离 散 数 学 教 学 内 容 第一章 集合 要点:集合的基本概念。集合的基本运算。集合恒等式。 要求: null 能够正确表示集合。 null 熟练掌握集合的基本运算。 null 掌握证明集合恒等式或包含关系的方法。 第二章 二元关系 要点:集合的笛卡尔积和二元关系,关系的运算,关系的性质,关系的闭包,等价关系 和偏序关系 要求: null 熟练掌握二元关系的多种表示方法。 null 熟练掌握关系的定义域、值域、逆、合成、限制、像、幂、闭包的计算方法。 null 能够证明含有关系运算的集合恒等式。 null 熟练掌握判断关系五种性质的方法,能证明关系的性质。 null 深刻理解等价关系、等价类、商集、划分、偏序关系、偏序集、哈斯图、偏序集 中的特定元素等概念,并能熟练地求出等价关系的等价类、商集、偏序关系的哈 斯图及特定元素。 第三章 函数 要点:函数定义、函数性质、函数运算 要求: null 理解函数、集合 A 到 B 的函数、B A 、函数的像、完全原像的概念。 null 熟练掌握判断和证明函数单射、满射、双射性质的方法。会构造双射函数。 null 会求函数合成和反函数。了解合成函数的性质。 第四章 自然数 要点:自然数与自然数集合定义、传递集、自然数运算、N 上的序关系 要求: null 熟悉自然数及自然数集合定义以及自然数运算。 null 理解传递集合的性质。 null 了解自然数的运算及其比较。 第五章 基数 要点:集合等势与优势、有穷集与无穷集、基数比较与运算 要求: null 会证明集合等势以及优势。 null 了解有穷集与无穷集的性质。 null 会基数运算和比较。 第六章 序数*(可以不讲) 要点:序数的概念、超限递归定理 要求: null 了解序数概念 null 了解超限递归定理及其应用 第七章 图 要点:无向图和有向图中的基本概念,握手定理、通路与回路、图的连通性 要求: null 理解无向图与有向图的定义及其相关的概念(度、零图、平凡图、简单图、完全图、 正则图、子图、补图、图的同构等) 。 null 熟练掌握握手定理及推论的应用。 null 深刻理解无向与有向图的通路与回路的相关概念(通路、回路、连通度、割集、连 通分支、可达等) 。 null 掌握图中性质的简单证明方法。 第八章 欧拉图与哈密顿图 要点:欧拉图及其判别、哈密顿图及其判别、欧拉图与哈密顿图的应用 要求: null 理解欧拉通路、回路和欧拉图的概念。 null 熟练掌握判定和证明欧拉图的方法。 null 理解哈密尔顿通路、回路和哈密尔顿图的概念。 null 会判断或证明某些图是或不是哈密尔顿图。 null 能够应用欧拉图或者哈密顿图解决实际问题。 第九章 树 要点:无向树、生成树、环路空间与断集空间、根树 要求: null 熟练掌握无向树及其性质。 null 理解图的环路空间、断集空间。 null 掌握根树中的相关概念。 null 熟练掌握根树的行遍方法。 第十章 图的矩阵表示 要点:关联矩阵、邻接矩阵、相邻矩阵、可达矩阵、连通矩阵 要求: null 熟练掌握的关联矩阵及其生成树的求法。 null 会利用邻接矩阵或相邻矩阵求图的通路和回路。 null 理解可达矩阵、连通矩阵的概念及其应用。 第十一章 平面图 要点:平面图的基本概念、平面图的判断、平面图的对偶图 要求: null 理解平面图中相关的概念。 null 熟练掌握欧拉公式及相关定理的内容。会应用欧拉公式证明图中的命题。 null 会判断或证明一个图是否为平面图或极大平面图。 null 了解平面图的对偶图及其应用。 第十二章 图的着色 要点:图顶点的着色、色多项式、地图的着色与平面图点着色、边着色 要求: null 理解点着色、点色数等概念。会求阶数 n 较小的无向简单图的点色数。 null 了解色多项式及其相关结果。 null 理解地图的面着色定义。 null 了解平面图的 5 色定理和 4 色猜想。 null 理解边着色与边色数的概念,会求一些无向简单图的边色数。 第十三章 支配集、覆盖集、独立集与匹配 要点:支配集、点独立集、点覆盖集、边覆盖集、匹配 要求: null 掌握支配集、点独立集、点覆盖集、边覆盖集、匹配等概念。 null 会求图的支配数、点独立数、点覆盖数、边覆盖数。 null 掌握边覆盖与匹配之间的关系、最大匹配或完美匹配存在的条件。 null 理解 Hall 定理及其应用。 第十四章 带权图及其应用 要点:最短路径、关键路径、中国邮递员问题、最小生成树、最优树、货郎担问题 要求: null 熟练掌握 Dijkstra 标号法求最短路径的算法及其应用。 null 掌握 PERT 图的关键路径求法及其应用。 null 理解中国邮递员问题中的最优投递路线的求法及其应用。 null 熟练掌握最小生成树的 Kruskal 算法、逐步短接法、破圈法及其应用。 null 熟练掌握 Huffman 最优树算法及其应用。 第十五章 代数系统 要点:二元运算及其性质、代数系统、子代数与积代数、代数系统的同态与同构、同余 关系与商代数 要求: null 能够正确表示一个代数系统。 null 能够判断或证明代数系统的性质。 null 理解子代数与积代数的概念、构成方法以及与原代数之间的关系。 null 熟练掌握代数系统的同态和同构映射的判别和证明方法。 null 熟练掌握同态和同构映射的性质。 null 理解同余关系的构成和商代数的产生。 null 掌握商代数的性质。 第十六章 半群与群 要点:半群、独异点 要求: null 能够判断一个代数系统是否为半群、独异点。 null 能够证明半群与独异点的性质。 第十七章 群 要点:群的定义、群的性质、子群、循环群、变换群与置换群、群的分解、正规子群与 商群、群的同态与同构、群的直积 要求: null 理解群的定义,熟练掌握群的判别方法,了解群中的有关基本概念。 null 熟练掌握群的性质及其应用(群方程的解、消去律、结合律等) 。 null 熟练掌握子群的判定定理及其应用。 null 掌握有关循环群的生成元和子群的定理。 null 能够以不同的方法正确的表示 n 元置换。 null 熟练掌握置换的乘法、求逆等运算。 null 掌握陪集的定义及其性质。 null 会使用 Lagrange 定理证明群中的有关命题。 null 了解群的分类方程及其应用。 null 掌握正规子群的判别方法。 null 理解商群的构成及其性质。 null 能够证明映射是否为群同态映射,是否为单同态、满同态、同构。 null 了解群的直积。 第十八章 环与域 要点:环的定义及其性质、整环与域的定义、子环与商环 要求: null 理解环、整环、域的定义。 null 了解商环的概念及其性质。 null 了解环同态定义。 第十九章 格与布尔代数 要点:格的定义、格的性质、子格与格同态、特殊的格 要求: null 熟练掌握格的定义。 null 能够证明格的性质。 null 会判断子格。 null 能够证明格的同态与同构。 null 能判断模格、分配格、有补格、布尔格。 null 能证明格中的等式。 第二十章 组合存在性定理 要点:鸽巢原理、Ramsey 定理 要求: null 能够使用鸽巢原理证明组合存在性的命题。 null 了解 Ramsey 定理的内容及其有关 Ramsey 数的结果。 第二十一章 基本的计数公式 要点:加法法则与乘法法则、排列与组合、二项式定理与组合恒等式、多项式定理 要求: null 能够熟练使用加法法则和乘法法则。 null 能够熟练处理集合的排列与组合、多重集排列与组合(部分情况)的计数问题。 null 掌握二项式定理与多项式定理的内容。 null 熟练证明组合恒等式或者进行组合数的求和。 null 学习处理组合问题的一一对应的技巧。 第二十二章 组合计数方法 要点:递推方程及其求解方法、生成函数及其应用、指数生成函数及其应用、Catalan 数、两类 Stirling 数 要求: null 熟练掌握求解递推方程的公式法、换元法、迭代法。 null 能够使用递推方程求解实际的计数问题。 null 熟练掌握典型的组合计数模型。 null 熟练掌握生成函数及指数生成函数的应用。 null 掌握 Catalan 数、两类 Stirling 数的定义及其组合意义。 第二十三章 组合计数定理 要点:包含排斥原理、对称筛公式、Burnside 引理、Polay 定理 要求: null 能够使用包含排斥原理解决组合计数问题。 null 能够使用 Burside 引理和 Polay 定理解决组合计数问题。 第二十六章 命题演算 要点:命题联结词,命题演算形式推演系统 N 与 P 中的推演,可靠性与完全性定理 要求: null 熟练掌握命题及联结词的概念,五个常用的联结词(与、或、非、蕴涵、等价) 及其真假性定义; null 掌握自然语言命题的符号化。 null 熟练掌握命题形式,指派的概念,命题真值表及其构造作方法。 null 了解哑元及命题的真假值与哑元的无关性。 null 熟练掌握真值函数,联结词完全性的概念。联结词与、或、非、蕴涵、等价构 成的集合及其子集合的完全性。与、或、非、蕴涵、等价之间的互相表示(如 果能够的话) null 掌握 2 元真值函数构成的的集合及其子集合的完全性。 null 熟练掌握有效推理形式的定义及其证明方法 null 熟练掌握 N 的构成,包括 N 的公式的形成规则、公理集和形式推理规则。N 中 形式证明序列和内定理的定义。N 中内定理的证明技巧,如一些辅助定理(增 加前提律,传递率)和常见的内定理。 null 掌握 N 中公式的括号的省略规则。 null 了解 N 的证明序列的斜形和树形书写方式。 null 熟练掌握 P 的构成,包括 P 的公式的形成规则、公理集和形式推理规则。P 中 形式证明序列和内定理的定义。 P 中内定理的证明技巧。 P 中常见内定理的证明。 null 掌握 P 中公式的简写规则。 null 了解 N 的证明序列的斜形书写方式。 null 熟练掌握 P 中有前提的证明序列的定义。演绎定理的内容和证明和使用。 null 熟练掌握 N 和 P 的构成方式的差别。N 和 P 的等价性定理的内容及其证明。 null 掌握 N 和 P 的等价性定理的使用。 null 熟练掌握指派,公式的真值及其求法,公式的分类(永真式,可满足式,永假 式)及其关系。逻辑蕴涵和逻辑等价(等值)概念。等值演算,包括基本等值 式和两个替换定理 null 了解限制性公式及其性质。 null 熟练掌握合取范式和析取范式的定义,范式存在性定理,范式的两种求法(真 值表法和等值算法) 。 null 掌握范式的不唯一性 null 了解联结词完全集的另一证明方式。 null 熟练掌握可靠性、和谐性和完备性的内容及其证明。 第二十七章 一阶谓词演算 要点:量词,边元的约束与自由,一阶谓词演算形式推演系统 N L与K L中的推演,可靠 性与完全性定理 要求: null 熟练掌握个体变元、个体常元、谓词、函数、量词(全称和存在)等概念。 null 掌握自然语言命题的符号化。 null 熟练掌握逻辑符号非逻辑符号,项,一阶公式。 null 掌握常见数学对象的一阶语言公式的描述,包括代数结构等 null 了解公式的括号的省略规则。 null 熟练掌握辖域,自由(约束)出现,自由(约束)变元,项对变元在公式中自 由(可代入) 。 null 了解闭项,闭式,全称闭式。 null 熟练掌握 N L的构成,包括 N L的公式的形成规则、公理集和形式推理规则。N L中 形式证明序列和内定理的定义。N L 中内定理的证明技巧,如一些辅助定理(代 入实例,增加前提律,传递率, )和常见的内定理(如换名规则) 。 null 了解 N L的证明序列的斜形和树形书写方式。 null 熟练掌握前束范式的定义,范式存在性定理,范式的求法(包括所用的几个内 定理) null 了解根据范式对一阶公式进行分类。 null 熟练掌握 K L 的构成,包括 K L 的公式的形成规则、公理集和形式推理规则。KL 中形式证明序列和内定理的定义。K L 中内定理的证明技巧。K L 中常见内定理的 证明。 null 掌握 K L中公式的简写规则。 null 了解 K L的证明序列的斜形书写方式。 null 熟练掌握 P 中有前提的证明序列的定义。演绎定理的内容和证明和使用。 null 熟练掌握 N L和K L的构成方式的差别。N L和K L的等价性定理的内容及其证明。 null 掌握 N L和K L的等价性定理的使用。 null 熟练掌握论域,解释,指派,项的值、公式的满足、真、永真的定义及其符号 表示。 null 掌握公式(项)的值与约束变元取值的无关性。可代入性定理。命题代入实例 的性质。 null 了解公式为假的等价性定义。 null 熟练掌握可靠性、和谐性和完备性的内容及其证明。和谐公式集、极大和谐公 式集的概念及其性质。 null 掌握一阶逻辑完备性证明的常量构作法——Henkin 方法。 第二十八章 消解原理 *(可以不讲) 要点:命题公式与一阶谓词公式的消解 要求: null 熟练掌握文字、子句等概念 null 熟练掌握命题公式的消解。 null 熟练掌握 Herbrand 定理 null 掌握 Robinson 合一算法 null 掌握一阶谓词公式的消解