli, James
Clerk Maxwell, Ludwig Boltzmann and
others)
1gas is composed of many tiny particles,
freely moving at high speed.
2the pressure arises from the innumerable
collisions of particles with each other and with
the walls of the container. The pressure of a gas
in thermal equilibrium inside a container never
runs down or decreases with time, the collisions
must be modeled as completely elastic, the
motion is perpetual.
3 The forces involved in the collisions of the
particles of the gas with each other and with
walls of the container must conservative,
briefly acting only during the intervals of the
collisions and essentially zero otherwise.
§ 14.1 The ideal gas
3
§ 14.1 The ideal gas
4gases can be compressed easily. The space of
the particles in gas is the order of 10 times
larger than those of liquids and solids.
3. Our purpose
Find:
1the connection between temperature T and
pressure P and their microscopic essentials;
2the average velocity of the particles;
3specific heat—the microscopic essentials.
§ 14.1 The ideal gas
4
4. The properties of ideal gas (model)
The ideal gas equation of state:
nRTPV =
2NV
particle
<<V, the volume occupied by the
particles themselves is a negligibly small
fraction of the volume containing the gas.
1the number of particles N in the gas is very
large, for instance
112312
106.02mol/1002.6mol10 ×=××
?
3all the particles are in random motion
and obey Newton’s law of motion.
§ 14.1 The ideal gas
4the particles are equally likely to be moving
in any direction--symmetry.
5the gas particles interact with each other
and with the walls of the container only via
elastic collisions. No force act on a particle
except during a collision. All collisions elastic
and of negligible duration.
6the gas is in thermal equilibrium with its
surroundings.
7the particles of the gas are identical and
indistinguishable.
§ 14.1 The ideal gas
5
§ 14.2 the pressure and temperature of an ideal gas
1. The pressure of an ideal gas
1the probability that
particles in element
volume ?V will collide
with the wall
L
tv
L
L
AL
LA
p
x
?
=
?
=
?
=
2
1
2
1
2
1
2the change of the
momentum of one particle
i
?
j
?
m
m
kmvjmvimvv
kmvjmvimvv
iziyix
iziyix
???
???
afti
bfri
++?=
++=
r
r
L?
A
imvppp
ixi
?
2
bftiafti
?=?=?
rrr
3the impulse given to the wall by the particles
in the element volume ?V
it
L
mv
imv
L
tv
imvptF
ix
ix
ix
ixii
??
2
2
?
2
2
?=
?
=??=?
r
r
4the total impulse delivered to the wall during
the interval ?t by all the particles that collide
with the wall
itvN
L
m
itv
L
m
tF
xix
i
??
)(
22
ave
???=?=?
∑
r
Total number
of particles
§ 14.2 the pressure and temperature of an ideal gas
6
5the symmetry implies that
??=
??=??
??=?++?=??
++==?
??=??=??
2
ave
22
22222
2222
222
3
1
3
1
3
vN
L
m
F
vv
vvvvv
vvvvvv
vvv
x
xzyx
zyx
zyx
rr
6pressure P exerted by the gas on the wall
??=??=??==
222
ave
333A
v
V
nM
vN
V
m
vN
AL
mF
P
§ 14.2 the pressure and temperature of an ideal gas
2. The absolute temperature an ideal gas
1the microscopic interpretation of the
absolute temperature
??=??=
22
2
1
3
2
3
vm
V
N
v
V
Nm
PQ
NkTv
Nm
PV =??=∴
2
3
??=
2
3
v
k
m
T
kTKEKE
k
T
vmKE
2
3
or
3
2
2
1
aveave
2
ave
==∴
??=Q
§ 14.2 the pressure and temperature of an ideal gas
7
kTKE
2
3
ave
=
Conclusions:
a. The temperature of all the gas is a
manifestation of the average translational
kinetic energy of each particle.
b. A measurement of temperature is a
measurement of the average translational
kinetic energy of any particle of the gas.
c. Two different gases at same temperature
have the same average translational kinetic
energy per particle.
§ 14.2 the pressure and temperature of an ideal gas
2the rms speed
m
kT
vv
k
m
T
3
3
22
=??∴??=Q
212121
rms
)
3
()
3
()
3
(
M
RT
mN
RT
m
kT
v
A
===
The average speed
rms
21
2
2
rms
)(
vv
N
v
vv
N
v
v
i
i
i
i
<??∴
=??==??
∑∑
Q
§ 14.2 the pressure and temperature of an ideal gas
8
补充内容:统计方法的一般概念
一、统计规律——大量偶然事件整体所遵从的规律
不能预测 多次重复
掷骰子
抛硬币
伽尔顿板实验例:
伽尔顿板实验
每个小球落入哪个槽是偶然的
少量小球按狭槽分布有明显偶然性
大量小球按狭槽分布呈现规律性
掷骰子
每掷一次出现点数是偶然的
掷少数次,点数分布有明显偶然性
掷大量次数,每点出现次数约 1/6,呈现规律
抛硬币
每抛一次出现正反面是偶然的
抛少数次,正反数分布有明显偶然性
抛大量次数,正反数约各 1/2,呈现规律性
补充内容:统计方法的一般概念
9
共同特点:
1、群体规律: 只能通过大量偶然事件总体显示出
来,
对少数事件不适用。
近似规律统计规律 ≠
个体规律简单叠加统计规律 ≠
2、量变 —质变: 整体特征占主导地位
例: 理想气体实验定律, 传真照片 …...
3、与宏观条件相关
如:伽尔顿板中钉的分布
4、伴有涨落
补充内容:统计方法的一般概念
二、统计规律的数学形式——概率理论
1、定义: 总观测次数 N
出现结果 A次数
A
N
A出现的概率
N
N
W
A
A
lin=
∞→N
2、意义: 描述事物出现可能性的大小
两类物理定律
第一类: 约束不可能事件
第二类: 约束可能性小事件
违反能量守恒定律的事件不可能发生
不违反能量守恒定律的事件并不都能发生
例: 一壶水在火上
会沸
腾?
会结冰?
补充内容:统计方法的一般概念
10
3、性质
1)叠加定理
不可能同时出现的事件 ——互斥事件
出现几个互斥事件的总概率等于每个事件单独出
现的概率之和:
BABA
WWW +=
+
出现所有可能的互斥事件的总概率为1
归一化条件:
1=
∫
+∞
∞?
Wd
出现例:掷骰子
6
1
3
6
1
2
3
2
=
=
W
W
:
:
3
1
32
=
+
W
出现 1—6: w =1
补充内容:统计方法的一般概念
2) 乘法定理
同时发生两个相容独立事件的概率是两个事件单
独发生时的概率之积
BABA
WWW ×=
+
相容统计独立事件: 彼此独立,可以同时发生的事件
例: 同时掷两枚骰子
其一出现
2:
6
1
2
=W
另一出现
3:
6
1
3
=W
同时发生
36
1
6
1
6
1
32
=×=
+
W
补充内容:统计方法的一般概念
11
三、几个基本概念
1、分布函数
例: 伽尔顿板实验
槽: 1, 2, 3, …...
粒子数: N
1
, N
2
, N
3
…...
∑
=
i
i
NN
1,2,3,4,...
粒子出现在第 i 槽内的概率为 :
N
N
W
i
i
=
该槽内小球数
小球总数
成正比变化,与槽宽随槽的位置 xx
N
N
w
i
i
?=
小球在 x 附近,单位宽度区间出现的概率
xN
N
i
?
=
概率
密度
补充内容:统计方法的一般概念
概率密度
xN
N
i
?
是 x 的函数 ——分布函数
曲线下窄条面积
W
N
N
xxfS d
d
d ==?=? )(
曲线下总面积
∫∫∫
==?=
L
LL
Wx
x
W
xxf
0
00
1dd
d
d
d)(
xN
N
x
W
xf
d
d
d
d
==)(
N
N
W
d
d =一般情
况:
分布曲线
L
f(x)
ox
x xx ?+
x xx d+
补充内容:统计方法的一般概念
12
类
比:
人口数量按年龄分布
考试成绩按分数分布
大气中尘埃按直径分布
星系中恒星按大小分布
树上苹果按大小分布
河床中卵石按尺度分布
雹粒按尺度分布
麦克斯韦分子运动速率分布(将
学)
…...
颗粒度
问题
L
f(x)
ox
x xx ?+
x xx d+
补充内容:统计方法的一般概念
2、统计平均值
平均分
∑∑
==
g
g
g
g
g
N
N
gN
N
g
1
平方平均分
22
g
N
N
g
g
g
∑
=
总人数
∑
=
g
g
NN
人数按分数的分布 N
g
得分数 g 的概率
N
N
g
图示 100人参加测试的成绩分布(满分 50)例:
补充内容:统计方法的一般概念
13
一般情况
测量值:
LL
i
MMM ,,
21
出现次数:
LL
i
NNN ,,
21
总次数:
LL ++++=
i
NNNN
21
出现概
率:
LL ,,,
N
N
W
N
N
W
N
N
W
i
i
===
2
2
1
1
统计平均
值:
LL
LL
++++
++++
=
i
ii
NNN
NMNMNM
M
21
2211
LL ++++=
ii
WMWMWM
2211
ii
i
WMM ∑=
ii
i
WMM
22
∑=同
理 :
补充内容:统计方法的一般概念
( ) 变量间隔分布函数物理量 ××===
∫ ∫∫
xxMfWMM dd
3、涨落
实际出现的情况与统计平均值的偏差
例 伽尔顿板:某槽中小球数各次不完全相同,在平均
值附近起伏。
掷骰子:出现 4,概率 1/6,每掷 600次,统计平均
实
际:
LL,,,, 次次次次 9810210099
4
=N
次100
4
=N
;, 很大时,涨落可忽略,涨落 NN ↓↑
意义。太小时,统计规律失去,涨落 NN ↑↓,
补充内容:统计方法的一般概念
14
1. Maxwell’s speed distribution law
kTmv
RTMv
ev
kT
m
ev
RT
M
vN
N
vP
2223
2223
2
2
)
2
(4
)
2
(4
d
d
)(
?
?
=
==
π
π
π
π
It is a probability distribution function.
N
N
vvP
d
d)( =
§ 14.3 the distribution of molecular speed and
mean free path
--the fraction of molecules whose speeds
lie in the interval of with dv centered on v .
vvP d)(
--the fraction of molecules with
speeds in an interval of v
1
to v
2
.
∫
2
1
d)(
v
v
vvP
--all molecules fall into this
category, so the value of this total area is unity.
1d)(
0
=
∫
∞
vvP
§ 14.3 the distribution of molecular speed and
mean free path
15
2. Average, RMS, and most probable speeds
1 Average speed
We weight each value of v in the distribution,
then we add up all these values of vP(v)dv
∫
∞
=>=<
0
8
d)(
M
RT
vvvPv
π
2the root-mean-square speed--RMS
∫
∞
=>=<
0
22
3
d)(
M
RT
vvPvv
M
RT
vv
averms
3
)(
2
==
§ 14.3 the distribution of molecular speed and
mean free path
3the most probable speed
The most probable speed is the speed at which
P(v)is maximum.
M
RT
v
v
vP
P
2
0
d
)(d
=?=
It is obvious that
rmsaveP
vvv <<
§ 14.3 the distribution of molecular speed and
mean free path
16
M
RT
v
P
2
=
The area of the
distribution curves
always have a value of
unity.
Rain?
Small numbers of very fast molecules
with speeds far out in the tail of the
curve evaporate, making clouds and
rain a possibility.
§ 14.3 the distribution of molecular speed and
mean free path
§ 14.3 the distribution of molecular speed and
mean free path
3. Mean free path and the mean frequency of
collision
17
The cross-section area of cylinder sweeps by
the molecule between successive collisions
2
dπ
The volume of the zigzags cylinder in the time
interval ?t
tvd ?π ><)(
2
The number of molecules in the cylinder
tvdVN ?π ><))(/(
2
§ 14.3 the distribution of molecular speed and
mean free path
The mean frequency of collision:
The number of collisions in unit time
>< vdVN ))(/(
2
π
§ 14.3 the distribution of molecular speed and
mean free path
The mean free path:
VNdVtNvd
tv
t
t
rev
/
1
/
incollisionsofnumber
duringpaththeoflength
22
π?π
?
?
?
λ
=
><
≈
=
18
§ 14.4 the internal energy and the
specific heat of a monatomic ideal gas
1. The internal energy of a monatomic ideal gas
There is no internal motion for a monatomic
ideal gas
nRTkTnNkTNU
A
2
3
)
2
3
()
2
3
( ===
one mole of monatomic ideal gas
RTU
2
3
=
2. The molar specific heat of a monatomic
ideal gas
1molar specific heat at constant volume for a
monatomic ideal gas
RnRT
TnT
U
n
c
UVPUWUQ
T
Q
n
c
V
VV
2
3
)
2
3
(
d
d1
)
d
d
(
1
dddddd
)
d
d
(
1
===
=+=+=
=
TncU
V
?=?
Conclusion:
The internal energy of a gas
depends on the temperature of
the gas but not on its pressure
or density.
§ 14.4 the internal energy and the
specific heat of a monatomic ideal gas
19
2 molar specific heat at constant
pressure for a monatomic ideal gas
])
d
d
()
d
d
[(
1
ddddd
)
d
d
(
1
PPP
PP
T
V
P
T
U
n
c
VPUWUQ
T
Q
n
c
+=
+=+=
=
PV
PPP
T
V
P
n
c
T
V
P
T
U
n
c
)
d
d
(
1
])
d
d
()
d
d
[(
1
+=
+=
§ 14.4 the internal energy and the
specific heat of a monatomic ideal gas
RRcc
P
nR
T
V
VPP
2
5
)
d
d
( =+=∴=Q
c
P
is greater than c
V
, because of energy must
now be supplied not only to raise temperature
of the gas but also for the gas to do work.
Consider three paths
between the two
isotherms in P-V
diagram, no matter what
path is actually taken
between T and T+?T, we
can always use path 1
and ? U=nc
V
?T to
compute the change of
internal energy.
Note:
§ 14.4 the internal energy and the
specific heat of a monatomic ideal gas
20
§ 14.4 the internal energy and the
specific heat of a monatomic ideal gas
The complications indicate that the internal
energy of diatomic and polyatomic gases also
is a function of absolute temperature, but not
same as the function of monatomic gases.
3. Complications arise for diatomic and
polyatomic gases
Problem:
The diatomic and polyatomic gases have molar
specific heats whose values are quite different
from those of monatomic gases.
Why?
§ 14.4 the internal energy and the
specific heat of a monatomic ideal gas
21
Heat
transfer
Kinetic energy of center of mass
Kinetic energy of rotations
and vibrations
For diatomic gases and polyatomic gases, both
c
V
and c
P
is greater than monatomic gases.
It indicated that:
§ 14.4 the internal energy and the
specific heat of a monatomic ideal gas
§ 14.5 degrees of freedom , the equipartition of
energy theorem and specific heat of a solid
1. Degrees of freedom
Degrees of freedom is a pure number that
quantifies the number of distinct
quadratic generalized coordinates needed
to specify the microscopic total
mechanical energy of one particle of the
system.
The sum of the microscopic total mechanical
energies of each of the particles is the total
internal energy U of the many-particle
system.
22
2. Quadratic generalized coordinates
1A particle in one-dimension
2
2
1
x
mvKE =
iv
x
?
2A rigid body in one-dimension
iv
x
?
ω
r
22
2
1
2
1
ω
CMx
ImvKE +=
3A particle in two-dimension
jvivv
yx
??
+=
r
222
2
1
2
1
2
1
yx
mvmvmvKE +==
§ 14.5 degrees of freedom , the equipartition of
energy theorem and specific heat of a solid
4A rigid body spins about its center of mass
in two-dimension
jvivv
yx
??
+=
r
ω
r
222
2
1
2
1
2
1
ωImvmvKE
yx
++=
5rigid diatomic molecules
y
x
z
22
222
2
1
2
1
2
1
2
1
2
1
yyxxzyx
IImvmvmvKE ωω ++++=
§ 14.5 degrees of freedom , the equipartition of
energy theorem and specific heat of a solid
23
6rigid body in three dimensions
x
z
o
y
222
222
2
1
2
1
2
1
2
1
2
1
2
1
zzyyxx
zyx
III
mvmvmvKE
ωωω +++
++=
7polyatomic molecules
The kinetic
energy
translation,
rotation
vibration
§ 14.5 degrees of freedom , the equipartition of
energy theorem and specific heat of a solid
3. The equipartition of energy theorem
kTKE
2
3
ave
=
The kinetic energy of one monatomic gas
particle
For a system of particles in thermal
equilibrium, the average kinetic energy
associated with each active degree of freedom
of a particle is the same.
kT
2
1
§ 14.5 degrees of freedom , the equipartition of
energy theorem and specific heat of a solid
24
4. Some failures of classical kinetic theory
1the size of the particles of monatomic gas
3 translational degrees of freedom
3 rotational degrees of freedom
6=f
2what about common diatomic gases?
R
R
f
T
U
n
c
nRT
fkTfNU
V
3
2d
d1
2
)]
2
1
([
===
==
Theory:
Experiment:
Rc
V
2
3
=
§ 14.5 degrees of freedom , the equipartition of
energy theorem and specific heat of a solid
Rotational degrees of freedom: f=2
Vibrational degree of freedom: f=2
Translational degrees of freedom: f=3
Experiment:
Rc
V
2
5
=
K)J/(mol1.29
2
7
d
d1
2
7
)
2
1
(7
?===
==
R
T
U
n
c
nRTkTNU
V
Theory:
Model: dumbbells
§ 14.5 degrees of freedom , the equipartition of
energy theorem and specific heat of a solid
25
The molar specific heat at constant volume of
a diatomic gas as a function of temperature
Only quantum mechanics can explain the results.
§ 14.5 degrees of freedom , the equipartition of
energy theorem and specific heat of a solid
Translational
Energy level
Rotational
Energy level
vibrational
Energy level
E
E
E
§ 14.5 degrees of freedom , the equipartition of
energy theorem and specific heat of a solid
26
4. Specific heat of a solid
1model of an ideal solid
2the microscopic mechanical energy
22
2
1
2
1
xkmvPEKE
xx
+=+
§ 14.5 degrees of freedom , the equipartition of
energy theorem and specific heat of a solid
The number of degrees of freedom: 3×2=6
The total internal energy of a solid system of
atoms
nRTNkTkTNU 33)]
2
1
(6[ ===
3specific heat of solid
R
T
nRT
nT
U
nT
Q
n
c
UVPUQ
3
d
)3(d1
d
d1
d
d1
dddd
==≈=
≈+=
----law of Dulong and Petit
§ 14.5 degrees of freedom , the equipartition of
energy theorem and specific heat of a solid
27
§ 14.6 apply first law of thermodynamics to some
special processes for an ideal gas
1. at constant volume(isochoric process)
i
V
P
V
TncUWUQ
V
?=?=+?=
According to the first law of thermodynamics
Monatomic molecules:
Rc
V
2
3
=
Rigid diatomic molecules: Rc
V
2
5
=
0dd ===
∫∫
f
i
V
V
VPWW
TncQ
V
?=
f
i
f
i
T
T
P
P
=
2. at constant pressure (isobaric process)
i
V
P
V
f
V
TncTnRTnc
VVPTncWUQ
PV
ifV
?=?+?=
?+?=+?= )(
According to the first law of thermodynamics
VPVP
ccRcc =+= γ
)(dd
if
V
V
VVPVPWW
f
i
?===
∫∫
TncQ
P
?=
f
i
f
i
T
T
V
V
=
§ 14.6 apply first law of thermodynamics to some
special processes for an ideal gas
28
3. at constant temperature (isothermal process)
i
V
P
V
f
V
According to the first law of thermodynamics
i
f
V
V
nRTWWUQ ln==+?=
i
f
V
V
V
V
V
V
nRTV
V
nRT
VPWW
f
i
f
i
lnd
dd
==
==
∫
∫∫
0=?=? TncU
V
iiff
VPVP =
§ 14.6 apply first law of thermodynamics to some
special processes for an ideal gas
∞=
T
c
4. in thermal isolation (adiabatic process)
i
V
P
V
f
V
TncVPU
VPUQ
V
ddd
0ddd
=?=
=+=
V
c
V
RPTnRPVVP
nRTPV
d
ddd ?==+
=
VPVP
c
cc
PVVP
V
VP
d)1(ddd ??=
?
?=+ γ
γγ
γ
γγ
iiff
P
P
V
V
VPVP
V
V
P
P
V
V
P
P
VPPV
f
i
f
i
=??=
?=??=
∫∫
dd
dd
dd
§ 14.6 apply first law of thermodynamics to some
special processes for an ideal gas
29
γ
γ
γ
γ
V
VP
PPVVP
ii
ii
==
)(
1
dd
11 γγ
γ
γ
γ
γ
??
?
?
===
∫∫
fi
ii
V
V
ii
V
V
VV
VP
V
V
VP
VPW
f
i
f
i
)(
1
1
]1)[(
1
1
ffii
f
iii
VPVP
V
VVP
W ?
?
=?
?
=
?
γγ
γ
0=Q WU ?=?
According to the first law of thermodynamics
0)
d
d
(
1
==
T
Q
n
c
Q
§ 14.6 apply first law of thermodynamics to some
special processes for an ideal gas
5. free expansion process
0
0
0
=?
=
=
U
Q
W
6. cyclical processes
0
total
=?
=
U
QW
total
WUQ +?=
§ 14.6 apply first law of thermodynamics to some
special processes for an ideal gas