1
1 4
1?ü? 4?D?
1?ù Ctê
§1,?êVg
1,)e?a§?x?xμ
(1)?2 < 1x+ 2
(2) (x?1)(x+ 2)(x?3) < 0
(3) 1x?1 <a
(4) 0 lessorequalslant cosxlessorequalslant 12
(5)
braceleftbigg x2?16 < 0
x2?2xgreaterorequalslant 0
)μ
(1) x<?52?x>?32
a45
a27a24
0 x-1-2-3 a98a98
(2) 1 <x< 3?x<?2
a45
a27 a24a24
0 x-1-2 31 2a99 a99a99
(3) a> 0?§x< 1?x> 1 + 1a?
a45
a24a27
0 x1 1 + 1
a
a99 a99
a< 0?§1 + 1a <x< 1
a45
a27 a24
0 x11 + 1
a
a99a99
a = 0?§x< 1
a45
a24
0 x1a99
2
(4) 2kpi+ pi3 lessorequalslantxlessorequalslant 2kpi+ pi2?2kpi? pi2 lessorequalslantxlessorequalslant 2kpi? pi3(k∈Z)
a45a3a0a3a0a3a0a3a0 0 x
(5)?4 <xlessorequalslant 0?2 lessorequalslantx< 4
a45a11 a8 a11 a80 x-4 2 4a99 a99
2,y2eyéaμ
(1) |x?y|greaterorequalslant||x|?|y||
(2) |x1 +x2 +x3 +···+xn|lessorequalslant|x1|+|x2|+···+|xn|
(3) |x+x1 +···+xn|greaterorequalslant|x|?(|x1|+···+|xn|)
y2μ
(1)?|x||y|greaterorequalslantxy§K(x?y)2 greaterorequalslant (|x|?|y|)2§u′|x?y|greaterorequalslant||x|?|y||
(2) ^ê?8B{y2.
(i) n = 2?§d|x1 +x2|lessorequalslant|x1|+|x2|§(?¤á.
(ii) bn = k?(?¤á§=k|x1 +x2 +x3 +···+xk|lessorequalslant|x1|+|x2|+···+|xk|.
Kn = k+ 1?§|x1 +x2 +x3 +···+xk+1|lessorequalslant|x1 +x2 +x3 +···+xk|+|xk+1|lessorequalslant|x1|+|x2|+
···+|xk|+|xk+1|
nt?§ég,ên§|x1 +x2 +x3 +···+xn|lessorequalslant|x1|+|x2|+···+|xn|t¤á.
(3) |x+x1 +···+xn|greaterorequalslant|x|?|x1 +x2 +x3 +···+xn|greaterorequalslant|x|?(|x1|+···+|xn|)
3,)eyéa§?x?xμ
(1) |x|>|x+ 1|
(2) 2 < 1|x| < 4
(3) |x|>A
(4) |x?a|<η,η?~ê§η> 0
(5)
vextendsinglevextendsingle
vextendsinglevextendsinglex?2
x+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle> x?2
x+ 1
(6) 2 < 1|x+ 2| < 3
)μ
(1) x<?12
a45
a24
0 x-1 a98
(2)?12 <x<?14?14 <x< 12
a45
a11a8a11a8
0 x1
2-
1
2
a101a101 a101 a101
3
(3) Agreaterorequalslant 0?§x<?A?x>A
a45
a24 a27
0 xA-A a101a101
A< 0?§x∈R
(4) a?η<x<a+η
a45
a27 a24
a0 xa+ηa?η a101a101
(5) adux?2x+ 1 < 0§K?1 <x< 2
a45
a27 a24
0 x-1 1 2a98 a98
(6)?53 <x<?3252 <x<?73
a45
a7a4 a7a4
0 x-1-2-3 a101a101 a101a101
4,|e?ê9§3:t?ê?μ
(1) y = f(x) =?x+ 1x9f(?1),f(1)úf(2)?
(2) y = f(x) = √a2?x29f(0),f(a)úf
parenleftBig
a2
parenrightBig
(3) s = s(t) = 1te?t9s(1),s(2)?
(4) y = g(α) = α2 tanα9g(0),g
parenleftBigpi
4
parenrightBig
,g
parenleftBig
pi4
parenrightBig
(5) x = x(θ) = sinθ+ cosθ9x
parenleftBig
pi2
parenrightBig
,x(?pi)
(6) y = f(x) = 1(x?1)(x+ 2)9f(0),f(?1)
4
)μ
(1)?êX = (?∞,0)uniontext(0,∞)§f(?1) = 0,f(1) = 0,f(2) =?32
(2)?êX = [?|a|,|a|]§f(0) = |a|,f(a) = 0,f
parenleftBig
a2
parenrightBig
=
√3
2 |a|
(3)?ê(?∞,0)uniontext(0,∞)§s(1) = 1e,s(2) = 12e2
(4)?ê
braceleftBig
x
vextendsinglevextendsingle
vextendsinglex∈R,xnegationslash= kpi+ pi2,k∈Z
bracerightBig
§g(0) = 0,g
parenleftBigpi
4
parenrightBig
= pi
2
16,g
parenleftBig
pi4
parenrightBig
=?pi
2
16
(5)?êX = (?∞,∞)§x
parenleftBig
pi2
parenrightBig
=?1,x(?pi) =?1
(6)?êX = (?∞,?2)uniontext(?2,1)uniontext(1,+∞)§f(0) =?12,f(?1) =?12
5,|e?ê9μ
(1) y = √2 +x?x2
(2) y = √cosx
(3) y = ln
parenleftBig
sin pix
parenrightBig
(4) y = 1sinpix
)μ
(1)?êX = [?1,2]§
bracketleftbigg
0,32
bracketrightbigg
(2)?ê
bracketleftBig
2kpi? pi2,2kpi+ pi2
bracketrightBig
(k∈Z)§[0,1]
(3)?ê
parenleftbigg 1
2k+ 1,
1
2k
parenrightbigg
(k∈Z)§(?∞,0]
(4)?ê(n?1,n)(n = 0,±1,±2,···)§(?∞,?1]uniontext[1,+∞)
6,f(x) = x+ 1,?(x) = x?2§á)?§|f(x) +?(x)| = |f(x) +|?(x)|
)μd?§f(x)?(x) greaterorequalslant 0=(x+ 1)(x?2) greaterorequalslant 0§Kxgreaterorequalslant 2?xlessorequalslant?1.
7,f(x) = (|x|+x)(1?x)§|÷ve?ax?μ
(1) f(0) = 0
(2) f(x) < 0
)μ
(1)?f(x) = 0§K|x|+x = 0?1?x = 0§=xlessorequalslant 0?x = 1
(2)?|x|+xgreaterorequalslant 0§K?f(x) < 0§1?x< 0=?§=x> 1
8,?1-5L?>3|V!?>{R0ú?C>{R|¤>′.3?mS§A,Bü:m>?V?±w
¤~t.|?>6Iú?C>{R?êa.
)μd?9?n?£§V = I(R0 +R).
9,3
/NìS?,?M?§T
/Nì.′a§p?h§?M?pY′x£?1-6¤,T
M?NèVúx?m?ê'XV = V(x)§??§ú.
)μd?§V = pia2x§§[0,h]§[1,pia2h]
10.,/Y±?è′F/§X?1-7§.°2?§>??45o§CDL?Y?§|?ABCD?
èS?Yh?ê'X.
)μd?9?§S = h(h+ 2).
11,k??H?3§X^Rò?±z|¨ωlY?Yl?3S?L-?§|-?./?
lsú?mt?ê'X£?1-8¤.
)μd?9?§s = H?ωRt
parenleftbigg
t∈
bracketleftbigg
0,Hωt
bracketrightbiggparenrightbigg
12,y = f(x) =
braceleftbigg 1 +x2,x< 0
x?1,xgreaterorequalslant 0 §|f(?2),f(?1),f(0),f(1)úf
parenleftbigg1
2
parenrightbigg
.
)μd?§f(?2) = 5,f(?1) = 2,f(0) =?1,f(1) = 0,f
parenleftbigg1
2
parenrightbigg
=?12.
5
13,x(t) =
0,0 lessorequalslantt< 10
1 +t2,10 lessorequalslanttlessorequalslant 20
t?10,20 <tlessorequalslant 30
§|x(0),x(5),x(10),x(15),x(20),x(25),x(30)§?x?ùê?/.
)μd?§x(0) = 0,x(5) = 0,x(10) = 101,x(15) = 226,x(20) = 401,x(25) = 15,x(30) = 20
14,e]y′&?-tx?ê.Uìe?5?§éuIS ×2&§U&?-t§z-20?AGe]8?§?
v20±20?O?.&?-t360?±S?§á?ùêL?a§?x?§?/.
)μd?§y = f(x) =
8,0 <xlessorequalslant 20
16,20 <xlessorequalslant 40
24,40 <xlessorequalslant 60
15,óàu)ì)n?§ù?/X?1-9§ê'Xu = u(t)(0 lessorequalslanttlessorequalslant 20).
)μd?9?§u = u(t) =
braceleftbigg 1.5t,0 lessorequalslanttlessorequalslant 10
30?1.5t,10 <tlessorequalslant 20
16,e?êfú?′§oo
(1) f(x) = xx,?(x) = 1
(2) f(x) = x,?(x) = √x2
(3) f(x) = 1,?(x) = sin2x+ cos2x
)μ
(1)?f(?∞,0)uniontext(0,+∞)§?(?∞,+∞)§ùüê.
(2)?f(x) = x,?(x) = |x|§ùüê?êL?a§Kùüê.
(3)(x) = sin2x+ cos2x = 1e¤á§ùüê?.
17,y2éuêf(x) = ax + b§egCê?x = xn(n = 1,2,···)|¤?
ê§KéA?ê
yn = f(xn)(n = 1,2,···)?|¤?
ê.
y2μxm?1,xm,xm+1′xn¥3ê(2 lessorequalslantmlessorequalslantn)
aK?§2xm = xm?1 +xm+1
qyn = f(xn) = axn + b§Kym?1 = axm?1 + b,ym = axm + b,ym+1 = axm+1 + b§u′2ym =
2axm + 2b,ym+1 +ym?1 = axm+1 +b+axm?1 +b = 2axm + 2b§l
2ym = ym?1 +ym+1
qxm?1,xm,xm+1′xn¥3ê§Kym?1,ym,ym+1′yn¥3ê§u′yn = f(xn)(n =
1,2,···)?|¤?
ê.
18,XJ-?y = f(x)t^u?pu§¤?l£?1-10¤§y2?af(x1) +f(x2)2 >f
parenleftBigx1 +x2
2
parenrightBig
é
u¤kx1,x2(x1 negationslash= x2)¤á£kt?A5?ê?à?ê¤.
y2μ3-?t?ü:A(x1,f(x1)),B(x2,f(x2))§?AB§ù¥:C(xC,yC)§Kf(x1) + f(x2) =
2yC,x1 +x2 = 2xC
q-?txD = x1 +x22 ¤é:p?I?yD = f
parenleftBigx1 +x2
2
parenrightBig
§KxC = xD
q-?y = f(x)t^u?pu§¤?l?x1,x2?u?l:§KyC > yD=f(x1) +f(x2)2 >
f
parenleftBigx1 +x2
2
parenrightBig
éu¤kx1,x2(x1 negationslash= x2)¤á.
a45
a54
a28
a28
a28
a28
a28
a28
a28a28
0 x1 x2 x
A
C
B
xD
y
f(x)
19,y2eê3¤mS′üNO\?êμ
(1) y = x2(0 lessorequalslantx< +∞)
(2) y = sinx
parenleftBig
pi2 lessorequalslantxlessorequalslant pi2
parenrightBig
y2μ
6
(1) 0 lessorequalslantx1 <x2
Ky2?y1 = x22?x21 = (x2 +x1)(x2?x1) > 0§u′?êy = x20 lessorequalslantxüNO\.
(2) ?pi2 lessorequalslantx1 <x2 lessorequalslant pi2
Ky2?y1 = sinx2?sinx1 = 2cos x2 +x12 sin x2?x12
q?pi2 lessorequalslant x1 < x2 lessorequalslant pi2§K?pi2 < x1 +x22 < pi2,0 < x2x
1
2 lessorequalslant pi2§u′cos x1 +x22 > 0,sin x2?x12 >
0§l
y2?y1 > 0=?êy = sinx?pi2 lessorequalslantxlessorequalslant pi2üNO\.
20,y2e?ê3¤mS′üN~?êμ
(1) y = x2(?∞<xlessorequalslant 0)
(2) y = cosx(0 lessorequalslantxlessorequalslantpi)
y2μ
(1) 0 lessorequalslantx1 <x2
Ky2?y1 = x22?x21 = (x2 +x1)(x2?x1) < 0§u′?êy = x2xlessorequalslant 0üN~.
(2) 0 lessorequalslantx1 <x2 lessorequalslantpi
Ky2?y1 = cosx2?cosx1 =?2sin x2 +x12 sin x2?x12
q0 lessorequalslant x1 < x2 lessorequalslant pi§K0 < x1 +x22 < pi,0 < x2x
1
2 lessorequalslant pi2§u′sin x1 +x22 > 0,sin x2?x12 > 0§l
y2?y1 < 0=?êy = cosx0 lessorequalslantxlessorequalslantpiüN~.
21,e?ê?ó5μ
(1) y = x+x2?x5
(2) y = a+bcosx
(3) y = x+ sinx+ex
(4) y = xsin 1x
(5) y = sgnx =
1,x> 0?
0,x = 0?
1 x< 0?
(6) y =
2
x2,
1
2 <x< +∞?
sinx2,? 12 lessorequalslantxlessorequalslant 12?
1
2x
2,?∞<x<?1
2?
)μ
(1)?y = f(x) = x+x2?x5§Kf(?x) =?x+x2 +x5§f(?x) negationslash= f(x),f(?x) negationslash=?f(x)§u′d?ê
′ó?ê.
(2)?y = f(x) = a+bcosx§Kf(?x) = a+bcos(?x) = a+bcosx = f(x)§u′d?ê′ó?ê.
(3)?y = f(x) = x+sinx+ex§Kf(?x) =?x?sinx+e?x§f(?x) negationslash= f(x),f(?x) negationslash=?f(x)§u′d
ê′ó?ê.
(4)?y = f(x) = xsin 1x§Kf(?x) =?xsin 1?x = xsin 1x = f(x)§u′d?ê′ó?ê.
(5)?y = f(x) =
1,x> 0?
0,x = 0?
1 x< 0?
§
Kf(?x) =
1,?x> 0?
0,?x = 0?
1 ?x< 0?
=
1,x> 0?
0,x = 0?
1 x< 0?
=?f(x)§u′d?ê′ê.
7
(6)?y = f(x) =
2
x2,
1
2 <x< +∞?
sinx2,? 12 lessorequalslantxlessorequalslant 12?
1
2x
2,?∞<x<?1
2?
§
Kf(?x) =
2
(?x)2,
1
2 <?x< +∞?
sin(?x)2,? 12 lessorequalslant?xlessorequalslant 12?
1
2(?x)
2,?∞<?x<?1
2?
=
1
2x
2,1
2 <x< +∞?
sinx2,? 12 lessorequalslantxlessorequalslant 12?
2
x2,?∞<x<?
1
2?
§
f(?x) negationslash= f(x),f(?x) negationslash=?f(x)§u′d?ê′ó?ê.
22,áyü?ó?ê|è′ó?ê§üê|è′ê§êó?ê|è′ê.
y2μf1(x),f2(x)3(?a,a)(a > 0)Só?ê§g1(x),g2(x)3(?a,a)(a > 0)S
ê§F1(x) = f1(x)f2(x),F2(x) = g1(x)g2(x),F3(x) = f1(x)f2(x)
Kf1(?x) = f1(x),f2(?x) = f2(x),g1(x) =?g1(x),g2(?x) =?g2(x)§u′
F1(?x) = f1(?x)f2(?x) = f1(x)f2(x) = F1(x)
F2(?x) = g1(?x)g2(?x) = (?g1(x))(?g2(x)) = g1(x)g2(x) = F2(x)
F3(?x) = f1(?x)g1(?x) = f1(x)(?g1(x)) =?f1(x)g1(x) =?F3(x)
l
F1(x)′ó?ê?F2(x)′ó?ê?F3(x)′ê.
23,f(x)3(?∞,+∞)Sê§y2F1(x) ≡f(x) +f(?x)′ó?ê§F2(x) ≡f(x)?f(?x)′?
ê.?éAue?êF1(x),F2(x)μ
(1) y = ax
(2) y = (1 +x)n
y2μ?F1(?x) = f(?x) +f(x) = F1(x)§KF1(x) = f(x) +f(?x)′ó?ê
qF2(?x) = f(?x)?f(x) =?F2(x)§KF2(x) = f(x)?f(?x)′ê.
(1) F1(x) = f(x) +f(?x) = ax +a?x,F2(x) = f(x)?f(?x) = ax?a?x
(2) F1(x) = f(x) +f(?x) = (1 +x)n + (1?x)n,F2(x) = f(x)?f(?x) = (1 +x)n?(1?x)n
24,`2e?ê=
′±ê§?|?±?μ
(1) y = sin2x
(2) y = sinx2
(3) y = sinx+ 12 sin2x
(4) y = cos pi4x
(5) y = |sinx|+|cosx|
(6) y = √tanx
(7) y = x?[x]
(8) y = sinnpix
)μ
(1)?y = sin2x = 12? 12 cos2x§KT = 2pi2 = pi
(2) by = sinx2±ê?T = ω> 0
a±ê§éx ∈ (?∞,+∞)§ksin(x + ω)2 = sinx2§AOéx = 0?AT¤á§
Ksinω2 = 0§u′ω2 = kpi,ω = √kpi(k∈Z+)
qéx = √2ω = √2kpi?¤á§sin(√2ω + ω)2 = sinω2 = 0§K(√2 + 1)2kpi = npi(n ∈ Z+)§u
′(√2 + 1)2 = kn(k,n∈Z+)
q(√2 + 1)2 = 3 + 2√2 ∈Q?§
kn ∈Q+§Kb?¤á§=?êy = sinx2?′±ê.
(3)?y1 = sinxT = 2pi?y2 = 12 sin2xT = pi§Ky = sinx+ 12 sin2xT = 2pi.
(4) T = 2pipi
4
= 8
8
(5)?f(x) = |sinx|+|cosx|,f
parenleftBig
x+ pi2
parenrightBig
=
vextendsinglevextendsingle
vextendsinglesin
parenleftBig
x+ pi2
parenrightBigvextendsinglevextendsingle
vextendsingle+
vextendsinglevextendsingle
vextendsinglecos
parenleftBig
x+ pi2
parenrightBigvextendsinglevextendsingle
vextendsingle= |cosx|+|sinx| = f(x)
a2§y = |sinx|+|cosx|T = pi2.
(6)?f(x) = tanxT = pi§Ky = √tanxT = pi.
(7)?y = x?[x] = (x)§Ky = x?[x]T = 1.
(8) T = 2pinpi = 2n
9
§2,Eü?êúê
1,e?êU?¤Eü?êy = f(?(x))§XJU
¤KdEü?êúμ
(1) y = f(u) = 2u,u =?(x) = x2
(2) y = f(u) = lnu,u =?(x) = 1?x2
(3) y = f(u) = u2 +u3,u =?(x) =
braceleftbigg 1,x?knê?
1,xnê?
(4) y = f(u) = 2§U1§u =?(x)§X§U2
(5) y = f(u) = √u,u =?(x) = cosx
)μ
(1)?y = f(u) = 2u(?∞,+∞)§u =?(x) = x2[0,+∞)
Kd?êU¤Eü?êy = 2x2§§(?∞,+∞)§[1,+∞)
(2)?y = f(u) = lnu(0,+∞)§u =?(x) = 1?x2(?∞,1]
Kd?êU¤Eü?êy = ln(1?x2)§§(?1,1)§(?∞,0]
(3)?y = f(u) = u2 +u3(?∞,+∞)§
u =?(x) =
braceleftbigg 1,x?knê?
1,xnê? {?1,1}
Kd?êU¤Eü?êy =
braceleftbigg 2,x?knê?
0,xnê? §§(?∞,+∞)§{0,2}
(4)?y = f(u) = 2U1§u =?(x)U2
U1intersectiontextU2 negationslash= φ?§d?êU¤Eü?êy = 2§§à?N?ê
§{2}?
U1intersectiontextU2 = φ?§d?ê?U¤Eü?ê
(5)?y = f(u) = √u[0,+∞)§u =?(x) = cosx[?1,1]
Kd?êU¤Eü?êy = √cosx§§
bracketleftBig
2kpi? pi2,2kpi+ pi2
bracketrightBig
(k = 0,±1,±2,···)§
[0,1]
2,f(x) = ax2 +bx+c§y2f(x+ 3)?3f(x+ 2) + 3f(x+ 1)?f(x) ≡ 0
y2μd?§
f(x+3)?3f(x+2)+3f(x+1)?f(x) = a(x+3)2 +b(x+3)+c?3[a(x+2)2 +b(x+2)+c]+3[a(x+1)2 +
b(x+1)+c]?(ax2 +bx+c) = a[(x+3)2?x2]+b(x+3?x)?3a[(x+2)2?(x+1)2]?3b[x+2?(x+1)] =
6ax+ 9a+ 3b?3a(2x+ 3)?3b≡ 0
3,(1) y = f(x) = a+bx+ cx§|f
parenleftbigg2
x
parenrightbigg
(2) y = f(x) = x2 ln(1 +x)§|f(e?x)
(3) y = f(x) = √1 +x+x2§|f(x2)9f(?x2)
(4) y = f(t) = 1√a2 +x2§|f(atanx)
)μ
(1)?y = f(x) = a+bx+ cx§Kf
parenleftbigg2
x
parenrightbigg
= a+ 2bx + c2
x
= a+ 2bx + cx2 = cx
2 + 2ax+ 4b
2x
(2)?y = f(x) = x2 ln(1 +x)§Kf(e?x) = (e?x)2 ln(1 +e?x) = ln(e
x + 1)?x
e2x
(3)?y = f(x) = √1 +x+x2§Kf(x2) = √1 +x2 +x4,f(?x2) = √1?x2 +x4
(4)?y = f(t) = 1√a2 +x2§Kf(atanx) = 1radicalbiga2 + (atanx)2 = 1√a2 sec2x = 1|asecx|
4,ef(x) = x2,?(x) = 2x§|f(?(x))9?(f(x)).
)μ?f(x) = x2,?(x) = 2x§Kf(?(x)) = (2x)2 = 22x = 4x,?(f(x)) = 2x2
5,e?(x) = x3 + 1§|?(x2),(?(x))29?(?(x)).
)μ(x) = x3 + 1§K
(x2) = (x2)3 +1 = x6 +1,(?(x))2 = (x3 +1)2 = x6 +2x3 +1,?(?(x)) = (x3 +1)3 +1 = x9 +3x6 +3x3 +2
10
6,f(x) = 11?x§|f(f(x)),f(f(f(x))),f
parenleftbigg 1
f(x)
parenrightbigg
.
)μ?f(x) = 11?x§K
f(f(x)) = 1
1? 11?x
= x?1x,f(f(f(x))) = 1
1? 1
1? 11?x
= 1
1? x?1x
= x,f
parenleftbigg 1
f(x)
parenrightbigg
= 11?(1?x) =
1
x
7,|e?êê9êμ
(1) y = x2(?∞<xlessorequalslant 0)
(2) y = √1?x2(?1 lessorequalslantxlessorequalslant 0)
(3) y = sinx
parenleftbiggpi
2 lessorequalslantxlessorequalslant
3
2pi
parenrightbigg
(4) y =
x,?∞<x< 1?
x2,1 lessorequalslantxlessorequalslant 4?
2x,4 <x< +∞?
)μ
(1)?y = x2(?∞<xlessorequalslant 0)§Kx =?√y(0 lessorequalslanty< +∞)§l
d?êê?y =?√x(0 lessorequalslanty< +∞)
(2)?y = √1?x2(?1 lessorequalslantxlessorequalslant 0)§Kx =?radicalbig1?y2(0 lessorequalslanty lessorequalslant 1)§l
d?êê?y =?√1?x2(0 lessorequalslant
xlessorequalslant 1)
(3)?y = sinx
parenleftbiggpi
2 lessorequalslantxlessorequalslant
3
2pi
parenrightbigg
§Kx = pi? arcsiny(?1 lessorequalslant y lessorequalslant 1)§l
d?êê?y = pi?
arcsinx(?1 lessorequalslantxlessorequalslant 1)
(4)?y =
x,?∞<x< 1?
x2,1 lessorequalslantxlessorequalslant 4?
2x,4 <x< +∞?
§Kx =
y,?∞<y< 1?√
y,1 lessorequalslanty lessorequalslant 16?
log2y,16 <x< +∞?
§l
d?êê
y =
x,?∞<x< 1?√
x,1 lessorequalslantxlessorequalslant 16?
log2x,16 <x< +∞?
.
11
§3,?D?ê
1,re3[0,1)t?êò??¢?t§|§¤?±1?±??êμ
(1) y = x2
(2) y = sinx
(3) y = ex
)μ
(1) ò? ?ê?y = (x?n)2(nlessorequalslantx<n+ 1,n∈Z)
(2) ò? ?ê?y = sin(x?n)(nlessorequalslantx<n+ 1,n∈Z)
(3) ò? ?ê?y = ex?n(nlessorequalslantx<n+ 1,n∈Z)
2,re3[0,+∞)t?êò??¢?t§(a)|§?¤ê?(b)|§?¤?ó?êμ
(1) y = x2
(2) y = sinx
)μ
(1) ò? ?ê?μ
(a) f(x) =
braceleftbigg x2,xgreaterorequalslant 0
x2,x< 0
(b) f(x) = x2
(2) ò? ?ê?μ
(a) f(x) = sinx
(b) f(x) = sin|x|
3,?e?ê?/μ
(1) y = sgncosx
(2) y = [x]?2
bracketleftBigx
2
bracketrightBig
)μ
(1)
a45
a54
0 pi x-pi
y
1
-1
a113a113 a113a113
a98a98
a98 a98
a98
a98
a98
(2)
a45
a54
0 1 2 3-1-2-3 x
y
1a99 a98
a98 a98a98a98 a98
4,êy = (x)?/.
)μ
a45
a54
a0
a0a0
a0
a0a0
a0
a0a0
a0a0
a0a0
a0
a0a0
a0
a0a0a0
0 1 2 3-1-2-3 x
y
1a99 a98a98 a98a98a98a98
5,êy = [x]?x?/.
)μ
a45a54
a64
a64a64
a64
a64a64
a64
a64a64
a64a64a64
a64a64
a64
a64a64
a64
a64a64a64a64
0 1 2 3-1-2-3 x
y
-1a99 a98a98 a98a98a98a98
12
6,ê′^e{μ3z?mn lessorequalslant x < n + 1(ù¥n?ê)Sf(x)′?5?f(n) =
1,f
parenleftbigg
n+ 12
parenrightbigg
= 0§á?d?ê?/.
)μ
a45
a54
a1
a1
a1
a1a1
a1
a1
a1
a1a1
a1
a1
a1
a1a1
a1a1a1
a1
a1
a1a1
a1
a1
a1
a1a1
a1
a1
a1
a1a1a1a1
0 1 2 3-1-2-3 x
y
1
-1
a99 a98a98 a98a98a98a98
7,êy = |sinx+ 2cosx|?/.
)μ
a45
a54
0 pi
2
pi?pi
2
pi x
y
√5
-1
8,e??êf(x) = tanx§?e?ê?/μ
(1) y = f(2x)
(2) y = f(kx+b)(knegationslash= 0)
(3) y = f
parenleftBigx
2
parenrightBig
1
)μ
(1)
a45
a54
0 pi
4
pi
2
3pi
4-
pi
4-
pi
2-
3pi
4
x
y
(2) (k,b> 0)
13
a45
a54
0 pi?2b2k
pi?b
k 3pi?2b
2k
-bk
-pi+2b2k-pi+bk x
y
(3)
a45
a54
0 2pipi
-pi
-2pi x
y
9,e??êy = f(x)?/§êy1 = |f(x)|,y2 = f(?x),y3 =?f(?x)?/§?`2y1,y2,y3?/
y?/'X.
)μy = f(x)?/Xeμ
a45
a54
0 x
y
Ky1?/?μ
a45
a54
0 x
y
Ky2?/?μ
a45
a54
0 x
y
Ky3?/?μ
a45
a54
0 x
y
y1?/f(x) < 0y?/'ux?é?§f(x) > 0y?/??
y2?/?y?/'uy?é?§
y3?/?y?/'u:é?§
14
10,e?f(x),g(x)?/§áêy = 12{f(x)+g(x)+|f(x)?g(x)|}?/§?`2y?/?f(x),g(x)?
/'X.
)μy = max{f(x),g(x)}
a45
a54
0 x
y
g(x) f(x)
11,éu3[0,pi]t?êy = x§kr§ò?[0,2pi]|§'ux = pi?é?§, 2r?ò?[0,2pi]t?
êò??¢?t|?ê?±2pi?±??ê.
)μ¤|?ê?:f(x) =
x,x∈ [0,pi]
2pi?x,x∈ [pi,2pi]
x?2npi,x∈ [2npi,(2n+ 1)pi](n = ±1,±2,···)
2npi?x,x∈ [(2n?1)pi,2npi](n = 0,?1,±2,···)
= pi
vextendsinglevextendsingle
vextendsinglexpi?2
bracketleftBigx+pi
2pi
bracketrightBigvextendsinglevextendsingle
vextendsingle
a45
a54
a0
a0
a0
a0a0a64a64
a64
a64a64
a64
a64
a64
a64a64a0a0
a0
a0a0
0 pi?pi 2pi
-pi
-2pi x
y
pi
15
1ù 4Y
§1,ê4?út
1,?eêco?μ
(1) xn = 13n sinn3
(2) xn = m(m?1)···(m?n+ 1)n! xn
(3) xn = 1√n2 + 1 + 1√n2 + 2 +···+ 1√n2 +n
(4) x1 = a> 0,y1 = b> 0,xn+1 = √xnyn,yn+1 = xn +yn2
(5) x2n = 1 + 12 +···+ 1n (n = 1,2,3,···)
x2n+1 = 1n (n = 1,2,···)
):
(1) x1 = 13 sin1,x2 = 16 sin8,x3 = 19 sin27,x4 = 112 sin64
(2) x1 = mx,x2 = m(m?1)2 x2,x3 = m(m?1)(m?2)6 x3,
x4 = m(m?1)(m?2)(m?3)24 x4
(3) x1 = 1√2,x2 = 1√5 + 1√6,x3 = 1√10 + 1√11 + 1√12,
x4 = 1√17 + 1√18 + 1√19 + 1√20
(4) x1 = a,x2 = √ab,x3 =
radicalbigg√
aba+b2,
x4 = 8√ab· 4
radicalbigga+b
2 ·
√a+√b
2
y1 = b,y2 = a+b2,y3 = (
√a+√b)2
4,
y4 = (
√a+√b)2
4 +
4√abradicalbig2(a+b)
16
(5) x2 = 1,x3 = 1,x4 = 32,x5 = 12
2,Uy2±eêtμ
(1) n+ 1n2 + 1
(2) sinnn
(3) n+ (?1)
n
n2?1
(4) 1n!
(5) 1n? 12n + 13n?···+ (?1)n+1 1n2
(6) (?1)n(0.999)n
(7) 1n +e?n
16
(8) e
n
n
(9) √n+ 1?√n
(10) 1 + 2 + 3 +···+nn3
y2:
(1) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglen+ 1
n2 + 1?0
vextendsinglevextendsingle
vextendsinglevextendsingle = n+ 1
n2 + 1 <
2n
n2 =
2
n§?|
vextendsinglevextendsingle
vextendsinglevextendsinglen+ 1
n2 + 1?0
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§2
n < ε=?"
N =
bracketleftbigg2
ε
bracketrightbigg
+ 1,Kn>N?§
vextendsinglevextendsingle
vextendsinglevextendsinglen+ 1
n2 + 1?0
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§¤±n+ 1
n2 + 1 → 0(n→∞)
(2) é?ε> 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglesinn
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsinglesinn
n
vextendsinglevextendsingle
vextendsinglevextendsinglelessorequalslant 1
n§?|
vextendsinglevextendsingle
vextendsinglevextendsinglesinn
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle<ε§1
n <ε=?"N =
bracketleftbigg1
ε
bracketrightbigg
+ 1§
Kn>N?§
vextendsinglevextendsingle
vextendsinglevextendsinglesinn
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§¤±sinn
n → 0(n→∞)
(3) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglen+ (?1)n
n2?1?0
vextendsinglevextendsingle
vextendsinglevextendsingle = n+ (?1)n
n2?1 <
n+ 1
n2?1 =
1
n?1§?|
vextendsinglevextendsingle
vextendsinglevextendsinglen+ (?1)n
n2?1?0
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§?
1n?1 < ε=?"N =
bracketleftbigg1
ε
bracketrightbigg
+ 1§Kn > N?§
vextendsinglevextendsingle
vextendsinglevextendsinglen+ (?1)n
n2?1?0
vextendsinglevextendsingle
vextendsinglevextendsingle< εo¤á§¤±n+ (?1)n
n2?1 →
0(n→∞)
(4) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle 1
n!?0
vextendsinglevextendsingle
vextendsinglevextendsingle = 1
n! <
1
n§?|
vextendsinglevextendsingle
vextendsinglevextendsingle 1
n!?0
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§1
n < ε=?"N =
bracketleftbigg1
ε
bracketrightbigg
+ 1§K
n>N?§
vextendsinglevextendsingle
vextendsinglevextendsingle 1
n!?0
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§¤± 1
n! → 0(n→∞)
(5) Sn = 1n? 12n + 13n?···+ (?1)n+1 1n2
é?ε> 0§duSn = 1n(1? 12 + 13?···+ (?1)n+1 1n)
δn = 1?12+13?···+(?1)n+1 1n§KSn = δnnn = 2k+1?§k0 <δn = 1?(12?13)?(14?15)?···?
( 12k? 12k+ 1) < 1?n = 2k?§k0 <δn = 1?(12?13)?(14?15)?···?( 12k?2? 12k?1)? 12k < 1"
o?§k0 <δn < 1l
|Sn?0| = Sn = δnn < 1n?||Sn?0|<ε§1n <ε=?"N =
bracketleftbigg1
ε
bracketrightbigg
+1§
Kn>N?§|Sn?0|<εo¤á§¤±1n? 12n + 13n?···+ (?1)6n+ 1 1n2 → 0(n→∞)
(6) é?ε > 0§dun > lnn§Ken > n§u′e?n < 1n§l
vextendsinglevextendsingle
vextendsinglevextendsingle1
n +e
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle = 1
n + e?n <
2
n§?
||(?1)n(0.999)n?0|<ε§(0.999)n <ε=?"N =
bracketleftbigg
2500ln 1ε
bracketrightbigg
+1§Kn>N?§|(?1)n(0.999)n?
0|<εo¤á§¤±(?1)n(0.999)n → 0(n→∞)
(7) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle1
n +e
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle = 1
n! <
1
n§?|
vextendsinglevextendsingle
vextendsinglevextendsingle1
n +e
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle< ε§2
n < ε=?"N =
bracketleftbigg2
ε
bracketrightbigg
+
1§Kn>N?§
vextendsinglevextendsingle
vextendsinglevextendsingle1
n +e
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§¤±1
n +e
n → 0(n→∞)
(8) é?ε > 0§due?n < e0 = 1§K
vextendsinglevextendsingle
vextendsinglevextendsinglee?n
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle = e?n
n <
1
n§?|
vextendsinglevextendsingle
vextendsinglevextendsinglee?n
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§1
n < ε=?"
N =
bracketleftbigg1
ε
bracketrightbigg
+ 1§Kn>N?§
vextendsinglevextendsingle
vextendsinglevextendsinglee?n
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§¤±e?n
n → 0(n→∞)
(9) é?ε> 0§du|√n+ 1?√n?0| = 1√n+ 1 +√n < 12√n§?||√n+ 1?√n?0|<ε§ 12√n <
ε=?"N =
bracketleftbigg 1
4ε2
bracketrightbigg
+1§Kn>N?§|√n+ 1?√n?0|<εo¤á§¤±√n+ 1?√n→ 0(n→
∞)
(10) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle1 + 2 + 3 +···+n
n3?0
vextendsinglevextendsingle
vextendsinglevextendsingle = n+ 1
2n2 <
2n
2n2 =
1
n§?|
vextendsinglevextendsingle
vextendsinglevextendsingle1
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle< ε§1
n < ε=?"
N =
bracketleftbigg1
ε
bracketrightbigg
+ 1§Kn > N?§
vextendsinglevextendsingle
vextendsinglevextendsingle1 + 2 + 3 +···+n
n3?0
vextendsinglevextendsingle
vextendsinglevextendsingle < εo¤á§¤±1 + 2 + 3 +···+n
n3 →
0(n→∞)
17
3,T~`2e'ut′μ
(1) éε> 0§3N§n>N?§¤áxn <ε?
(2) éε> 0§3xn§||xn|<ε.
):
(1) ~Xμê{?1 + (?1)n+1}(?{?n})={0,?2,0,?2,···} (?{?1,?2,?3,···})÷vt?^?§?′
t?
(2) ~Xμê{1,12,1,13,···,1,1n,···}÷vt?^?§?′t"
4,Uy2μ
(1) lim
n→∞
3n2 +n
2n2?1 =
3
2
(2) lim
n→∞
(0.
nbracehtipdownleft bracehtipuprightbracehtipupleft bracehtipdownright
99···9) = 1
(3) lim
n→∞
√n2 +n
n = 1
(4) xn = 11·2 + 12·3 +···+ 1(n?1)·n → 1(n→∞)
(5) lim
n→∞
rn = 1§d?rn =
n?1
n n?óên+ 1
n nê
(6) lim
n→∞
rn = 1§d?rn =
3 n = 3k(k = 1,2,3,···)
3n+ 1
n n = 3k+ 1
2 + 1 +n3?√n+n n = 3k+ 2
y2μ
(1) é?ε> 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle3n2 +n
2n2?1?
3
2
vextendsinglevextendsingle
vextendsinglevextendsingle = 2n+ 3
4n2?2 <
4(n+ 1)
4(n+ 1)(n?1) =
1
n?1(n greaterorequalslant 2)§?|
vextendsinglevextendsingle
vextendsinglevextendsingle3n2 +n
2n2?1?
3
2
vextendsinglevextendsingle
vextendsinglevextendsingle<
ε§ 1n?1 < ε=?"N = max(
bracketleftbigg1
ε
bracketrightbigg
+ 1,2),Kn > N?§
vextendsinglevextendsingle
vextendsinglevextendsingle3n2 +n
2n2?1?
3
2
vextendsinglevextendsingle
vextendsinglevextendsingle < εo¤á§¤
±3n
2 +n
2n2?1 →
3
2(n→∞)
(2) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle0.
nbracehtipdownleft bracehtipuprightbracehtipupleft bracehtipdownright
99···9?1
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle = (0.1)n =
1
10n§?|
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle0.
nbracehtipdownleft bracehtipuprightbracehtipupleft bracehtipdownright
99···9?1
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle< ε§
1
10n < ε=?"N =
bracketleftbigg
lg 1ε
bracketrightbigg
+ 1,Kn>N?§
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle0.
nbracehtipdownleft bracehtipuprightbracehtipupleft bracehtipdownright
99···9?1
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§¤±0.
nbracehtipdownleft bracehtipuprightbracehtipupleft bracehtipdownright
99···9 → 1(n→∞)
(3) é?ε> 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle
√n2 +n
n?1
vextendsinglevextendsingle
vextendsinglevextendsingle =
√n2 +n?n
n =<
1√
n2 +n+n <
1
2n§?|
vextendsinglevextendsingle
vextendsinglevextendsingle
√n2 +n
n?1
vextendsinglevextendsingle
vextendsinglevextendsingle<ε§?
12n <ε=?"N =
bracketleftbigg 1
2ε
bracketrightbigg
+ 1,Kn>N?§
vextendsinglevextendsingle
vextendsinglevextendsingle
√n2 +n
n?1
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§¤±
√n2 +n
n → 1(n→
∞)
(4) é?ε> 0§duxn = 1? 12 + 12? 13 +···+ 1n?1? 1n = 1? 1n§K|xn?1| = 1n§?||xn?1|<ε§
1n <ε=?"N =
bracketleftbigg1
ε
bracketrightbigg
+ 1,Kn>N?§|xn?1|<εo¤á§¤±xn → 1(n→∞)
(5) é?ε> 0§du|rn?1| =
vextendsinglevextendsingle
vextendsinglevextendsinglen±1
n?1
vextendsinglevextendsingle
vextendsinglevextendsingle = 1
n§?||rn?1| <ε§
1
n <ε=?"N =
bracketleftbigg1
ε
bracketrightbigg
+ 1,K
n>N?§|rn?1|<εo¤á§¤±rn → 1(n→∞)
(6) é?ε > 0§du|r3k?3| = 0,|r3k+1?3| = 1n,|r3k+2?3| =
√n?2
3?√n+n =
n?4
n√n+n+√n+ 6 <
n
n√n =
1√
n§?||rn?3| < ε§
1
n < ε?
1√
n < ε=?"N = max
parenleftbiggbracketleftbigg1
ε
bracketrightbigg
+ 1,
bracketleftbigg 1
ε2
bracketrightbigg
+ 1
parenrightbigg
,K
n>N?§|rn?3|<εo¤á§¤±rn → 3(n→∞)
18
5,(1) Uy2§ean →a(n→∞)§Kég,êk§an+k →a(n→∞)
(2) Uy2§ean →a(n→∞)§K|an|→|a|.q′?¤áo
(3) e|an|→ 0§áˉan →a′¤áooo
y2μ
(1) duan → a(n → ∞)§é?ε > 0,?N ∈ Z+§n > N?§|an?a| < ε§Ké?k ∈ Z+,n + k >
N?§|an+k?a| < ε§u′é?ε > 0,?N ∈ Z+§n + k > N?§|an+k?a| < ε§l
an+k →
a(n→∞)
triangled(?`2μKêc?k§K?ù5"
(2) (i) duan → a§é?ε > 0,?N ∈ Z+§n > N?§|an?a| < ε.qvextendsinglevextendsingle|an|?|a|vextendsinglevextendsingle< |an?a|§u′
é?ε> 0,?N ∈Z+§n>N?§vextendsinglevextendsingle|an|?|a|vextendsinglevextendsingle<ε¤á§=|an|→|a|(n→∞
(ii)¤á"
~μ
(a)?¤áμan = (?1)n§K|an|→ 1§
an?4
(b) ¤áμan = 1n§K|an|→ 0,an → 0
(3) du|an| → 0§é?ε > 0,?N ∈ Z+§n > N?§vextendsinglevextendsingle|an|? 0vextendsinglevextendsingle < ε§q|an? 0| = vextendsinglevextendsingle|an|? 0vextendsinglevextendsingle§u
′é?ε > 0,?N ∈ Z+§n > N?§|an? 0| < ε¤á§=an → 0(n → ∞)"l
e|an| → 0§
Kan → 0¤á"
6,Uy2§exn →a§?a>b§K3N§n>N?§¤áxn >b.
y2μduxn → a§é?ε > 0,?N ∈ Z+§n > N?§|xn? 0| < ε§=a?ε < xn < a+ε.qa > b§
a?b> 0§Kε = a?b> 0§l
N ∈Z+§n>N?§kxn >a?ε = a?(a?b) = b.=3N§
n>N?§¤áxn >b.
7,e{xnyn}§U{xn},{yn}.
)μ?U"
~μxn = (?1)n,yn = (?1)n(n = 1,2,···),xnyn ≡ 1(n = 1,2,···)§K{xnyn}§{xn},{yn}t
"e{xnyn}§?U{xn},{yn}.
8,|^4?5?9O?y2μ
(1) lim
n→∞
parenleftbigg 1
n2 +
1
(n+ 1)2 +···+
1
(2n)2
parenrightbigg
= 0
(2) lim
n→∞
parenleftbigg 1
√n2 + 1 + 1√n2 + 2 +···+ 1√n2 +n
parenrightbigg
= 1
(3) |^(1 +h)n =
nsummationtext
k=0
Cknhk = 1 +nh+ n(n?1)2 h2 +···+hn
y2μ
(i) lim
n→∞
n
an = 0(a> 1)
(ii) lim
n→∞
n5
en = 0(e≈ 2.7)
y2μ
(1) é?n∈Z+§k0 lessorequalslant 1n2 + 1(n+ 1)2 +···+ 1(2n)2 lessorequalslant n+ 1n2 §? lim
n→∞
n+ 1
n2 = 0§K limn→∞
parenleftbigg 1
n2 +
1
(n+ 1)2 +···+
1
(2n)2
parenrightbigg
=
0
(2) é?n ∈ Z+§k nn+ 1 < 1√n2 + 1 + 1√n2 + 2 + ··· + 1√n2 +n < nn = 1? lim
n→∞
n
n+ 1 = 1§
K lim
n→∞
parenleftbigg 1
√n2 + 1 + 1√n2 + 2 +···+ 1√n2 +n
parenrightbigg
= 1
(3) (i) a = 1 +h(h> 0)§du0 < nan = n(1 +h)n = n
1 +nh+ n(n1)2 h2 +···+hn
< nn(n?1)
2 h
2
=
2
(n?1)h2§q
2
h2§
1
n?1 → 0(n→∞)§K
2
(n?1)h2 → 0.l
limn→∞
n
an = 0
19
(ii) e = 1 + h(h ≈ 1.7)§du0 < n
5
en =
n5
(1 +h)n =
n5
1 +nh+C2nh2 +···+hn <
n5
C6nh6 <
720n5
(n?5)6h6§q
720
h6§
n5
(n?5)6 → 0(n→∞)§K
720n5
(n?5)6h6 → 0(n→∞)§l
limn→∞
n5
en =
0
9,|e4?μ
(1) lim
n→∞
3n3 + 2n2?n+ 1
2n3?3n2 + 2
(2) lim
n→∞
6n2?n+ 1
n3 +n2 + 2
(3) lim
n→∞
parenleftbigg
1? 1n√2
parenrightbigg
cosn
(4) lim
n→∞
1 + 12 +···+ 12n
1 + 14 +···+ 14n
(5) lim
n→∞
bracketleftBigg
(sinn!)
parenleftbiggn?1
n2 + 1
parenrightbigg10
parenleftbigg 1
1·2 +
1
2·3 +···+
1
(n?1)·n
parenrightbigg2n2 + 1
n2?1
bracketrightBigg
(6) lim
n→∞
(?2)n + 3n
(?2)n+1 + 3n+1
)μ
(1) lim
n→∞
3n3 + 2n2?n+ 1
2n3?3n2 + 2 =
3
2
(2) lim
n→∞
6n2?n+ 1
n3 +n2 + 2 = 0
(3) dun√2 → 1(n→∞)§1? n√2 → 0(n→∞)§q|cosn|lessorequalslant 1§l
lim
n→∞
parenleftbigg
1? 1n√2
parenrightbigg
cosn = 0
(4) lim
n→∞
1 + 12 +···+ 12n
1 + 14 +···+ 14n
= lim
n→∞
1?(12)n+1
1? 12
1?(14)n+1
1? 14
= 24
3
= 32
(5) du{sinn!}?k.ê§
parenleftbiggn?1
n2 + 1
parenrightbigg10
→ 0,1? 1n → 1,2n
2 + 1
n2 + 1 → 2(n→∞)§
lim
n→∞
bracketleftBigg
(sinn!)
parenleftbiggn?1
n2 + 1
parenrightbigg10
parenleftbigg 1
1·2 +
1
2·3 +···+
1
(n?1)·n
parenrightbigg2n2 + 1
n2?1
bracketrightBigg
=?2
(6) lim
n→∞
(?2)n + 3n
(?2)n+1 + 3n+1 = limn→∞
(?23 )n + 1
(?2)(?23 )n + 3
= 13
10,exn →a> 0§áyμ
(1) √xn →√a
(2)
radicalbig
a0xmn +a1xm?1n +···+am?1xn +am →radicalbiga0am +a1am?1 +···+am?1a+am
(ù¥a0am +a1am?1 +···+am?1a+am > 0)
y2μ
(1) duxn → a > 0§é?ε > 0,?N ∈ Z+§n > N?§|xn? a| < √aε§?|√xn? √a| =vextendsingle
vextendsinglevextendsingle
vextendsingle
xn?a√
xn +√a
vextendsinglevextendsingle
vextendsinglevextendsingle < |xn?a|√
a < ε§=ét?ε > 0,?N ∈ Z
+§n > N?§|√xn? √a| < ε§l
√xn →√a(n→∞)
20
(2) duxn →a(n→∞)§a0xmn +a1xm?1n +···+am?1xn+am →a0am+a1am?1+···+am?1a+am > 0§
Ka(1)radicalbig
a0xmn +a1xm?1n +···+am?1xn +am →radicalbiga0am +a1am?1 +···+am?1a+am
11,éê{xn}§ex2k →a(k→∞),x2k+1 →a(k→∞)§y2μxn →a(n→∞)
y2μ?ε> 0§?x2k →a(n→∞)§?K1 ∈Z+§|k>K1?§|x2k?a|<ε¤á"
q?x2k+1 →a(n→∞)§?K2 ∈Z+§|k>K2?§|x2k+1?a|<ε¤á"
N = max{2K1,2K2 + 1}§Kn>N?§en?óê§n = 2k>N greaterorequalslant 2K1,k>K1,|xn?a| = |x2k?a|<
ε§
enê§n = 2k+ 1 >N greaterorequalslant 2K2 + 1,k>K2,|xn?a| = |x2k+1?a|<ε§
dxn →a(n→∞)
12,|^üNk.7k4?§y2 lim
n→∞
xn3§?|?§μ
(1) x1 = √2,···,xn = √2xn?1
(2) x0 = 1,x1 = 1 + x01 +x
0
,···,xn+1 = 1 + xn1 +x
n
y2μ
(1) w,x1 < x2§bxn?1 < xn§Kxn = √2xn?1 < √2xn§d8B{§{xn}′üNO\§qxn =√
2xn?1§x2n = 2xn1 lessorequalslant 2xn§u′xn lessorequalslant 2§={xn}dt."l
lim
n→∞
xn3§P lim
n→∞
xn = l§
3x2n = 2xn?1ü>-n→∞§l2 = 2l§)?l = 2§= lim
n→∞
xn = 2"
(2) w,xn greaterorequalslant 1§k^?xn = 1 + xn?11 +x
n?1
= 2? 11 +x
n?1
< 2§{xn}k."qx1 = 1 + x01 +x
0
=
1 + 11 + 1 = 32 > 1 = x0§bxn1 < xn§Kxn = 2? 11 +x
n?1
< 2? 11 +x
n
= xn+1§d
8B{§{xn}′üNO\"l
lim
n→∞
xn3§P lim
n→∞
xn = l§3xn = 2? 11 +x
n?1
ü>-
n → ∞§l = 2? 11 +l§=l2 = 1 + l§)l1 = 1 +
√5
2,l2 =
1?√5
2 £?üK?§¤§
= lim
n→∞
xn = 1 +
√5
2 "
13,ex1 = a> 0,y1 = b> 0(a<b),xn+1 = √xnyn,yn+1 = xn +yn2 §y2μ lim
n→∞
xn = lim
n→∞
yn.
y2μdu√xnyn lessorequalslant xn +yn2?da??=xn = yn§xn+1 lessorequalslant yn+1ò¤á?=xn =
yn.q0 <a<b§x1 <y1§Kd4íúa§xn+1 <yn+1?xn > 0,yn > 0(n∈Z+).
xn+1 = √xnyn >
√x
nxn = xn,yn+1 =
xn +yn
2 <
yn +yn
2 = yn§Kxn <xn+1 <yn+1 <yn.qdx1 = a> 0,y1 = b> 0§
a < xn < xn+1 < yn+1 < yn < b§`2{xn}?{yn}?′üNk.ê§l
{xn},{yn}tk4?§
lim
n→∞
xn = α,lim
n→∞
yn = β§qdxn+1 = √xnyn§x2n+1 = xnyn§3aü>-n → ∞§α2 = αβ q
d0 <a<xn <xn+1§?k0 <alessorequalslantα§l
α = β=k lim
n→∞
xn = lim
n→∞
yn.
14,|^üNk.7k4?y2±eê7k4?μ
(1) xn = 1 + 122 +···+ 1n2
(2) xn = 13 + 1 + 132 + 1 +···+ 13n + 1
(3) xn = n
k
an(a> 1,k?ê)
(4) xn = n√a (0 <a< 1)
y2μ
(1) duxn+1?xn = 1(n+ 1)2 > 0§xn+1 > xn§K{xn}?üNO\,q1 < xn < 1 + 11˙2 + ··· +
1
n˙(n+ 1) = 1 +
parenleftbigg
1? 12 +···+ 1n
1
1n
parenrightbigg
= 2? 1n < 2§{xn}k.§u′{xn}34?"
(2) duxn+1?xn = 13n+1 + 1 > 0§xn+1 >xn§K{xn}?üNO\,q14 <xn < 14+ 132 +···+ 13n <
1
3 +
1
32 +···+
1
3n =
1
3
1? 13
= 12§{xn}k.§u′{xn}34?"
21
(3) dua > 1,k?ê§xn = n
k
an > 0§K{xn}ke."q
xn+1
xn =
parenleftbigg
1 + 1n
parenrightbiggk
a =
1
a
parenleftbigg
1 + 1n
parenrightbiggk
→
1
a(n → ∞) < 1§?N ∈ Z
+§n > N?§kxn+1
xn < 1§KlN + 1?mkxn+1 < xn§u
′{xn}?üN~(n>N)§l
{xn}34?"
(4) dulnxn = 1n lna = yn,0 <a< 1§{yn}′üNO\§l
dxn = n√a = eyn{xn}′üNO\
"q0 <xn = n√a< n√1 = 1§{xn}k.§u′{xn}34?"
15,y2μexnt,§yneü§
xn?ynt§Kxnúyn7kó?4?"
y2μdxnt,§x1 lessorequalslant x2 lessorequalslant ··· lessorequalslant xn lessorequalslant ···§qyneü§y1 greaterorequalslant y2 greaterorequalslant ··· greaterorequalslant yn greaterorequalslant ···§qxn?yn
t§{xn?yn}k.§|xn?yn|lessorequalslantC(n = 1,2,···)£ù¥C?,~ꤧK?C lessorequalslantxn?yn lessorequalslantC=xn lessorequalslant
yn +C lessorequalslant y1 +C§u′{xn}kt.§l
{xn}34?"qyn greaterorequalslant xn?C greaterorequalslant x1?C§u′{yn}ke.§l
{yn}34?§K lim
n→∞
xn? lim
n→∞
yn = lim
n→∞
(xn?yn) = 0§u′ lim
n→∞
xn = lim
n→∞
yn.
16,x¢ê§qyn(x) = sinsin···sinbracehtipupleft bracehtipdownrightbracehtipdownleft bracehtipupright
n
x§y2{yn(x)}4?3§?|d4?.
y2μk0 lessorequalslant x lessorequalslant pi§K0 lessorequalslant sinx lessorequalslant x§l
kyn+1(x) = sinyn(x) lessorequalslant yn(x)§{yn(x)}′±0?e.ü
Neü?ê§7k4?§Ké?x0 ∈ [0,pi]§k0 lessorequalslant u0 = lim
n→∞
yn(x0) = sin
parenleftBig
lim
n→∞
fn?1(x0)
parenrightBig
= sinu0§
Ku0 = 0§l
é?x∈ [0,pi],lim
n→∞
yn(x) = 0.
ón?yx∈ [?pi,0]k lim
n→∞
yn(x) = 0.
2d±?5? lim
n→∞
yn(x) = 0
17,e lim
n→∞
xn = a§áyμ lim
n→∞
x1 +x2 +···+x+n
n = a
y2μd lim
n→∞
xn = a§é?ε> 0,?N1 ∈Z+§n>N1?§k|xn?a|< ε2§Kk
vextendsinglevextendsingle
vextendsinglex1 +x2 +···+xnn?a
vextendsinglevextendsingle
vextendsingle=vextendsingle
vextendsinglevextendsingle
vextendsingle
(x1?a) + (x2?a) +···+ (xn?a)
n
vextendsinglevextendsingle
vextendsinglevextendsinglelessorequalslant |x1?a|+|x2?a|+···+|xN1?a|+|xN1+1?a|+···+|xn?a|
n <
|x1?a|+|x2?a|+···+|xN1?a|
n +
n?N1
n ·
ε
2 <|x
1?a|+|x2?a|+···+|xN1?a|
n +
ε
2(∵
n?N1
n < 1)
M = max(|x1?a|,|x2?a|,···,|xn1?a|)§K|x1?a|+|x2?a|+···+|xN1?a|n lessorequalslant N1 ·Mn §qN1·M?
§KN1 ·Mn → 0(n→∞)§
u′ét?ε> 0,?N2 =
bracketleftbigg2N
1 ·M
ε
bracketrightbigg
∈Z+§n>N2?§k
|x1?a|+|x2?a|+···+|xN1?a|
n <
ε
2
N = max(N1,N2)§Kn>N?§k
vextendsinglevextendsingle
vextendsinglex1 +x2 +···+xnn?a
vextendsinglevextendsingle
vextendsingle< ε2 + ε2 = ε§
=k lim
n→∞
x1 +x2 +···+x+n
n = a
5μe lim
n→∞
x1 +x2 +···+xn
n = anotdblarrowright limn→∞xn3"
~μxn = (?1)n?1(n = 1,2,···)§Kw,lim
n→∞
x1 +x2 +···+xn
n = 0§ limn→∞xn?3"
18,y2μe lim
n→∞
an = a,lim
n→∞
bn = b§K lim
n→∞
a1bn +a2bn?1 +···+anb1
n = aby2μ
(1) a = 0§y lim
n→∞
a1bn +a2bn?1 +···+anb1
n = 0
d lim
n→∞
bn = b§Ka?n4(P38)§?M > 0§||bn|lessorequalslantM(n∈Z+)
d lim
n→∞
an = 0§Ké?ε> 0,?N1 ∈Z+§n>N1?§k|an|< ε2M.N = max
braceleftbiggbracketleftbigg2(|a
1|+···+|an|)M
ε
bracketrightbigg
+ 1,N1
bracerightbigg
§
u′ngreaterorequalslantN(greaterorequalslantN1)?§k
vextendsinglevextendsingle
vextendsinglevextendsinglea1bn +a2bn?1 +···+anb1
n
vextendsinglevextendsingle
vextendsinglevextendsingle=
vextendsinglevextendsingle
vextendsinglevextendsinglea1bn +a2bn?1 +···+aN1bn?N1+1 +aN1+1bn?N1 +···+anb1
n
vextendsinglevextendsingle
vextendsinglevextendsingle
lessorequalslant
vextendsinglevextendsingle
vextendsinglevextendsinglea1bn +a2bn?1 +···+aN1bn?N1+1
n
vextendsinglevextendsingle
vextendsinglevextendsingle+
vextendsinglevextendsingle
vextendsinglevextendsingleaN1+1bn?N1 +···+anb1
n
vextendsinglevextendsingle
vextendsinglevextendsinglelessorequalslant (|a1|+···+|aN1|)M
n +
(n?N1)· ε2M ·M
n <
22
ε
2 +
ε
2 = ε§l
limn→∞
a1bn +a2bn?1 +···+anb1
n = 0
(2) anegationslash= 0,bnegationslash= 0?§d lim
n→∞
bn = b§ lim
n→∞
bn +bn?1 +···+b1
n = bnegationslash= 0§q limn→∞an = a§ limn→∞(an?a) = 0
d(1) lim
n→∞
(a1?a)bn +···+ (an?a)b1
n = 0§
u′ lim
n→∞
a1 ·
bn
n +···+an ·
b1
n
bn +···+b1
n
a
= lim
n→∞
(a1?a)· bnn +···+ (an?a)· bnn
bn +···+b1
n
= 0b = 0§
= lim
n→∞
a1 · bnn +···+an · b1n
bn +···+b1
n
= a§
l
lim
n→∞
a1bn +a2bn?1 +···+anb1
n = limn→∞
a1 ·
bn
n +···+an ·
b1
n
bn +···+b1
n
· bn +···+b1n
= ab
19,Uy2eêtμ
(1) √n
(2) n!
(3) lnn
(4) n
2 + 1
2n+ 1
(5) n
2 + 1
2n?1
(6) 1 + 12 + 13 +···+ 1n
y2μ
(1) é?G > 0§?||√n| > G§n > G2=?.N = [G2]§Kn > N?§|√n| > Go¤á§
{√n}′t"
(2) é?G > 0§du|n!| > n§?||n!| > G§n > G=?.N = [G]§Kn > N?§|n!| > Go¤
á§{n!}′t"
(3) é?G > 0§?||lnn| > G§n > eG=?.N = [eG]§Kn > N?§|lnn| > Go¤á§
{lnn}′t"
(4) é?G > 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglen2 + 1
2n+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle > n2
3n =
n
3§?|
vextendsinglevextendsingle
vextendsinglevextendsinglen2 + 1
2n+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle > G§n
3 > G=?.N = [3G]§Kn >
N?§
vextendsinglevextendsingle
vextendsinglevextendsinglen2 + 1
2n+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle>Go¤á§{n2 + 1
2n+ 1}′t"
(5) é?G > 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglen2 + 1
2n?1
vextendsinglevextendsingle
vextendsinglevextendsingle > n2
2n =
n
2§?|
vextendsinglevextendsingle
vextendsinglevextendsinglen2 + 1
2n?1
vextendsinglevextendsingle
vextendsinglevextendsingle > G§n
2 > G=?.N = [2G]§Kn >
N?§
vextendsinglevextendsingle
vextendsinglevextendsinglen2 + 1
2n?1
vextendsinglevextendsingle
vextendsinglevextendsingle>Go¤á§{n2 + 1
2n?1}′t"
(6) é?G > 0§du lim
n→∞
parenleftbigg
1 + 1n
parenrightbiggn
= e?
parenleftbigg
1 + 1n
parenrightbiggn
üNO\§K
parenleftbigg
1 + 1n
parenrightbiggn
< e§u′ln
parenleftbigg
1 + 1n
parenrightbigg
<
1
n§l
1+
1
2+
1
3+···+
1
n > ln2+ln
3
2+···+ln
parenleftbigg
1 + 1n
parenrightbigg
= ln(n+1) > lnn§K?|
vextendsinglevextendsingle
vextendsinglevextendsingle1 + 1
2 +
1
3 +···+
1
n
vextendsinglevextendsingle
vextendsinglevextendsingle>
G§lnn > G=?.N = [eG]§Kn > N?§
vextendsinglevextendsingle
vextendsinglevextendsingle1 + 1
2 +
1
3 +···+
1
n
vextendsinglevextendsingle
vextendsinglevextendsingle > Go¤á§{1 + 1
2 +
1
3 +···+
1
n}′t"
20,y2μe{xn}′t§xn negationslash= 0(n = 1,2,3,···)§K
braceleftbigg 1
xn
bracerightbigg
′t"
y2μdu{xn}′t§é?ε> 0,?N ∈Z+§n>N?§k|xn|<ε
23
qxn negationslash= 0(n = 1,2,3,···)§ 1x
n
3?
vextendsinglevextendsingle
vextendsinglevextendsingle 1
xn
vextendsinglevextendsingle
vextendsinglevextendsingle> 1
ε
qε′§1ε?′§l
braceleftbigg 1
xn
bracerightbigg
′t"
21,y2μe{xn}t§{yn}?k.Ct§K{xn ±yn}t"
ddO?e4?μ
(1) lim
n→∞
parenleftbigg
sinn+ n
2
√n2 + 1
parenrightbigg
(2) lim
n→∞
(n?arctann)
(3) lim
n→∞
bracketleftbigg
n+ (?1)n
parenleftbigg 1
1·3 +
1
3·5 +···+
1
(2n?1)(2n+ 1)
parenrightbiggbracketrightbigg
qμütú4?NoáU?/"
i)y2μdu{yn}?k.Ct§73êM§||yn| lessorequalslant M§q{xn}t§é?G > M >
0,?N ∈ Z+§n > N?§k|xn| > G§Kn > N?§k|xn ±yn| greaterorequalslant |xn|?|yn| > G?M.dG5
9G>M > 0§?G?M > 0?G?M′§l
{xn ±yn}t"
ii))μ
(1) du lim
n→∞
n2√
n2 + 1 = ∞?|sinn|lessorequalslant 1§K limn→∞
parenleftbigg
sinn+ n
2
√n2 + 1
parenrightbigg
= ∞
(2) du lim
n→∞
n = ∞?|arctann|lessorequalslant pi2§K lim
n→∞
(n?arctann) = ∞
(3) xn = (?1)n
parenleftbigg 1
1·3 +
1
3·5 +···+
1
(2n?1)(2n+ 1)
parenrightbigg
§Kxn = (?1)
n
2
bracketleftbigg
1? 13 + 13? 15 +···+ 12n?1? 12n+ 1
bracketrightbigg
=
(?1)n
2
parenleftbigg
1? 12n+ 1
parenrightbigg
= (?1)
n
2 ·
2n
2n+ 1 =
(?1)n
2 + 1n
§k13 <|xn|< 12.qd lim
n→∞
n = ∞§l
lim
n→∞
bracketleftbigg
n+ (?1)n
parenleftbigg 1
1·3 +
1
3·5 +···+
1
(2n?1)(2n+ 1)
parenrightbiggbracketrightbigg
= ∞
iii))μ
(1) xn = n→ +∞,yn = 2n→ +∞;xn +yn = 3n→ +∞
(2) xn =?n→?∞,yn =?2n→?∞;xn +yn =?3n→?∞
(3) xn =?n→?∞,yn = 2n→ +∞;xn +yn = n→ +∞
(4) xn = n→ +∞,yn =?2n→?∞;xn +yn =?n→?∞
(5) xn = n+a→ +∞,yn =?n→?∞;xn +yn = a£~t¤
(6) xn = n+ (?1)n → +∞,yn =?n→ +∞;xn +yn = (?1)n?4?
22,tútú!
!?4??/"
)μ
(1) ú!
μ?yn → 0(n → ∞)§{yn}k."qxn → ∞(n → ∞)§KdtK(?§k{xn ±yn}
t"
(2)?μxn negationslash= 0,yn negationslash= 0?§duxn →∞,yn → 0(n→∞)§Kkyn · 1x
n
→ 0§=ynx
n
→ 0,xny
n
→∞
23,T~`2tút|è?Uu)/"
)μ
(1) xn = n→ +∞,yn = 1n2 → 0(n→∞);xn ·yn = 1n → 0(n→∞)
(2) xn = n2 → +∞,yn = 1n → 0(n→∞);xn ·yn = n→ +∞(n→∞)
(3) xn = n→ +∞,yn = an → 0(n→∞);xn ·yn = a£~t¤
(4) xn = n(?1)n →∞,yn = 1n → 0(n→∞);xn ·yn = (?1)n?4?k.
(5) xn = n2n(?1)n → ∞,yn = 1n → 0(n→ ∞);xn ·yn = n·n(?1)n = n1+(?1)n?4?§?.£′?
t¤
24
24,exn →∞,yn →anegationslash= 0§y2xnyn →∞
y2μduxn → ∞(n → ∞)§ 1x
n
→ 0(n → ∞)?qyn → a negationslash= 0(n → ∞)§ 1y
n
→ 1a(n → ∞)§u
′ 1x
n
· 1y
n
→ 0(n→∞)§l
xnyn →∞(n→∞)
25,exn → +∞,yn →?∞§y2xnyn →?∞.
y2μ?xn → +∞§Ké?G1 > 0,?N1 ∈ Z+§n > N1?§kxn > G1?qyn →?∞§Ké?G2 >
0,?N2 ∈ Z+§n > N2?§k?yn > G2 > 0,N = max(N1,N2)§Kn > N?§k?xnyn > G1G2§
=xnyn <?G1G2.dG1,G25§G1G2′?G1G2 > 0§Kxnyn →?∞.
26,exn → +∞§y2x1 +x2 +···+xnn → +∞
y2μ?xn → +∞§Ké?G > 0,?N1 ∈ Z+§n > N1?§kxn > 3G§u′x1 +x2 +···+xnn =
x1 +···+xN1
n +x
N1+1 +···+xn
n >
x1 +···+xN1
n +
n?N1
n ·3G§
M = max(|x1|,···,|xN1|)§K
vextendsinglevextendsingle
vextendsinglex1 +·+xN1n
vextendsinglevextendsingle
vextendsingle lessorequalslant |x1|+···+|xN1|n lessorequalslant N1 ·Mn §u′ét?G > 0§
N2 =
bracketleftbigg2N
1 ·M
G
bracketrightbigg
§Kn>N2?§k
vextendsinglevextendsingle
vextendsinglex1 +···+xN1n
vextendsinglevextendsingle
vextendsingle< G2§l
x1 +···+xN1n >?G2"q limn→∞ n?N1n =
1§éuε = 12,?N3 ∈Z+§n>N3?§k
vextendsinglevextendsingle
vextendsinglevextendsinglen?N1
n?1
vextendsinglevextendsingle
vextendsinglevextendsingle< 1
2§l
n?N1
n >
1
2§N = max{N1,N2,N3}§
Kn>N?§kx1 +x2 +···+xnn >?G2 + 3G2 = G§ddx1 +x2 +···+xnn → +∞(n→∞).
25
§2,?ê4?
1,^y2μ
(1) lim
x→?1
x?3
x2?9 =
1
2
(2) lim
x→3
x?3
x2?9 =
1
6
(3) lim
x→1
x?1√
x?1 = 2
(4) lim
x→1
(x?2)(x?1)
x?3 = 0
(5) lim
t→1
t(t?1)
t2?1 =
1
2
(6) lim
x→∞
x?1
x+ 2 = 1
(7) lim
x→3
x
x2?9 = ∞
(8) lim
x→∞
x2 +x
x+ 1 = ∞
y2μ
(1) é?ε> 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglex?3
x2?9?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle=
vextendsinglevextendsingle
vextendsinglevextendsingle 1
x+ 3?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle=
vextendsinglevextendsingle
vextendsinglevextendsingle x+ 1
2x+ 6
vextendsinglevextendsingle
vextendsinglevextendsingle§?x→?1§|x+ 1|< 1§K?2 <x<
0§l
2 < |2x + 6| < 6§u′
vextendsinglevextendsingle
vextendsinglevextendsingle x+ 1
2x+ 6
vextendsinglevextendsingle
vextendsinglevextendsingle < |x+ 1|
2 §?|
vextendsinglevextendsingle
vextendsinglevextendsinglex?3
x2?9?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§|x+ 1|
2 < ε=?"
δ = min{2ε,1}> 0§K0 <|x?(?1)|<δ?§òk
vextendsinglevextendsingle
vextendsinglevextendsinglex?3
x2?9?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§ lim
x→?1
x?3
x2?9 =
1
2
(2) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglex?3
x2?9?
1
6
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle 1
x+ 3?
1
6
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle x?3
6x+ 18
vextendsinglevextendsingle
vextendsinglevextendsingle§?x → 3§|x? 3| < 1§K2 < x <
4§l
30 < |6x + 18| < 42§u′
vextendsinglevextendsingle
vextendsinglevextendsingle x?3
6x+ 18
vextendsinglevextendsingle
vextendsinglevextendsingle < |x?3|
30 §?|
vextendsinglevextendsingle
vextendsinglevextendsinglex?3
x2?9?
1
6
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§|x?3|
30 < ε=
"δ = min{30ε,1}> 0§K0 <|x?3|<δ?§òk
vextendsinglevextendsingle
vextendsinglevextendsinglex?3
x2?9?
1
6
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§lim
x→3
x?3
x2?9 =
1
6
(3) é?ε> 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle x?1√
x?1?2
vextendsinglevextendsingle
vextendsinglevextendsingle = |√x+ 1?2| = |√x?1| =
vextendsinglevextendsingle
vextendsinglevextendsingle x?1√
x+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle§?x→ 1§|x?1|< 1§
K0 < x < 2§l
1 < |√x + 1| < √2 + 1§u′
vextendsinglevextendsingle
vextendsinglevextendsingle x?1√
x+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle < |x? 1|§?|
vextendsinglevextendsingle
vextendsinglevextendsingle x?1√
x?1?2
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§?
|x? 1| < ε=?"δ = min{ε,1} > 0§K0 < |x? 1| < δ?§òk
vextendsinglevextendsingle
vextendsinglevextendsingle x?1√
x?1?2
vextendsinglevextendsingle
vextendsinglevextendsingle < εo¤á§
lim
x→1
x?1√
x?1 = 2
(4) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle(x?2)(x?1)
x?3?0
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle
parenleftbigg
1 + 1x?3
parenrightbigg
(x?1)
vextendsinglevextendsingle
vextendsinglevextendsingle§?x → 1§|x? 1| < 1§K0 <
x < 2§l
0 <
vextendsinglevextendsingle
vextendsinglevextendsingle1 + 1
x?3
vextendsinglevextendsingle
vextendsinglevextendsingle < 2
3§u′
vextendsinglevextendsingle
vextendsinglevextendsingle1 + 1
x?3
vextendsinglevextendsingle
vextendsinglevextendsingle < 2
3|x? 1|§?|
vextendsinglevextendsingle
vextendsinglevextendsingle(x?2)(x?1)
x?3?0
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§?
23|x?1|<ε=?"δ = min
braceleftbigg3
2ε,1
bracerightbigg
> 0§K0 <|x?1|<δ?§òk
vextendsinglevextendsingle
vextendsinglevextendsingle(x?2)(x?1)
x?3?0
vextendsinglevextendsingle
vextendsinglevextendsingle<εo
¤á§lim
x→1
(x?2)(x?1)
x?3 = 0
(5) é?ε> 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglet(t?1)
t2?1?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle t
t+ 1?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle t?1
2t+ 2
vextendsinglevextendsingle
vextendsinglevextendsingle§?t→ 1§|t?1|< 1§K0 <t< 2§
l
2 < |2t + 2| < 6§u′
vextendsinglevextendsingle
vextendsinglevextendsingle t?1
2t+ 2
vextendsinglevextendsingle
vextendsinglevextendsingle < |t?1|
2 §?|
vextendsinglevextendsingle
vextendsinglevextendsinglet(t?1)
t2?1?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§|t?1|
2 < ε=?"
δ = min{2ε,1}> 0§K0 <|x?(?1)|<δ?§òk
vextendsinglevextendsingle
vextendsinglevextendsinglet(t?1)
t2?1?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§lim
t→1
t(t?1)
t2?1 =
1
2
26
(6) é?ε> 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglex?1
x+ 2?1
vextendsinglevextendsingle
vextendsinglevextendsingle=
vextendsinglevextendsingle
vextendsinglevextendsingle 3
x+ 2
vextendsinglevextendsingle
vextendsinglevextendsingle§?x→∞§|x|> 2§K|x+2|>|x|?2§u′
vextendsinglevextendsingle
vextendsinglevextendsingle 3
x+ 2
vextendsinglevextendsingle
vextendsinglevextendsingle<
3
|x|?2§?|
vextendsinglevextendsingle
vextendsinglevextendsingle 3
x+ 2
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§ 3
|x|?2 < ε=?§=|x| >
3
ε"X =
3
ε + 2§K|x| > X?§ò
k
vextendsinglevextendsingle
vextendsinglevextendsinglex?1
x+ 2?1
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§ lim
x→∞
x?1
x+ 2 = 1
(7) é?G > 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle x
x2?9
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle x
x+ 3
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle 1
x?3
vextendsinglevextendsingle
vextendsinglevextendsingle§?x → 3§|x? 3| < 1§K2 < x < 4§l
27 <
vextendsinglevextendsingle
vextendsinglevextendsingle x
x+ 3
vextendsinglevextendsingle
vextendsinglevextendsingle < 4
5§u′
vextendsinglevextendsingle
vextendsinglevextendsingle x
x+ 3
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle 1
x?3
vextendsinglevextendsingle
vextendsinglevextendsingle > 2
7
vextendsinglevextendsingle
vextendsinglevextendsingle 1
x?3
vextendsinglevextendsingle
vextendsinglevextendsingle§?|
vextendsinglevextendsingle
vextendsinglevextendsingle x
x2?9
vextendsinglevextendsingle
vextendsinglevextendsingle > G§2
7
vextendsinglevextendsingle
vextendsinglevextendsingle 1
x?3
vextendsinglevextendsingle
vextendsinglevextendsingle > G=
"δ = min
braceleftbigg 2
7G,1
bracerightbigg
> 0§K0 <|x?3|<δ?§òk
vextendsinglevextendsingle
vextendsinglevextendsingle x
x2?9
vextendsinglevextendsingle
vextendsinglevextendsingle>Go¤á§lim
x→3
x
x2?9 = ∞
(8) é?G > 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglex2 +x
x+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle = |x|§?x → ∞§X = G > 0§K|x| > X?§òk
vextendsinglevextendsingle
vextendsinglevextendsinglex2 +x
x+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle> Go¤
᧠lim
x→∞
x2 +x
x+ 1 = ∞
2,|4?μ
(1) lim
x→0
x2?1
2x2?x?1
(2) lim
x→1
x2?1
2x2?x?1
(3) lim
x→∞
x2?1
2x2?x?1
(4) lim
x→0
(1 +x)(1 + 2x)(1 + 3x)?1
x
(5) lim
t→1
t2(t?1)
t2?1
(6) lim
t→1
t2?√t√
t?1
(7) lim
x→3
√1 +x?2
x?3
(8) lim
x→0
(1 +x)5?(1 + 5x)
x2 +x5
(9) lim
x→0
(1 +mx)n?(1 +nx)m
x2 £m,n?g,ê¤
(10) lim
x→3
x2?5 + 6
x2?8x+ 15
(11) lim
x→∞
x2 + 3x
x2
(12) lim
x→∞
5x?7
2x+√x
)μ
(1) lim
x→0
x2?1
2x2?x?1 = 1
(2) lim
x→1
x2?1
2x2?x?1 = limx→1
(x?1)(x+ 1)
(2x+ 1)(x?1) = limx→1
x+ 1
2x+ 1 =
2
3
(3) lim
x→∞
x2?1
2x2?x?1 =
1
2
(4) lim
x→0
(1 +x)(1 + 2x)(1 + 3x)?1
x = limx→0(6 + 11x+ 6x
2) = 6
(5) lim
t→1
t2(t?1)
t2?1 = limt→1
t2
t+ 1 =
1
2
(6) lim
t→1
t2?√t√
t?1 = limt→1
√t(√t?1)(t+√t+ 1
√t?1 =
lim
t→1
√t(t+√t+ 1) = 3
27
(7) lim
x→3
√1 +x?2
x?3 = limx→3
1√
1 +x+ 2 =
1
4
(8) lim
x→0
(1 +x)5?(1 + 5x)
x2 +x5 = limx→0
10x2 + 10x3 + 5x4 +x5
x2 +x5 = 10
(9) lim
x→0
(1 +mx)n?(1 +nx)m
x2 =
lim
x→0
(C2nm2?C2mn2)x2 + (C3nm3?C3mn3)x3 +···+mnxn?nmxm
x2 = C
2
nm
2?C2
mn
2 = n2m?m2n
2
(10) lim
x→3
x2?5 + 6
x2?8x+ 15 = limx→3
(x?2)(x?3)
(x?3)(x?5) = limx→3
x?2
x?5 =?
1
2
(11) lim
x→∞
x2 + 3x
x2 = 1
(12) lim
x→∞
5x?7
2x+√x =
5
2
3, R(x) = P(x)Q(x)
a¥P(x)úQ(x)?xa§P(a) = Q(a) = 0§ˉlim
x→a
k=
U?o
)μduP(x)úQ(x)?xa?P(a) = Q(a) = 0§
KP(x) = (x?a)mP1(x),Q(x) = (x?a)nQ1(x)(P1(a) negationslash= 0,Q1(x) negationslash= 0)§u′lim
x→a
R(x) = lim
x→a
P(x)
Q(x) =
lim
x→a
(x?a)mP1(x)
(x?a)nQ1(x)
μ
(1) n = m?§lim
x→a
R(x) = P1(a)Q
1(a)
(2) n>m?§lim
x→a
(x?a)m?n = ∞?lim
x→a
P1(x)
Q1(x) =
P1(a)
Q1(a) negationslash= 0§limx→aR(x) = ∞
(3) n<m?§lim
x→a
(x?a)m?n = 0?lim
x→a
P1(x)
Q1(x) =
P1(a)
Q1(a)§limx→aR(x) = 0
4,|e4?μ
(1) lim
x→0
sin2x?sin3x
x
(2) lim
h→0
cos(x+h)?cosx
h
(3) lim
x→+∞
(√x2 + 1?x)
(4) lim
x→?∞
(√x2 + 1?x)
(5) lim
x→0
x2
1?cosx
(6) lim
x→+∞
radicalBig
x+radicalbigx+√x
x+ 1
(7) lim
x→0
cosx?cos3x
x2
(8) lim
x→0
sin5x?sin3x
sin2x
(9) lim
x→1
(1?x)tan pix2
(10) lim
x→a
sinx?sina
x?a
(11) lim
x→0
(√1 +x2 +x)n?(√1 +x2?x)n
x
(12) lim
x→0
x
bracketleftbigg1
x
bracketrightbigg
)μ
28
(1) lim
x→0
sin2x?sin3x
x = limx→0
sin2x
x? limx→0
sin3x
x = 2?3 =?1
(2) lim
h→0
cos(x+h)?cosx
h = limh→0
2sin 2x+h2 sin h2
h = limh→0
sin h2
h sin
2x+h
2 =?sinx
(3) lim
x→+∞
(√x2 + 1?x) = lim
x→+∞
1√
x2 + 1 +x = 0
(4) lim
x→?∞
(√x2 + 1?x) = +∞
(5) lim
x→0
x2
1?cosx = limx→0
x2
x2
2
= 2
(6) lim
x→+∞
radicalBig
x+radicalbigx+√x
x+ 1 = 0
(7) lim
x→0
cosx?cos3x
x2 = limx→0
2sinxsin2x
x2 = 4
(8) lim
x→0
sin5x?sin3x
sin2x = limx→0
2sinxcos4x
2x = 1
(9) -y = x? 1§Klim
x→1
(1?x)tan pix2 = lim
y→0
ytan
parenleftBigpi
2(1 +y)
parenrightBig
= lim
y→0
ycot pi2y = lim
y→0
ycos pi2y
sin pi2y
=
lim
y→0
y
pi
2y
= 2pi
(10) lim
x→a
sinx?sina
x?a = limx→a
2cos x+a2 sin x?a2
x?a = cosa
(11) lim
x→0
(√1 +x2 +x)n?(√1 +x2?x)n
x =
lim
x→0
2C1n(1 +x2)n?12 x+ 2C3n(1 +x2)n?32 x2 +···
x =
lim
x→0
bracketleftBig
2n(1 +x2)n?12 + 2C3n(1 +x2)n?32 x+···
bracketrightBig
= 2n
(12) du
bracketleftbigg1
x
bracketrightbigg
= 1x?
parenleftbigg1
x
parenrightbigg
0 lessorequalslant
parenleftbigg1
x
parenrightbigg
< 1§
Klim
x→0
x
bracketleftbigg1
x
bracketrightbigg
= lim
x→0
braceleftbigg
1?x
parenleftbigg1
x
parenrightbiggbracerightbigg
= 1? lim
x→0
x
parenleftbigg1
x
parenrightbigg
= 1
5,e lim
x→x0
f(x) = A,lim
x→x0
g(x) = B§3δ> 0§0 <|x?x0|<δ?kf(x) greaterorequalslantg(x)§y2AgreaterorequalslantB.
qe0 <|x?x0|<δ?f(x) >g(x)§′¤áA>B
y2μ
(1) ^?y{"bA<B§Kd lim
x→x0
f(x) = A,lim
x→x0
g(x) = B95?1§?δ0 > 0§|0 < |x?x0| <
δ0?§kg(x) > f(x)"ùμ?δ > 0§0 < |x?x0| < δ?§kf(x) greaterorequalslant g(x)g?§b?¤
á§=AgreaterorequalslantB¤á"
(2)"~μ
(i) ¤á"f(x) = 2(x
2 + 3x4)
x2,g(x) = x
2 + 3x4x2,?δ > 0§0 < |x| < δ?§kf(x) > g(x)"
qA = lim
x→x0
f(x) = 2,B = lim
x→x0
g(x) = 1§A>B¤á"
(ii)?¤á"f(x) = x
2 + 3x4
x2,g(x) = x
2 +x4x2,?δ > 0§0 < |x| < δ?§kf(x) > g(x)"qA =
lim
x→x0
f(x) = 1,B = lim
x→x0
g(x) = 1§kA = B"
6,e3:x0?Skg(x) lessorequalslant f(x) lessorequalslant h(x)§g(x)úh(x)3x04?3uA§y2 lim
x→x0
f(x) =
A.
y2μXJéxn,xn →x0,xn negationslash= x0 §bxn ∈O(x0,δ)?{x0}§kg(xn) lessorequalslantf(xn) lessorequalslanth(xn)
±9g(xn) → A,h(xn) → A(n → ∞) §dê4?5?μf(xn) → A(n → ∞) §ùòy2
f(x) →
A(x→x0).
29
7,e lim
x→x0
f(x) = A,lim
x→x0
g(x) = B negationslash= 0§y2 lim
x→x0
f(x)
g(x) =
A
B.
y2μ
vextendsinglevextendsingle
vextendsinglevextendsinglef(x)
g(x)?
A
B
vextendsinglevextendsingle
vextendsinglevextendsingle=
vextendsinglevextendsingle
vextendsinglevextendsingleBf(x)?Ag(x)
Bg(x)
vextendsinglevextendsingle
vextendsinglevextendsingle=
vextendsinglevextendsingle
vextendsinglevextendsingleBf(x)?AB +AB?Ag(x)
BG(x)
vextendsinglevextendsingle
vextendsinglevextendsinglelessorequalslant |B||f(x)?A|+|A||g(x)?B|
|B||g(x)| §
du lim
x→x0
f(x) = A,lim
x→x0
g(x) = B§é?ε> 0,?δ1 > 0§0 <|x?x0|<δ1?§k|f(x)?A|<ε?ét
ε> 0,?δ2 > 0§0 <|x?x0|<δ2?§k|g(x)?B|<ε
qa|{$?μ lim
x→x0
Bg(x) = B2 > B
2
2 §Ka5?3§?δ3 > 0§0 <|x?x0|<δ3?§kBg(x) >
B2
2
δ = min{δ1,δ2,δ3}§0 <|x?x0|<δ?§k
vextendsinglevextendsingle
vextendsinglevextendsinglef(x)
g(x)?
A
B
vextendsinglevextendsingle
vextendsinglevextendsingle< (|A|+|B|)ε
B2
2
= 2(|A|+|B|)B2 ε
u′§é?ε> 0,?δ> 0§0 <|x?x0|<δ?§k
vextendsinglevextendsingle
vextendsinglevextendsinglef(x)
g(x)?
A
B
vextendsinglevextendsingle
vextendsinglevextendsingle< 2(|A|+|B|)
B2 ε§l
limx→x0
f(x)
g(x) =
A
B.
8,(1) f(x) =
0 x> 1
1 x = 1
x2 + 2 x< 1
|f(x)3x = 1?m4?"
(2) f(x) =
xsin 1x x> 0
1 +x2 x< 0
|f(x)3x = 0?m4?"
)μ
(1) lim
x→1?0
f(x) = lim
x→1?0
(x2 + 2) = 3,lim
x→1+0
f(x) = 0
(2) lim
x→?0
f(x) = lim
x→?0
(1 +x2) = 1,
lim
x→+0
f(x) = lim
x→+0
(xsin 1x) = 0
9,`2e?ê3¤?:?m4/μ
(1) y =
1
2x 0 <xlessorequalslant 1
x2 1 <x< 2 (3x = 1.5,2,1n:)
2x 2 <x< 3
(2) y = x·sin 1x£3x = 0:¤
(3) y = 2
1
x + 1
21x?1
£3x = 0:¤
(4) y = 1x?
bracketleftbigg1
x
bracketrightbigg
£3x = 1n:¤
(5) D(x) =
braceleftbigg 1 x?knê
0 xnê (3:)
(6) y = (x?1)(?1)
[x]
x2?1 (3x =?1¤
)μ
(1) lim
x→1.5?0
y = lim
x→1.5+0
y = 2.25,
lim
x→2?0
y = lim
x→2?0
x2 = 4,lim
x→2+0
y = lim
x→2+0
(2x) = 4
lim
x→1?0
y = lim
x→1?0
1
2x =
1
2,limx→1+0y = limx→1+0x
2 = 1
(2) lim
x→+0
y = lim
x→+0
y = 0
(3) du lim
x→+0
1
x = +∞,limx→?0
1
x =?∞§
K lim
x→+0
21x = +∞,lim
x→?0
21x = 0§
u′ lim
x→+0
y = lim
x→=0
21x + 1
21x?1
= lim
x→+0
parenleftbigg
1 + 2
21x?1
parenrightbigg
= 1,lim
x→+?0
y = lim
x→?0
21x + 1
21x?1
=?1
30
(4) lim
x→1n+0
y = lim
x→1n+0
parenleftbigg1
x?
bracketleftbigg1
x
bracketrightbiggparenrightbigg
= n?(n?1) = 1
lim
x→1n?0
y = lim
x→1n?0
parenleftbigg1
x?
bracketleftbigg1
x
bracketrightbiggparenrightbigg
= n?n = 0
(5) d?ê3:?m43"
x0?Rt:§dknêú?nê3ê?tè?5§?knS{x(1)n } → x0 + 0§?nS
{x(2)n }→x0 + 0§
lim
x(1)n →x0+0
D
parenleftBig
x(1)
parenrightBig
= 1,lim
x(2)n →x0+0
D
parenleftBig
x(2)
parenrightBig
= 0§l
d?ê3:m43
ón§d?ê3:?43
l
d?ê3:?m43"
(6) y = (x?1)(?1)
[x]
x2?1 =
(?1)[x]
x+ 1? limx→?1+0[x] =?1,limx→?1?0[x] =?2
K lim
x→?1+0
y =?∞,lim
x→?1+0
y =?∞
10,e4?μ
(1) lim
x→∞
sinx
x
(2) lim
x→∞
ex sinx
(3) lim
x→∞
xarctanx
(4) lim
x→∞
xtanx(xnegationslash= npi+ pi2)
)μ
(1) du lim
x→∞
1
x = 0?sinx′k.t§ limx→∞
sinx
x = 0
(2) du lim
x→+∞
ex = +∞§exn = 2npi → +∞(n → ∞)§Kexn sinxn = e2npi sin2npi = 0 → 0(n →
∞)?exn = pi2 + 2npi → +∞(n → ∞)§Kexn sinxn = epi2 +2npi sin
parenleftBigpi
2 + 2npi
parenrightBig
= epi2 +2npi →
+∞(n→∞)§ lim
x→+∞
ex sinx?3§l
lim
x→∞
ex sinx?3.
(3) du lim
x→?∞
arctanx =?pi2,lim
x→+∞
xarctanx = pi2§
K lim
x→?∞
xarctanx = +∞,lim
x→+∞
xarctanx = +∞§l
lim
x→∞
xarctanx = +∞
(4) xn = npi → ∞(n → ∞)§k lim
n→∞
xn tanxn = lim
n→∞
npitannpi = 0?,xn = pi4 +npi → ∞(n →
∞)§k lim
n→∞
xn tanxn = lim
n→∞
parenleftBigpi
4 +npi
parenrightBig
tan
parenleftBigpi
4 +npi
parenrightBig
= lim
n→∞
parenleftBigpi
4 +npi
parenrightBig
= +∞§ lim
x→∞
xtanx(xnegationslash=
npi+ pi2)?3.
11,l^? lim
x→∞
parenleftbiggx2 + 1
x+ 1?ax?b
parenrightbigg
= 0§|~êaúb.
)μdu lim
x→∞
parenleftbiggx2 + 1
x+ 1?ax?b
parenrightbigg
= lim
x→∞
(x2 + 1)?ax(x+ 1)?b(x+ 1)
x+ 1 = limx→∞
(1?a)x2?(a+b)x?b+ 1
x+ 1 =
0§Kk
braceleftbigg 1?a = 0
a+b = 0 §l
braceleftbigg a = 1
b =?1
12,l^? lim
x→?∞
(√x2?x+ 1?a1x?b1) = 0,lim
x→?∞
(√x2?x+ 1?a2x?b2) = 0§|~êa1,b1,a2,b2.
)μdu lim
x→?∞
(√x2?x+ 1?a1x?b1) = lim
x→?∞
(1?a21)x2?(1 + 2a1b1)x+ 1?b21√
x2?x+ 1 +a1x+b1 = 0§K
braceleftbigg 1?a2
1 = 0
1 + 2a1b1 = 0 §
u′
braceleftBigg a
1 = ±1
b1 =?12,
qa^μea1 = 1§K lim
x→?∞
(√x2?x+ 1?a1x?b1) = +∞§l
braceleftBigg a
1 =?1
b1 = 12 §ón
braceleftBigg a
2 = 1
b2 =?12,
13,e lim
x→+∞
[f(x)?(kx+b)] = 0§Ky = kx+b′-?y = f(x)x→ +∞ìC?.|^ù§í?ì
C?37^?.
y2μe-?3ìC?§Kk
lim
x→+∞
[f(x)?(kx+b)] = 0,(1)
31
f(x)x = 1x[f(x)?kx?b] +k+ bx§-x→ +∞üà45?(1)a§
lim
x→+∞
f(x)
x = k (2)
.
Q|?
k§2l(1)a|
b = lim
x→+∞
[f(x)?kx] (3)
.
§e(2)!(3)üa¤á§á=?w?^?(1)¤á.
-?y = f(x)x → +∞?3ìC?y = kx+b7?^?′4? lim
x→+∞
f(x)
x = k! limx→+∞[f(x)?
kx] = bt¤á.
14,e lim
x→?∞
f(x) = A> 0§y23X > 0§|x<?X¤áμA2 <f(x) < 32A.
y2μdu lim
x→?∞
f(x) = A > 0§éε = A2 > 0,?X > 0 §x <?X?§k|f(x)?A| < A2§
=A2 <f(x) < 32A.
15,e lim
x→+∞
f(x) = A,lim
x→+∞
g(x) = B§y2 lim
x→+∞
f(x)g(x) = AB.
y2μdu lim
x→+∞
f(x) = A§é?ε > 0,?X1 > 0§x > X1?§k|f(x)?A| < εX2 > 0,M > 0§
x>X2?§k|f(x)|<A.
q lim
x→+∞
g(x) = B§ét?ε> 0,?X3 > 0§x>X3?§k|g(x)?B|<ε.
X = max{X1,X2,X3}§ét?ε> 0§x>X?§
k|f(x)g(x)?AB| = |f(x)g(x)?f(x)B+f(x)B?AB|lessorequalslant|f(x)||g(x)?B|+|B||f(x)?A|lessorequalslantMε+|B|ε =
(M +|B|)ε§= lim
x→+∞
f(x)g(x) = AB.
16,y2 lim
x→+∞
f(x) = A^?′μéêxn → +∞,f(xn) →A.
y2μ
du lim
x→+∞
f(x) = A§é?ε> 0,?X > 0§x>X?§k|f(x)?A|<ε.
qxn → +∞(n → ∞)§ét?X > 0,?N ∈ Z+§n > N?§kxn > X§l
|f(xn)?A| < ε§u
′ lim
n→∞
f(xn) = A.
^?y{"b lim
x→+∞
f(x) negationslash= A§K?ε0 > 0§é?X > 0§?kxprime§xprime >X?§k|f(xprime)?A| greaterorequalslant
ε0.
AO/§X?1,2,3,···§?xprime1,xprime2,xprime3,···§|
xprime1 > 1?§k|f(xprime1)?A|greaterorequalslantε0?xprime2 > 2?§k|f(xprime2)?A|greaterorequalslantε0?xprime3 > 3?§k|f(xprime3)?A|greaterorequalslantε0?···
l?>?±w?xprimen → +∞(n → ∞)§
lm>w? lim
n→∞
f(xprimen) negationslash= A§g?§Kb?¤á§
lim
x→+∞
f(x) = A
17,y2 lim
x→x0+0
f(x) = +∞^?′μéêxn,xn >x0,xn →x0§kf(xn) → +∞.
y2μ
du lim
x→x0+0
f(x) = +∞§é?G> 0,?δ> 0§0 <x?x0 <δ?§kf(x) >G.
qxn > x0,xn → x0(n → ∞)§ét?δ > 0,?N ∈ Z+§n > N?§k0 < xn?x0 < δ§l
f(xn) >
G§u′ lim
n→∞
f(xn) = +∞.
^?y{"b lim
x→x0+0
f(x) negationslash= +∞§K?G0 > 0§é?δ > 0§?kxprime§0 < xprime?x0 < δ?§
kf(xprime) lessorequalslantG0.
AO/§δ?1,12,13,···§?xprime1,xprime2,xprime3,···§|
0 < xprime1? x0 < 1?§kf(xprime1) lessorequalslant G0?0 < xprime2? x0 < 12?§kf(xprime2) lessorequalslant G0?0 < xprime3? x0 < 13?§
kf(xprime3) lessorequalslantG0?···
l?>?±w?xprimen > x0,xprimen → x0§
lm>w? lim
x→x0+0
f(x) negationslash= +∞§g?§Kb?¤á§
lim
x→x0+0
f(x) = +∞
18,Tüe?|f(x)
(1) f(+0) = 0,f(?0) = 1
32
(2) f(+0)?3§∞,f(?0) = 0
(3) f(+∞) = 0,f(?∞)?3
(4) f(+∞) = f(?∞) = A£~ê¤
(5) f(x0 + 0)úf(x0?0)3
(6) f(x0 + 0) = +∞,f(x0?0) =?∞
(7) f(x0 + 0) = 1,f(x0?0) = +∞
(8) f(+∞)?3§∞,f(?∞) =?∞
)μ
(1) f(x) =
braceleftbigg 0 x> 0
1 xlessorequalslant 0
(2) f(x) =
braceleftBigg
sin 1x x> 0
0 xlessorequalslant 0
(3) f(x) = e?x
(4) f(x) = Ax+ 1x
(5) f(x) = sin 1x?x
0
(6) f(x) = 1x?x
0
(7) f(x) = 1 +e?
1
x?x0
(8) f(x) =
braceleftbigg sinx xgreaterorequalslant 0
x x< 0
33
§3,?Y?ê
1,Uy2e?ê3S?Yμ
(1) y = √x
(2) y = 1x
(3) y = |x|
(4) y = sin 1x
y2μ
(1) x0?(0,+∞)S:§|√x?√x0|< |x?x0|√x+√x
0
lessorequalslant |x?x0|√x
0
é?ε> 0§δ = √x0ε§|x?x0|<δ?§k|√x?√x0|< |x?x0|√x
0
<ε§y = √x3x0:?Y.
qdx03(0,+∞)¥5§Ky = √x3(0,+∞)S?Y.
x0 = 0?§ét?ε> 0§δ = ε2§0 <x?x0 <δ?§k|√x?√x0|<√x<ε§f(+0) = 0 =
f(0)§
l
y = √x3[0,+∞)S?Y.
(2) x0?(0,+∞)S:§|x?x0| < x02 §Kx> x02,xx0 > x
2
0
2 §u′|
1
x?
1
x0 | =
|x?x0|
xx0 <
|x?x0|
x20
2
ex0?(?∞,0)S:§|x?x0|<?x02 §Kx< x02,xx0 > x
2
0
2 §u′|
1
x?
1
x0 | =
|x?x0|
xx0 <
|x?x0|
x20
2
x0?(?∞,0)uniontext(0,+∞)S:§
é?ε > 0§δ = min
braceleftbigg|x
0|
2,
x20
2 ε
bracerightbigg
> 0§|x?x0| < δ?§k
vextendsinglevextendsingle
vextendsinglevextendsingle1
x?
1
x0
vextendsinglevextendsingle
vextendsinglevextendsingle = |x?x0|
xx0 > ε§y =
1
x3x0:?Y
qdx03(?∞,0)uniontext(0,+∞)S5§y = 1x3(?∞,0)uniontext(0,+∞)S?Y.
(3) x0?(?∞,+∞)S:§||x|?|x0||lessorequalslant|x?x0|.
é?ε> 0§δ = ε> 0§|x?x0|<δ?§k||x|?|x0||lessorequalslant|x?x0|<ε§y = |x|3x0:?Y
qdx03(?∞,+∞)S5§y = |x|3(?∞,+∞)S?Y.
(4) x0?(0,+∞)S:§|x? x0| < x02 §Kx > x02,xx0 > x
2
0
2 §u′
vextendsinglevextendsingle
vextendsinglevextendsinglesin 1
x?sin
1
x0
vextendsinglevextendsingle
vextendsinglevextendsingle =
2
vextendsinglevextendsingle
vextendsinglevextendsinglesin x+x0
2xx0
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsinglecos x?x0
2xx0
vextendsinglevextendsingle
vextendsinglevextendsinglelessorequalslant |x?x0|
xx0 <
|x?x0|
x20
2
ex0?(?∞,0)S:§|x?x0| <?x02 §Kx < x02,xx0 > x
2
0
2 §u′
vextendsinglevextendsingle
vextendsinglevextendsinglesin 1
x? sin
1
x0
vextendsinglevextendsingle
vextendsinglevextendsingle lessorequalslant
|x?x0|
xx0 <
|x?x0|
x20
2
x0?(?∞,0)uniontext(0,+∞)S:§
é?ε > 0§δ = min
braceleftbigg|x
0|
2,
x20
2 ε
bracerightbigg
> 0§|x?x0| < δ?§k
vextendsinglevextendsingle
vextendsinglevextendsinglesin 1
x?sin
1
x0
vextendsinglevextendsingle
vextendsinglevextendsingle lessorequalslant |x?x0|
xx0 < ε§
y = sin 1x3x0:?Y
qdx03(?∞,0)uniontext(0,+∞)S5§y = sin 1x3(?∞,0)uniontext(0,+∞)S?Y.
2,|^?Y?ê$?§|e?ê?Yμ
(1) y = tanx
34
(2) y = 1xn
(3) y = secx+ cscx
(4) y = 1√cosx
(5) y = ln(1 +x)x2?2x
(6) y = [x]tanx1 + sinx
)μ
(1)?y = tanx = sinxcosx§Kcosxnegationslash= 0?§y = tanx?Y§y = tanx?Y
parenleftBig
pi2 +kpi,pi2 +kpi
parenrightBig
(k∈
Z).
(2) en > 0§Ky = 1xn?Y(?∞,0)uniontext(0,+∞)?en lessorequalslant 0§Ky = 1xn?Y§=§?Y
(?∞,+∞).
(3)?secx?Y
parenleftbigg
k? 12
parenrightbigg
pi < x <
parenleftbigg
k+ 12
parenrightbigg
pi(k = 0,±1,±2,···)§cscx?Ykpi < x <
(k+ 1)pi(k = 0,±1,±2,···)§
y = secx+ cscx?Y
parenleftBig
kpi? pi2
parenrightBiguniontextparenleftBig
kpi,kpi+ pi2
parenrightBig
((k = 0,±1,±2,···).
(4) cosx> 0?§y = 1√cosx?Y§y = 1√cosx?Y
parenleftBig
pi2 + 2kpi,pi2 + 2kpi
parenrightBig
.
(5)?ln(1+x)x>?1Y§ 1x2?2xxnegationslash= 0,xnegationslash= 2Y§y = ln(1 +x)x2?2x ?Y(?1,0)uniontext(0,2)uniontext(2,+∞).
(6)?y = [x]tanx1 + sinx = [x]sinx(1 + sinx)cosx§Ksinx negationslash= 1,cosx negationslash= 0,x /∈ Z/{0}?§y = [x]tanx1 + sinx?Y§
y = [x]tanx1 + sinx?Yx∈
parenleftBig
kpi? pi2,kpi+ pi2
parenrightBig
x /∈Z/{0}(k∈Z).
3,e?ê?Y5§?x?ù?/.
(1) y =
x2?4
x?2,exnegationslash= 2
4,x = 2
(2) y =
vextendsinglevextendsingle
vextendsinglevextendsinglesinx
x
vextendsinglevextendsingle
vextendsinglevextendsingle,xnegationslash= 0
1,x = 0
(3) y ==
sinx
|x|,xnegationslash= 0
1,x = 0
(4) y=[x]
)μ
(1)?lim
x→2
y = lim
x→2
x2?4
x?2 = limx→2(x+ 2) = 4§?x = 2?§y = 4§?ê3x = 2?Y
xnegationslash= 2?§y = x
2?4
x?2 = x+ 2w,?Y§
y =
x2?4
x?2,exnegationslash= 2
4,x = 2
3(?∞,+∞)S?Y.
(2) x negationslash= 0?§y =
vextendsinglevextendsingle
vextendsinglevextendsinglesinx
x
vextendsinglevextendsingle
vextendsinglevextendsingle = sinx
x?y =?
sinx
x w,?Y"qlimx→0
vextendsinglevextendsingle
vextendsinglevextendsinglesinx
x
vextendsinglevextendsingle
vextendsinglevextendsingle = 1 = f(0)§?ê3x = 0?
Y§
u′y =
vextendsinglevextendsingle
vextendsinglevextendsinglesinx
x
vextendsinglevextendsingle
vextendsinglevextendsingle,xnegationslash= 0
1,x = 0
3(?∞,+∞)S?Y.
35
(3)? lim
x→+0
y = lim
x→+0
sinx
|x| = 1,limx→?0y = limx→?0
sinx
|x| =?1 §limx→0y?3"qx> 0?§y =
sinx
|x| =
sinx
x §x< 0?§y =
sinx
|x| =?
sinx
x §w,?Y§d?ê3?0 ?Y§=3(?∞,0)
uniontext(0,+∞)S
Y.
(4)? lim
x→k+0
y = lim
x→k+0
[x] = k,lim
x→k?0
y = lim
x→k?0
[x] = k? 1(k ∈ Z)§Klim
x→k
y?3§x = k(k ∈
Z)?y = [x]m?:§3m?:?m?Y
k<x<k+ 1(k∈Z)?§y = [x]w,?Y§d?ê3?k(k∈Z) ?Y.
4,ef(x)?Y§|f(x)|úf2(x)′Yoqe|f(x)|?f2(x)?Y§f(x)′Yo
)μ
(1) f(x)3ùIt?Y§x0?It:
f(x)3x0:?Y§é?ε> 0,?δ> 0§|x?x0|<δ?§k|f(x)?f(x0)|<ε
||f(x)|?|f(x0)||lessorequalslant|f(x)?f(x0)|<ε§=é?ε> 0,?δ> 0§|x?x0|<δ?§k|f(x)?f(x0)|<ε§
|f(x)|3x0:?Y
qdx03It5§|f(x)|3ItY
ó|f2(x)? f2(x0)| = |f(x)? f(x0)||f(x) + f(x0)| = |f(x)? f(x0)||f(x)? f(x0) + 2f(x0)| lessorequalslant
|f(x)?f(x0)|(|f(x)?f(x0)|+ 2f(x0)) <ε(ε+ 2f(x0))§f2(x)3x0:?Y
qdx03It5§f2(x)3ItY
(2)?L5§e|f(x)|?f2(x)?Y§f(x)Y.
(i)Y"~μf(x) =
braceleftbigg 1,xgreaterorequalslant 0
1,x< 0 §|f(x)| = 1úf
2(x) = 1t3(?∞,+∞)S?Y§f(x)3x =
0:Y?
(ii)?Y"~μf(x) = x,Kf(x)!|f(x)|!f2(x)3(?∞,+∞)St?Y"
5,(1)?êf(x)x = x0Y§
êg(x)x = x0Y§ˉd?êú3x0:′Yo
(2) x = x0êf(x)úg(x)Y§ˉd?êúf(x) +g(x)3?:x0′?7Yo
):
(1) ^?y{"bf(x) +g(x)3x0:?Y"
f(x)x = x0Y§Kd?Y?ê5?§g(x) = [f(x) +g(x)]?f(x)x0Yg?"
b?¤á§=f(x) +g(x)3x0:?Y.
(2)"
(i)?Yμ~μf(x) =
braceleftbigg 1,xgreaterorequalslant 0
1,x< 0,g(x) =
braceleftbigg?1,xgreaterorequalslant 0
1,x< 0 3x = 0Y§f(x) +
g(x) = 03x = 0?Y.
(ii)Yμ~μf(x) = g(x) = 1x3x = 0Y§f(x) +g(x) = 2x3x = 0Y.
6,(1)?êf(x)3x0?Y§
êg(x)3x0Y?
(2) x = x0êf(x)úg(x)Y§ˉd?ê|èf(x)g(x)3?:x0′?7Yo
):
(1)"
(i)?Yμ~μf(x) = 03x = 0?Y§g(x) =
braceleftbigg 1,xgreaterorequalslant 0
0,x< 0 3x = 0Y§f(x)g(x) = 03x =
0?Y.
(ii)Yμ~μf(x) = x3x = 0?Y§g(x) = 1x23x = 0Y§f(x)g(x) = 1x3x = 0Y.
(2)"
(i)?Yμ~μf(x) =
braceleftbigg 1,xgreaterorequalslant 0
1,x< 0,g(x) =
braceleftbigg?1,xgreaterorequalslant 0
1,x< 0 3x = 0Y§f(x)g(x) =
13x = 0?Y.
(ii)Yμ~μf(x) = g(x) = 1x3x = 0Y§f(x)g(x) = 1x23x = 0Y.
7,ef(x)3[a,∞)?Y§ lim
x→∞
f(x)3§y2f(x)3[a,∞)k..
y2μdu lim
x→∞
f(x)3§ lim
x→∞
f(x) = A
Kéε = 1,?X > 0§x>X?§k|f(x)?A|<ε = 1¤á§l
|f(x)| = |f(x)?A+A|lessorequalslant|f(x)?A|+
36
|A|< 1 +|A|
X1 = max{X,a+ 1}§Kf(x)3(X1,∞)Sk.§?|f(x)|<|A|+ 1,x∈ (X1,∞)
qduf(x)3[a,X1]t?Y§f(x)3[a,X1]tk.§ù.?M > 0§=?x∈ [a,X1]§k|f(x)|lessorequalslantM
G = max{|A|+ 1,M}§K?x∈ [a,∞),f(x) lessorequalslantG§
=f(x)3[a,∞)k..
8,eéε> 0§f(x)3[a+ε,b?ε]?Y§ˉμ
(1) f(x)′?(a,b)3?Yo
(2) f(x)′?3[a,b]?Yo
)μ
(1)?x0 ∈ (a,b)§ε = min
braceleftbiggx
0?a
2,
b?x0
2
bracerightbigg
§Kx0 ∈ [a+ε,b?ε]
éε> 0§f(x)3[a+ε,b?ε]?Y§f(x)3x0:?Y
dx0 ∈ (a,b)5§f(x)3(a,b)S?Y.
(2)Y"
(i)Y"~μf(x)3[0 +ε,1?ε](ε> 0)S?Y§f(x)3[0,1]tY§3x = 0:?m.
(ii)?Y"~μf(x)3[1 +ε,2?ε](ε> 0)S?Y§?f(x)3[1,2]t?Y.
9,ef(x)3x0:?Y§f(x0) > 0§y23x0δ?O(x0,δ)§x ∈ O(x0,δ)?§f(x) greaterorequalslant c> 0§c?,
~ê.
y2μduf(x)3x0:?Y§?f(x0) > 0§Kf(x0) >c> 0
éε = f(x0)?c> 0,?δ> 0§|x?x0|<δ?§k|f(x)?f(x0)|<ε = f(x0)?c§Kf(x0)?[f(x0)?
c] lessorequalslantf(x)§=f(x) greaterorequalslantc> 0.
10,y2e?Y?ê3kn:?ê0§Kd?êe?0.
y2μf(x)?¢?t?Y?ê§x0n:.
dkn:3ê?tè?5§?±?nê{xn}§|xn →x0(n→∞).
f(x)3x0?Y§Kf(x0) = lim
n→∞
f(xn) = 0§
dx0:5§f(x)3¤k?n:?ê0.
qf(x)3kn:?ê0§Kd?êe?0.
11,ef(x)3[a,b]?Y§e§Uy2 1f(x)3[a,b]?Y.
y2μduf(x)3[a,b]?Y§e§Kf(x)3(a,b)?Y§f(x) > 0§ 1f(x)3§x∈ [a,b]
x0?(a,b)S:§Ké?ε> 0,?δ> 0§|x?x0|<δ?§k|f(x)?f(x0)|<ε.
qf(x)3[a,b]?Y§Kd4?m?Y?ê5?2§?f(x)3[a,b]t?m > 0§=f(x) greaterorequalslant m,x ∈
[a,b]§u′
vextendsinglevextendsingle
vextendsinglevextendsingle 1
f(x)?
1
f(x0)
vextendsinglevextendsingle
vextendsinglevextendsingle= |f(x)?f(x0)|
f(x)f(x0) <
ε
m2§ limx→x0
1
f(x) =
1
f(x0)§l
1
f(x)3x0?Y.
dx03(a,b)S5§f(x)3(a,b)S?Y.
qf(a+ 0) = f(a) > 0§K 1f(a+ 0) = 1f(a)§f(x)3[a,b)?Y?
qf(b?0) = f(b) > 0§K 1f(b?0) = 1f(b)§f(x)3[a,b]?Y.
12,ef(x)úg(x)?3[a,b]?Y§áy2max(f(x),g(x))±9min(f(x),g(x))?3[a,b]?Y.
y2μduf(x)úg(x)?3[a,b]?Y§f(x)?g(x)úf(x) +g(x)?3[a,b]?Y.
d14K(?§k|f(x)?g(x)|3[a,b]?Y.
-?(x) = max(f(x),g(x)) = 12(f(x) +g(x) +|f(x)?g(x)|),
ψ(x) = min(f(x),g(x)) = 12(f(x) +g(x)?|f(x)?g(x)|)§
?(x),ψ(x)?3[a,b]?Y.
13,ef(x)′?Y§y2éc> 0§?êg(x) =
c,ef(x) <?c
f(x),e|f(x)|lessorequalslantc
c,ef(x) >c
′?Y.
y2μdug(x) = max(?c,min(f(x),c))
qduf(x)?Y§?éc> 0§?(x) = c?Y§ψ(x) =?c?Y§
KdtK(?§min(f(x),c)?Y§l
2dtK(?§g(x)?Y.
14,e?êY:5?£=Y:¤μ
(1) y = x(1 +x)2
37
(2) y = 1 +x1 +x3
(3) y = x
2?1
x3?3x+ 2
(4) y = xsinx
(5) y = cos2 1x
(6) y = [x] + [?x]
(7) y = 1lnx
(8) y = x
2?x
|x|(x2?1)
(9) y =
1
q,x =
p
q(q> 0,q,p?p?ê)
0,xnê
(10) y =
braceleftbigg x,|x|lessorequalslant 1
1,|x|> 1
(11) y =
braceleftBigg
cos pix2,|x|lessorequalslant 1
|x?1|,|x|> 1
(12) y =
braceleftbigg sinpix,x?knê
0,xnê
)μ
(1)? lim
x→?1?0
x
(1 +x)2 =?∞§x =?1?1aY:£m?:¤.
(2)? lim
x→?1
1 +x
1 +x3 =
1
3§y3x =?1:vk§x =?1£Y:.
(3)?y = x
2?1
x3?3x+ 2 =
(x?1)(x+ 1)
(x?1)(x2 +x+ 1)?3(x?1) =
(x?1)(x+ 1)
(x?1)(x2 +x?2) =
(x?1)(x+ 1)
(x?1)2(x+ 2)§
q lim
x→1?0
y =?∞,lim
x→?2?0
y =?∞§x =?2,x = 1?1aY:.
(4)?lim
x→0
x
sinx = 1y3x = 0§x = 0£Y:?
q lim
x→kpi
k∈Z,knegationslash=0
x
sinx = ∞§x = kpi(k∈Z,knegationslash= 0)?1aY:.
(5)?lim
x→0
cos2 1x3[0,1]m
§?
.4?§d43§u′x = 0?1aY:.
(6)?x→k+ 0?§?x→?k?0§ lim
x→k+0
y = lim
x→k+0
([x] + [?x]) = k+ (?k?1) =?1?
q?x→k?0?§?x→?k+ 0§ lim
x→k?0
y = lim
x→k?0
([x] + [?x]) = k?1 + (?k) =?1(k∈Z)
qx = k?§y = [x] + [?x] = [k] + [?k] = 0(k∈Z)§ê:t£Y:.
(7)? lim
x→1+0
1
lnx = +∞§x =?1?1aY:?
lim
x→?0
1
lnx?3§x = 0?1aY:.
(8) y = x(x?1)|x|(x?1)(x+ 1)
lim
x→1
y = 12y3x = 1§x = 1£Y:?
lim
x→+0
y = 1,lim
x→?0
y =?1§x = 0?1?aY:£am?:¤?
lim
x→?1+0
y =?∞§x =?1?1am?:.
(9)?d?ê′±1?±??ê§?3?m[0,1]§ù§?m?/?daq.
3[0,1]t§?1?1knêkü?μ01,111?2knêkμ12?
1?3knêkü?μ13,231?4knêkü?μ14,34?
1?5knêko?μ15,25,35,451?6knêkü?μ16,56?···
38
o?§?1Lkknê?êllessorequalslant 2 + 1 + 2 + 3 +···+ (k?1) = k(k?1)2 + 2§=?1Lkk
nê?kk"
e?5y§3:x0 ∈ [0,1]§x→x0?§y → 0.
é?ε> 0§k =
bracketleftbigg1
ε
bracketrightbigg
§3[0,1]t§?1Lkknê?r1,r2,···,rl.
δ = min
limits1lessorequalslantilessorequalslantl|ri?x0|§K0 <|x?x0|<δ§=x /∈{r1,r2,···,rn}§?ò′xnê§k
nêpq§?q greaterorequalslantk+ 1 >k?§òk|y?0| =
1
q lessorequalslant
1
k+ 1,x?knêx =
p
q,q>k
0 <ε,xnê
.
lim
x→x0
y = 0 §u′μn:?′d?ê?Y:§kn:?′d?ê?£Y:.
(10)? lim
x→?1+0
y =?1,lim
x→?1?0
y = 1§x =?1?1?aY:.
(11)? lim
x→?1+0
y = 0,lim
x→?1?0
y = 2§x =?1?1?aY:.
(12) (i) x0 negationslash= n,n∈Z§
kn:rn →x0?rn >x0§K lim
rn→x0+0
f(rn) = sinpix0 negationslash= 0?
?n:xn →x0?xn >x0§K lim
xn→x0+0
f(xn) = 0"
f(x0 + 0)?3§l
xnegationslash= n(n∈Z)ê1aY:.
(ii) x0 = n,n∈Z§
xnê?§|f(x)?f(n)| = 0?
x?knê?§|f(x)?f(n)| lessorequalslant pi|x?n|§é?ε > 0,?δ = εpi > 0§||x?n| < δ?§k|f(x)?
f(n)|<ε§f(x)3x = n(n∈Z)?Y.
15,x = 0?e?êf(x)§áf(0)ê?§|f(x)3x = 0?Yμ
(1) f(x) =
√1 +x?1
3√1 +x?1
(2) f(x) = tan2xx
(3) f(x) = sinx·sin 1x
(4) f(x) = (1 +x)1x
)μ
(1)?lim
x→0
f(x) = lim
x→0
√1 +x?1
3√1 +x?1 = limx→0
3radicalbig(1 +x)2 + 3√1 +x+ 1
√1 +x+ 1 = 32§
f(0) = 32.
(2)?lim
x→0
f(x) = lim
x→0
tan2x
x = 2§
f(0) = 2.
(3)?lim
x→0
f(x) = lim
x→0
sinx·sin 1x = 0§
f(0) = 0.
(4)?lim
x→0
f(x) = lim
x→0
(1 +x)1x = e§
f(0) = e.
16,ef(x)3[a,b]?Y§a<x1 <x2 <···<xn <b§K3[x1,xn]¥7kξ§|f(ξ) = f(x1) +f(x2) +···+f(xn)n,
y2μM = max
1lessorequalslantilessorequalslantn
f(xi),m = min
1lessorequalslantilessorequalslantn
f(xi)
Kf(x1) +f(x2) +···+f(xn)n lessorequalslantM?
ónf(x1) +f(x2) +···+f(xn)n greaterorequalslantm.
duf(x)3[x1,xn]? [a,b]t?Y§d0n§7?ξ ∈ [x1,xn]? [a,b]§|f(ξ) = f(x1) +f(x2) +···+f(xn)n,
17,^Yyμ
39
(1) f(x) = 3√x3[0,1]t′Y?
(2) f(x) = sinx3(?∞,+∞)t′Y?
(3) f(x) = sinx23(?∞,+∞)tY.
y2μ
(1) éx1,x2 ∈ [0,1]§| 3√x1? 3√x2| = |x1?x2|3radicalbigx2
1 + 3
√x
1x2 + 3
radicalbigx2
2
= |x1?x2|3
4(
3√x1 + 3√x2)2 + 1
4(
3√x1? 3√x2)2 lessorequalslant
|x1?x2|
1
4(
3√x1? 3√x2)2§
=14| 3√x1? 3√x2|3 lessorequalslant|x1?x2|§?=| 3√x1? 3√x2|lessorequalslant 3radicalbig4|x1?x2|
é?ε> 0,?δ = ε
3
4 > 0§|é?x1,x2 ∈ [0,1]§|x1?x2|<δ?§ok|
3√x1? 3√x2|lessorequalslant 3
radicalbig4|x
1?x2|<
ε
l
f(x) = 3√x3[0,1]t′Y.
(2) éx1,x2 ∈ (?∞,+∞)§|sinx1?sinx2| = 2
vextendsinglevextendsingle
vextendsinglecos x1 +x22 sin x1?x22
vextendsinglevextendsingle
vextendsinglelessorequalslant 2
vextendsinglevextendsingle
vextendsinglex1?x22
vextendsinglevextendsingle
vextendsingle= |x1?x2|§
é?ε > 0,?δ = ε > 0§|é?x1,x2 ∈ (?∞,+∞)§|x1?x2| < δ?§ok|sinx1? sinx2| lessorequalslant
|x1?x2|<ε
l
f(x) = sinx3(?∞,+∞)t′Y.
(3) ε0 = 1§éδ> 0§xprimen =radicalbig2npi+ pi2,xprimeprimen =radicalbig2npi? pi2§|xprimen?xprimeprimen| = |radicalbig2npi+ pi2?radicalbig2npi? pi2| =vextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle piradicalbig2npi+ pi
2 +
radicalbig2npi? pi
2
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle→ 0(n→∞)
n§k|xprimen?xprimeprimen|<δ§
|sin(xprimen)2?sin2(xprimeprimen)2| = |1?(?1)| = 2 > 1 = ε0
l
f(x) = sinx23(?∞,+∞)tY.
40
§4,tút
1,|etx→ 0?úì?ü?μ
(1) x3 +x6
(2) 4x2 + 6x3?x5
(3) √x·sinx
(4) radicalbigx2 + 3√x
(5) √1 +x?√1?x
(6) tanx?sinx
(7) ln(1 +x)
)μ
(1) dulim
x→0
x3 +x6
x3 = limx→0(1 +x
3) = 1§§′3t§§ì?üx3.
(2) dulim
x→0
4x2 + 6x3?x5
4x2 = limx→0(1 +
3
2x?
x3
4 ) = 1§§′2t§§ì?ü4x
2.
(3) dulim
x→0
√x·sinx
|x| = limx→0
radicalbigg
sinx
x = 1§§′1t§§ì?ü|x|.
(4) dulim
x→0
radicalbigx
2 + 3√x
6√x = limx→0
radicalBig
x53 + 1 = 1§§′16t§§ì?ü 6√x.
(5) dulim
x→0
√1 +x?√1?x
x = limx→0
2x
x(√1 +x+√1?x) = 1§§′1t§§ì?ü?
x.
(6) dulim
x→0
tanx?sinx
x3
2
= lim
x→0
2tanx?sinxx3 = lim
x→0
2(1?cosx)
cosx·x2 = limx→0
x2
x2 = 1§§′3
t§§ì?üx
3
2,
(7) dulim
x→0
ln(1 +x)
x = 1§§′1t§§ì?üx.
2,x→∞?§|eCtúì?ü?μ
(1) x2 +x6
(2) 4x2 + 6x4?x5
(3) 3
radicalbigg
x2 sin 1x
(4)
radicalBig
1 +radicalbig1 +√x
(5) 2x
5
x3?3x+ 1
)μ
(1) du lim
x→∞
x2 +x6
x6 = 1§§′6t§§ì?üx
6.
(2) du lim
x→∞
4x2 + 6x4?x5
x5 = 1§§′5t§§ì?üx
5.
(3) du lim
x→∞
3
radicalbigg
x2 sin 1x
3√x = limx→∞
3√x
3√x = 1§§′
1
3t§§ì?ü
3√x.
(4) du lim
x→∞
radicalBig
1 +radicalbig1 +√x
8√x = limx→∞
radicaltpradicalvertex
radicalvertexradicalbtparenleftbigg1
x
parenrightbigg1
4 +
radicalBiggparenleftbigg
1
x
parenrightbigg1
2 + 1 = 1§§′1
8t§§ì?
ü 8√x.
41
(5) du lim
x→∞
2x5
x3?3x+ 1
2x2 = limx→∞
x3
x3?3x+ 1 = 1§§′2t§§ì?ü2x
2.
3,áyμ?x→ 0?
(1) o(?xm) +o(?xn) = o(?xn)(m>n> 0)
(2) o(?xm)o(?xn) = o(?xm+n)(m,n> 0)
(3) |f(x)|lessorequalslantM§Kf(x)o(?x) = o(?x)
(4)?xm ·o(1) = o(?xm)
y2μ
(1) du?x→ 0§?xm → 0,?xn → 0§u′o(?x
m)
xm → 0,
o(?xn)
xn → 0
qm>n> 0§?x
m
xn =?x
m?n → 0 §u′o(?xm) +o(?xn)
xn =
o(?xm)
xm ·
xm
xn +
o(?xn)
xn → 0§
l
o(?xm) +o(?xn) = o(?xn)
(2) du?x→ 0§?xm → 0,?xn → 0§u′o(?x
m)
xm → 0,
o(?xn)
xn → 0
u′o(?x
m)o(?xn)
xm+n =
o(?xm)
xm ·
o(?xn)
xn → 0§
l
o(?xm)o(?xn) = o(?xm+n)
(3)?x → 0§o(?x)?x → 0§q|f(x)| lessorequalslant M§f(x)k.§u′f(x)o(?x)?x = f(x)o(?x)?x → 0§l
f(x)o(?x) = o(?x).
(4) do(1)u′t§Ko(1) → 0§u′?x
m ·o(1)
xm =
xm
xmo(1) = o(1) → 0§l
x
m ·o(1) =
o(?xm).
42
1ü? 4?Y?
1nù 'u¢ê??n9
4?mt?Y?ê5?y2
§1,'u¢ê??n
1,luy2e(.5.
y2μα,αprime?′ê8Ee(.§u′?x∈E§?kxgreaterorequalslantα§=α′Ee.?xgreaterorequalslantαprime§=αprime′Ee..
duα′Ee(.§′e.¥§l
kα greaterorequalslant αprime?ódαprime′Ee(.§kαprime greaterorequalslant α.dd
α = αprime.
2,β = supE,β /∈E§áygE¥?àê{xn}§ù4β?qeβ ∈E§K?/X?o
y2μ
(1) duβ = supE,β /∈E§Kdt(.§
(i) é?x∈E§?kx<β?
(ii) é?ε> 0§?3êx0 ∈E§|x0 >β?ε.
εn = 1n§éz?εn?kxn ∈ E§|β > xn > β?εn§=0 < β?xn < εn§u′?àê
{xn}?E.
q lim
n→∞
(β?εn) = β? lim
n→∞
εn = β?β greaterorequalslant lim
n→∞
xn greaterorequalslant lim
n→∞
(β?εn) = β§ lim
n→∞
xn = β.
(2) β ∈ E?§·K¤á"~μ?¤á"E = (1,12,13,···,1n,···),β = supE = 1,1 ∈ E.
q1n → 0(n→∞)§KE¥f4?t?0§β ∈E?§·K?¤á"
¤á"E =
braceleftbigg
sin pi8,sin 2pi8,···,sin npi8,···
bracerightbigg
,β = supE = 1,1 ∈E§xn = sin 16n+ 48 pi§K lim
n→∞
xn =
1§β ∈E?§·K¤á"
3,T~μ
(1) kt(.?e(.ê?
(2) 1kt(.?1ke(.ê?
(3) Q1kt(.q1ke(.ê?
(4) Q?1kt(.§q?1ke(.ê§ù¥t!e(.?k?.
)μ
(1) {xn} = {?n},sup{xn} =?1
(2) {xn} = {1n},sup{xn} = 1 ∈{xn},inf{xn} = 0 /∈{xn}
(3) {xn} = {1 + (?1)n},sup{xn} = 2 ∈{xn},inf{xn} = 0 ∈{xn}
(4) E =
parenleftbigg
1,12,1 + 12,13,1 + 23,···,1n,1 + n?1n
parenrightbigg
,supE = 2 /∈E,infE = 0 /∈E
4,áyê7kt(.úe(.§au+∞ê7ke(.§au?∞ê7kt(..
y2μ
(1) éue?~êê§w,t!e(.t.
éu?e?~êê§?{xn}§={xn}k4?§Kd1ù§1?n4§ê{xn}′k.ê.
l
dù?nn§ê{xn}kt!e(.§=ê7kt!e(..
5μy2μt!e(.β,α¥?káu{xn}.
ˉ¢t§eα = β§Kα = β = xn,n = 1,2,···
eαnegationslash= β§?α /∈{xn}§KdSK2§3f
braceleftBig
x(1)nk
bracerightBig
u�3f
braceleftBig
x(2)nk
bracerightBig
uβ§
{xn}§ù{xn}g?§α,β¥?káu{xn}.
(2)?{xn}′au+∞ê§K?N ∈Z+§n>N?§ekxn >x1§u′x1,x2,···,xN¥??§=
{xn}e(."
43
(3)?{xn}′au?∞ê§K?N ∈Z+§n>N?§ekxn <x1§u′x1,x2,···,xN¥§=
{xn}t(."
5,|ê{xn}t!e(.:
(1) xn = 1? 1n
(2) xn =?n[2 + (?2)n]
(3) x2k = k,x2k+1 = 1 + 1k(k = 1,2,3,···)
)μ
(1) α = 0£¤§β = 1£¤
(2)? lim
k→∞
bracketleftbig?2kparenleftbig2 + (?2)2kparenrightbigbracketrightbig=?∞,lim
k→∞
bracketleftbig?(2k+ 1)parenleftbig2 + (?2)2k+1parenrightbigbracketrightbig= +∞§{x
n}?t!e(..
(3)? lim
k→∞
x2k = lim
x→∞
k = +∞§{xn}?t(.?
q?x2k greaterorequalslant 1,k = 1,2,3,··· ;x2k+1 > 1?min{x2k} = 1§inf{xn} = 1£¤.
6,y2μüN~ke.ê7k4?.
y2μdu{yn}ke.§{yn}7ke(..
de(.kμ(i)yn greaterorequalslantα(n = 1,2,3,···)?(ii)é?ε> 0§?kyN ∈{yn}§|yN <α+ε.
du{yn}′üN~ê§n > N?§kyn < α+ε§=n > N?§k0 lessorequalslant yn?α < ε§u′yn →
α(n→∞).
l
üN~ke.ê7k4?.
7,ám@?n^?μeò4?mU?m?m§(JX?oeò^?[a1,b1]? [a2,b2]? ···K?ò^
bn?an → 0K§(JNoáT~`2.
)μ
(1) 3?m@?n¥§eò4?mU?m?m§=
(i) (an+1,bn+1)? (an,bn)?
(ii) lim
n→∞
(bn?an) = 0
K?±y2{an},{bn}Euó?4?ξ§= lim
n→∞
an = lim
n→∞
bn = ξ§d?ξ?U??áuù
m
m§=ξ /∈ (an,bn)(n∈Z+)§?=ξ?U(an,bn)ú:.
~μm?m
braceleftbigg
(0,1n)
bracerightbigg
§
(i)
parenleftbigg
0,1n+ 1
parenrightbigg
parenleftbigg
0,1n
parenrightbigg
(ii) lim
n→∞
parenleftbigg1
n?0
parenrightbigg
= lim
n→∞
1
n = 0?
an = 0 → 0(n→∞);bn = 1n → 0(n→∞)§Kξ = 0 /∈
parenleftbigg
0,1n
parenrightbigg
§=(¤á.
(2) eò^?[an+1,bn+1]? [an,bn]K§=?k^?bn?an → 0¤á§K?Uy{an}?{bn}.
~μ4?m
bracketleftbigg
n? 1n,n+ 1n
bracketrightbigg
′@,lim
n→∞
bracketleftbigg
n+ 1n?
parenleftbigg
n? 1n
parenrightbiggbracketrightbigg
= lim
n→∞
2
n = 0§
limn→∞
parenleftbigg
n+ 1n
parenrightbigg
lim
n→∞
parenleftbigg
n? 1n
parenrightbigg
.
?3ξ?{an},{bn}ú4?§=(¤á.
(3) eò^?bn?an → 0K§=?k^?[an+1,bn+1]? [an,bn]¤á.K?±y2{an},{bn}£m
@?ny2?¤§?Uy lim
n→∞
bn = lim
n→∞
an¤á§l
[an,bn]ú:§$yú
?m.
~μ4?m
bracketleftbigg
1? 1n+ 1,2 + 1n+ 1
bracketrightbigg
bracketleftbigg
1? 1n,2 + 1n
bracketrightbigg
,n∈Z+§? lim
n→∞
bracketleftbigg
2 + 1n?
parenleftbigg
1? 1n
parenrightbiggbracketrightbigg
= 1.
d lim
n→∞
an = 1,lim
n→∞
bn = 2§[1,2]?
bracketleftbigg
1? 1n,2 + 1n
bracketrightbigg
,n∈Z+§=(¤á.
8,e{xn}?.§t§K73ü?fx(1)nk →∞,x(2)nk →a(a?,k?ê).
y2μky
braceleftBig
x(1)nk
bracerightBig
′t.
du{xn}?.§é¢êM > 0§?knprime ∈Z+§||xnprime|>M.
M = 1§K73n1§|
vextendsinglevextendsingle
vextendsinglex(1)n1
vextendsinglevextendsingle
vextendsingle > 1?M = 2§K73n2§|
vextendsinglevextendsingle
vextendsinglex(1)n2
vextendsinglevextendsingle
vextendsingle > 2?···?M = K§K7
44
3nK >nK?1§|
vextendsinglevextendsingle
vextendsinglex(1)nK
vextendsinglevextendsingle
vextendsingle>K§···.
K??f
braceleftBig
x(1)nk
bracerightBig
§é?M ∈Z+§K = M§Kk>K?§òk
vextendsinglevextendsingle
vextendsinglex(1)nk
vextendsinglevextendsingle
vextendsingle>M§k limk→∞x(1)nk = ∞.
d?{xn}?′t§Kd§?M0 > 0§é?N ∈ Z+§?km ∈ Z+§m > N?§
k|xm|<M0.
yN = m0parenleftbigm0 ∈Z+parenrightbig§K?km1 >m0§||xm1|lessorequalslantM0
2N = m1§K?km2 >m1§||xm2|lessorequalslantM0§···
Xd?1e§K??mtμm1 < m2 < ··· < mt < ···§||xmt| lessorequalslant M0§=f{xmt}?|xmt| lessorequalslant
M0(mt ∈Z+)§ù`2f{xmt}k.§d5?n§k.f{xmt}7kf.
Pùf?{x(2)nk}§§?′{xn}f?§ua.= lim
k→∞
x(2)nk = a£a?,k?ê¤.
9,k.ê{xn}e§K73ü?fx(1)nk →a,x(2)nk →b(anegationslash= b).
y2μdu{xn}k.§Kd5?n§7kfx(1)nk →a.
du{xn}§3ε0 > 0§3(a?ε0,a+ε0) k{xn}§¤{xn}f§P?
braceleftBig
x(2)n
bracerightBig
.
du
braceleftBig
x(2)n
bracerightBig
k.§3fx(2)nk →b§w,anegationslash= b.
10,e3?m[a,b]¥ü?ê
braceleftBig
x(1)n
bracerightBig
9
braceleftBig
x(2)n
bracerightBig
÷vx(1)n?x(2)n → 0(n→∞)§K3düê¥Ué?k?óv
Inkf§|x(1)nk →x0,x(1)nk →x0(k→∞).
y2μ?
braceleftBig
x(1)n
bracerightBig
[a,b]§K
braceleftBig
x(1)n
bracerightBig
k.ê§Kd5?n§
braceleftBig
x(1)n
bracerightBig
7kf§P?
braceleftBig
x(1)nk
bracerightBig
§
lim
k→∞
x(1)n = x0.
3
braceleftBig
x(2)n
bracerightBig
¥
braceleftBig
x(1)nk
bracerightBig
k?óvIf
braceleftBig
x(2)nk
bracerightBig
.
x(1)n?x(2)n → 0(n→∞)§K lim
k→∞
parenleftBig
x(1)nk?x(2)nk
parenrightBig
= 0§
u′ lim
k→∞
x(2)nk = lim
k→∞
bracketleftBig
x(1)nk?
parenleftBig
x(1)nk?x(2)nk
parenrightBigbracketrightBig
= lim
k→∞
x(1)nk? lim
k→∞
parenleftBig
x(1)nk?x(2)nk
parenrightBig
= x0?0 = x0.
11,|^?üneê5μ
(1) xn = a0 +a1q+a2q2 +···+anqn(|q|< 1,|ak|lessorequalslantM)
(2) xn = 1 + sin12 + sin222 +···+ sinn2n
(3) xn = 1? 12 + 13?···+ (?1)n+1 1n
y2μ
(1) n>m§K|xn?xm| =vextendsinglevextendsingleam+1qm+1 +am+1qm+1 +···+anqnvextendsinglevextendsinglelessorequalslantMparenleftbig|q|m+1 +|q|m+2 +···+|q|nparenrightbig=
M|q|m+1 1?|q|
n?m
1?|q| <M|q|
m+1 1
1?|q| → 0(m→∞)
é?ε> 0,?N ∈Z+§n>m>N?§kM|q|m+1 11?|q| <ε§l
k|xn?xm|<ε.
d?ün§{xn}7.
(2) m > n§é?ε > 0£ε < 12¤§du|xm?xn| =
vextendsinglevextendsingle
vextendsinglevextendsinglesin(n+ 1)
2n+1 +
sin(n+ 2)
2n+2 +···+
sinm
2m
vextendsinglevextendsingle
vextendsinglevextendsingle lessorequalslant
1
2n+1 +
1
2n+2 +···+
1
2m =
1
2n+1
parenleftbigg
1 + 12 +···+ 12m?n?1
parenrightbigg
= 12n+1
1?
parenleftbigg1
2
parenrightbiggm?n
1? 12
< 12n§e?|xm?
xn|<ε§ 12n <ε=?.
N =
lnε
ln 12
∈Z+§m>n>N?§k|x
m?xn|<ε.
d?ün§{xn}7.
£?μ3£1¤¥-a0 = 1,ak = sink,q = 12§Kd£1¤=£2¤¤.
(3) é?ε> 0§é?k∈Z+§du|xn+k?xn| =
vextendsinglevextendsingle
vextendsinglevextendsingle(?1)n+2
n+ 1 +
(?1)n+3
n+ 2 +···+
(?1)n+k?1
n+k
vextendsinglevextendsingle
vextendsinglevextendsingle=
vextendsinglevextendsingle
vextendsinglevextendsingle 1
n+ 1?
1
n+ 2 +···+
(?1)k?1
n+k
vextendsinglevextendsingle
vextendsinglevextendsingle=
1
n+ 1?
parenleftbigg 1
n+ 2?
1
n+ 3 +···+
(?1)k
n+k
parenrightbigg
< 1n+ 1 < 1n§e?|xn+k?xn|<ε§1n <ε=?.
45
N =
bracketleftbigg1
ε
bracketrightbigg
§Kn+k>n>N?§k|xn+k?xn|<ε.
d?ün§{xn}7.
12,|^k?CX?ny2?dA.d?n.
y2μ{xn}?k.ê§K73a,b§|alessorequalslantxn lessorequalslantb.
^?y{"b{xn}f§Kéx0 ∈ [a,b]§?kε0 > 0§|3O(x0,ε0)¥?1
k{xn}k.
Ké?ε> 0§3O(x0,ε)¥1k{xn}.
εn = 1n§w,3O(x0,εn)¥?1k{xn}§K3{xn}¥??μxn1 ∈ O(x0,1)§q?
xn2 ∈O
parenleftbigg
x0,12
parenrightbigg
(n2 >n1)§Xd?1e§?{xn}f{xnk},|xnk?x0|< 1k§é?M ∈Z+§
K = M§Kk>K?§òk|xnk?x0|< 1k < 1K < 1M§Kxnk →x0(k→∞)ù?bg?.
dx0 ∈ [a,b]5§é[a,b]¥z?:?kù?§|d1{xn}k§¤kù
?
¤[a,b]mCX.
dk?CX?n§K3kCX[a,b]§?
[a,b]1k{xn}k§ùxn ∈ [a,b]g
§b?¤á§K{xn}7kf.
13,|^?dA.d?ny2üNk.ê7k4?.
y2μ{xn}?üNO\k.ê§x1 lessorequalslantx2 lessorequalslant···lessorequalslantxn lessorequalslant···lessorequalslantM
a?dA.d?n§3f{xnk},lim
k→∞
xnk = a.
eyμ lim
n→∞
xn = a.
kyxn lessorequalslanta,n = 1,2,···.e?,§?N ∈Z+§|xN >a.
dunk →∞(k→∞)§k§7knk >N§l
xnk greaterorequalslantxN >a§u′a = lim
k→∞
xnk greaterorequalslantxN >ag?.
2y lim
n→∞
xn = a.
é?ε> 0,?k0§|
vextendsinglevextendsingle
vextendsinglexnk0?a
vextendsinglevextendsingle
vextendsingle= a?xnk0 <ε.
N = nk0§Kn>N?§kxn greaterorequalslantxnk0 = xN§l
k|a?xn| = a?xn lessorequalslanta?xnk0 <ε§ lim
n→∞
xn = a.
=üNO\k.ê7k4?.
ón?§üN~k.ê7k4?§l
üNk.ê7k4?.
14,(1) y2üNk.?ê3?!m4
(2) y2üNk.?êY:1?aY:.
y2μ
(1) d??f(x)3(a,b)tüNO\k.§?x0 ∈ (a,b)§β(x0) = sup
a<x<x0
f(x)§
dt(.§é?ε> 0§?kxprime ∈ (a,x0)§|f(xprime) >β(x0)?ε=f(xprime) +ε>β(x0)
δ = x0?xprime > 0§?f(x)3(a,b)tüNO\§δ>x0?x> 0=xprime <x?§kf(xprime) <f(x)§u′
kf(x) +ε>β(x0)=0 lessorequalslantβ(x0)?f(x) <ε§l
|β(x0)?f(x)|<ε
`2 lim
x→x0?0
f(x) = β(x0).=f(x)3x03?4?.
ón?§f(x)3(a,b)tüN~k.?§f(x)3x03?4?§l
üNk.?ê3?4?.
ón?§üNk.?ê3m4?.
(2) x0?f(x)Y:§Kd£1¤(?f (x0?0)úf (x0 + 0)3§d?f (x0?0) negationslash= f (x0 + 0)"
K§f (x0?0) = f (x0 + 0)§df(x)üN5§7kf (x0) = f (x0?0) = f (x0 + 0).
ù`2x0′?Y:§g?§f (x0?0) negationslash= f (x0 + 0)§l
x0′f(x)1?aY:.
15,y2 lim
x→+∞
f(x)37?^?′μéε > 0§3X > 0§xprime,xprimeprime > X?ek|f(xprime)?
f(xprimeprime)|<ε.
y2μ lim
x→+∞
f(x)3§ lim
x→+∞
f(x) = A.
é?ε> 0,?X > 0§x>X?§k|f(x)?A|< ε2
xprime,xprimeprime > X?§k|f(xprime)?A| < ε2,|f(xprimeprime)?A| < ε2§K|f(xprime)?f(xprimeprime)| = |f(xprime)?A? (f(xprimeprime)?A)| lessorequalslant
|f(xprime)?A|+|f(xprimeprime)?A|<ε§l
éε> 0§3X > 0§xprime,xprimeprime >X?ek|f(xprime)?f(xprimeprime)|<ε.
3f(x)S§àê{xn}§|xn → +∞(n→∞)
d?§é?ε> 0,?X > 0§xprime,xprimeprime >X?§ek|f(xprime)?f(xprimeprime)|<ε.
q?xn → +∞§u′ét?X > 0§N ∈ Z+§n > N?§kxn > X§l
n,m > N?§ò
kxn >X,xm >X§?
k|f(xn)?f(xm)|<ε.
46
d?ün§ lim
n→∞
f(xn)3§ lim
n→∞
f(xn) = A
dxn59?ê4ê4?'X§ lim
x→+∞
f(x) = A= lim
x→+∞
f(x)3.
16,y2 lim
x→x0
f(x)37?^?′μéε> 0§3δ > 0§0 < |xprime?x0| <δ,0 < |xprimeprime?x0| <
δ?§ek|f(xprime)?f(xprimeprime)|<ε.
y2μ lim
x→x0
f(x)3§ lim
x→x0
f(x) = A.
é?ε> 0,?δ> 0§0 <|x?x0|<δ?§k|f(x)?A|< ε2
0 < |xprime?x0| < δ,0 < |xprimeprime?x0| < δ?§k|f(xprime)?A| < ε2,|f(xprimeprime)?A| < ε2§K|f(xprime)?f(xprimeprime)| =
|f(xprime)?A? (f(xprimeprime)?A)| lessorequalslant |f(xprime)?A| + |f(xprimeprime)?A| < ε§l
éε > 0§3δ > 0§0 <
|xprime?x0|<δ,0 <|xprimeprime?x0|<δ?§ek|f(xprime)?f(xprimeprime)|<ε.
3f(x)S§àê{xn}§|xn →x0?xn negationslash= x0(n→∞)
d?§é?ε > 0,?δ > 0§xprime,xprimeprime ∈ D(f)§?0 < |xprime?x0| < δ,0 < |xprimeprime?x0| < δ?§òk|f(xprime)?
f(xprimeprime)|<ε.
q?xn →x0,xn negationslash= x0(n→ ∞)§u′ét?δ > 0§N ∈Z+§n>N?§k0 <|xn?x0|<δ§l
n,m>N?§òk0 <|xn?x0|<δ,0 <|xm?x0|<δ§?
k|f(xn)?f(xm)|<ε.
dê?ün§ lim
n→∞
f(xn)3§ lim
n→∞
f(xn) = A
d{xn}′±x0?4?ê?xn negationslash= x0 9?ê4ê4?'X§ lim
x→x0
f(x) = A= lim
x→x0
f(x)
3.
17,y2f(x)3x0:?Y7?^?′μéε> 0§3δ> 0§|xprime?x0|<δ,|xprimeprime?x0|<δ?§e
k|f(xprime)?f(xprimeprime)|<ε.
y2μf(x)3x0:?Y§Ké?ε> 0,?δ> 0§|x?x0|<δ?§k|f(x)?f(x0)|< ε2
|xprime? x0| < δ,|xprimeprime? x0| < δ?§k|f(xprime)? f(x0)| < ε2,|f(xprimeprime)? f(x0)| < ε2§K|f(xprime)? f(xprimeprime)| =
|f(xprime)?f(x0)? (f(xprimeprime)?f(x0))| lessorequalslant |f(xprime)?f(x0)| + |f(xprimeprime)?f(x0)| < ε§l
éε > 0§
3δ> 0§|xprime?x0|<δ,|xprimeprime?x0|<δ?§ek|f(xprime)?f(xprimeprime)|<ε.
xprime = x0,xprimeprime = x§Kd?§é?ε> 0,?δ> 0§|x?x0|<δ?§òk|f(x)?f(x0)|<ε.
l
f(x)3x0:?Y.
47
§2,4?mt?Y?ê5?y2
1,y2μeüNk.?êf(x)?f(a),f(b)?m§Kf(x)3[a,b]?Y.
y2μf(x)?üNO\k.?ê.
dù§1,14K£1¤§f(x)3[a,b]à:a(b)?m£?¤4?3§d?f(a) = f(a+ 0)(f(b) = f(b?
0))§
e?,§7kf(a) <f(a+ 0) = inf
a<x<b
f(x)(f(b) >f(b?0) = sup
a<x<b
f(x))§u′df(x)?f(a)?f(b)?
m§éf(a) < y < f(a + 0)(f(b? 0) < y < f(b))§7kx ∈ (a,b)§|f(x) = y§d
f(a+ 0) = inf
a<x<b
f(x)(f(b?0) = sup
a<x<b
f(x))g?.
dd?f(x)3a(b)m£?¤?Y.
ekx0 ∈ (a,b)§|f(x)3x0:Y"d§1,14(2)(?§x07?1?am?:§=f(x0 + 0)úf(x0?
0)3§f(x0 + 0) negationslash= f(x0?0).
q?f(x)?üNO?ê§f(x0?0) lessorequalslantf(x0) <f(x0 + 0)?f(x0?0) <f(x0) lessorequalslantf(x0 + 0)§ù?f(x)?
(f(x0?0),f(x0 + 0))?méuf(x0)?§ùg?§b?¤á.
u′f(x)3[a,b]?Y.
ón§f(x)?üN~k.?ê?§f(x)3[a,b]?Y.
l
f(x)3[a,b]?Y.
2,y2μ?êf(x)3(a,b)?Y§f(a+ 0),f(b?0)3§Kf(x)?f(a+ 0)úf(b?0)?m(?U?
uf(a+ 0),f(b?0)).
y2μduf(a+ 0),f(b?0)3§Kf(a) = f(a+ 0),f(b) = f(b?0).
qf(x)3(a,b)?Y§Kf(x)3[a,b]?Y§?
f(x)3[a,b]t7kMú??m.
2d0n§f(x)?±Múmm.
eM = f(a+ 0)(?f(b?0))§m = f(b?0)(?f(b?0))§ù?f(x)?(f(a+ 0),f(b?0))¥(
U?uf(a+ 0),f(b?0)).
eM >f(a+ 0)(?f(b?0))§m<f(b?0)(?f(b?0))§ù?f(x)?(f(a+ 0),f(b?0))¥(?
Uuf(a+ 0),f(b?0)),f(x)?f(a+ 0)úf(b?0)?m(?U?uf(a+ 0),f(b?0)).
3,y2(a,b)t?Y?êY7?^?′μf(a+ 0),f(b?0)3.
y2μ?f(x)?(a,b)t?Y?ê
f(a+ 0),f(b?0)3§Kf(a) = f(a+ 0),f(b) = f(b?0)§u′f(x)3[a,b]?Y§Kdx÷?
n§f(x)3[a,b]tY§l
f(x)3(a,b)tY.
f(x)3(a,b)tY§Kd§é?ε > 0,?δ(ε) > 0§x1,x2 ∈ (a,b)?|x1?x2| < δ(ε)?§
k|f(x1)?f(x2)|<ε.
éa§0 <x1?a< δ(ε)2,0 <x2?a< δ(ε)2?§|x1?x2| = |(x1?a)?(x2?a)|lessorequalslant|x1?a|+|x2?a|<δ(ε)§
Kk|f(x1)?f(x2)|<ε.
d?ün§ lim
x→a+0
f(x)3§=f(a+ 0)3?k?.
ón§f(b?0)3?k?.
4,e?êf(x)3(?∞,+∞)tk?4?mt?Y§K§3(?∞,+∞)tk?m?mtY.
y2μ(a,b)?(?∞,+∞)tk?m?m§K[a,b]?(?∞,+∞)tk?4?m.
f(x)3[a,b]t?Y§Kdx÷?n§f(x)3[a,b]tY§?
f(x)3(a,b)tY.
d(a,b)5§f(x)3(?∞,+∞)tk?m?mtY.
5,?êf(x) = x23(?∞,+∞)9(?l,l)t(l> 0)′Yo
)μ
(1) f(x) = x23(?∞,+∞)tY.
x1 >x2 > 0§?x1,x2 ∈ (?∞,+∞),|f(x1)?f(x2)| = |x21?x22| = |x1+x2||x1?x2| = (x1+x2)(x1?
x2) > 2x2(x1?x2)§3ε0 > 0§é?η> 0§x2 = 2ε0η,x1 = x2 + η2§
w,kx1 >x2 > 0?|x1?x2| = η2 <η§|f(x1)?f(x2)|> 2x2(x1?x2) = 2· 2ε0η · η2 = 2ε0 >ε0§
l
f(x) = x23(?∞,+∞)tY.
(2) f(x) = x23(?l,l)(l> 0)tY.
f(x)3[?l,l](l> 0)t′?Y§Kdx÷?n§f(x)3[?l,l]tY§l
f(x) = x23(?l,l)t
Y.
6,ef(x)3(a,b)Sk§é(a,b)Sx§3x,??Ox§|f(x)3OxSk..ˉμf(x)3(a,b)S
′?k.oqeò(a,b)U?[a,b]§X?o
y2μ
48
(1) f(x)3(a,b)k..
~μ?.μf(x) = 1x3(0,1)Sk§?é?x∈ (a,b)?Y§7?ük.§=3x?Ox(O(x,δx))§
|§3Ox(O(x,δx))Sk.§§3(0,1)S?..
k.μf(x) = sinx3
parenleftBig
0,pi2
parenrightBig
k§é
parenleftBig
0,pi2
parenrightBig
Sx§3x,??Ox§|f(x)3OxSk
.?f(x)3
parenleftBig
0,pi2
parenrightBig
tk.§?0 <f(x) < 1.
(2) f(x)3[a,b]k..
f(x)3[a,b]Sk§Kμf(x)3(a?δ,a)f(a)§f(x)3(b,b+δ)f(b).
d?é[a,b]Sx§3x,??Ox§|f(x)3OxSk.§=?M > 0§||f(x)| lessorequalslant M§?
d3[a,b]tz?:?ù?£?=m?m¤§ù
m?mN¤m?m8§§CX
[a,b].
dk?CX?n§3ù
m?m8¥7kkm?mCX
[a,b]§Pùkm?m?(x1?
δ1,x1 +δ1),(x2?δ2,x2 +δ2),···,(xk?δk,xk +δk)§?AM?OP?M1,M2,···,Mk§X8
M? = max{M1,M?2,···,Mk}.
é[a,b]t:x§d?mCXVg§3ùk?m?mO(xi,δi)(i = 1,2,···,k)¥?k1x§
P§?O(xi,δi)§?3ù?m?mt§k|f(x)|lessorequalslantMi§|f(x)|lessorequalslantMi lessorequalslantM?.
dux?[a,b]t:§K3[a,b]to¤á|f(x)|lessorequalslantM?§l
y2
f(x)3[a,b]tk..
7,y2(a,b)tY?ê7k..
y2:?f(x)?(a,b)tY?ê§KdSK3§f(x)3(a,b)t?Y?f(a+0),f(b?0)3§u′
μf(a) = f(a+ 0),f(b) = f(b?0)§Kf(x)3[a,b]t?Y§u′f(x)3[a,b]tk.§l
f(x)3(a,b)t
k..
8,Uy2§üY?êúEY.kˉμüY?êèX?o
y2μ
(1) f(x)?g(x)3mXtY.
f(x)3?mXtY§Kdé?ε> 0,?δ1 > 0§é?mXSü:xprime,xprimeprime§|xprime?xprimeprime|<
δ1§òk|f(xprime)?f(xprimeprime)|< ε2.
q?g(x)3?mXtY§Kdét?ε > 0,?δ2 > 0§é?mXSü:xprime,xprimeprime§|xprime?
xprimeprime|<δ2§òk|g(xprime)?g(xprimeprime)|< ε2.
δ = min{δ1,δ2}§K|xprime?xprimeprime|<δ?§k|f(xprime)+g(xprime)?(f(xprimeprime)+g(xprimeprime))| = |f(xprime)?f(xprimeprime)+(g(xprime)?
g(xprimeprime))|lessorequalslant|f(xprime)?f(xprimeprime)|+|g(xprime)?g(xprimeprime)|< ε2 + ε2 = ε.
l
f(x)3?mXtY.
(2) (i) e?mX?km§K(?¤á.
f(x),g(x)3?mXtY§KdtK(?§3~êL> 0,M > 0§||f(x)|<L,g(x) <
M(x∈X).
qd§?ε > 0,?δ1 > 0§é?mXSü:xprime,xprimeprime§|xprime?xprimeprime| < δ1§ò
k|f(xprime)?f(xprimeprime)|< ε2M.
ó§ét?ε > 0,?δ2 > 0§é?mXSü:xprime,xprimeprime§|xprime? xprimeprime| < δ2§òk|g(xprime)?
g(xprimeprime)|< ε2L.
δ = min{δ1,δ2}§K|xprime?xprimeprime|<δ?§òk|f(xprime)?f(xprimeprime)|< ε2M,|g(xprime)?g(xprimeprime)|< ε2Ló?¤
á.
dd?§|f(xprime)g(xprime)?f(xprimeprime)g(xprimeprime)| =
|[f(xprime)?f(xprimeprime)]g(xprime) +f(xprimeprime)[g(xprime)?g(xprimeprime)]| lessorequalslant |f(xprime)?f(xprimeprime)||g(xprime)| + |f(xprimeprime)||g(xprime)?g(xprimeprime)| <ε
2M ·M +L·
ε
2L =
ε
2 +
ε
2 = ε.
l
f(x)g(x)3?mXtY.
(ii) f(x),g(x)3(?∞,+∞)Y?§f(x)g(x)3(?∞,+∞)tY.
~μ
(a)Y.
f(x) = g(x) = x§?é?ε > 0§9x1,x2 ∈ (?∞,+∞)§δ = ε§|x1? x2| < δ?§
k|x1?x2|<ε§f(x) = g(x) = x3(?∞,+∞)tY.
f(x)g(x) = x2§d15K?f(x)g(x)3(?∞,+∞)tY.
(b)Y.
f(x) = 1§?é?ε> 0§éx1,x2 ∈ (?∞,+∞)§δ = ε§|x1?x2|<δ?§k|f(x1)?
f(x2)|<ε§f(x) = 13(?∞,+∞)tY.
49
g(x) = x§Kd?g(x) = x3(?∞,+∞)tY§?f(x)g(x) = x3(?∞,+∞)t
Y.
50
1? üCt?è
1?ü? üCt
1où ê
§1,êú
1,L-?y = x2tü:A(2,4)úB(2+?x,2+?y)??§?O|??x = 19?x = 0.1???§?|
-?3A:?.
)μkAB = (2 +?x)
2?22
x = 4 +?x
?x = 1?§kAB = 5??x = 0.1?§kAB = 4.1
-?3A:k = lim
x→0
kAB = lim
x→0
(4 +?x) = 4.
2,|y = x23A(1,1):ú3B(?2,4):§ú{§.
)μ?yprime = 2x§3:A(1,1)μk1 = 2§§?μy? 1 = 2(x? 1)=2x?y? 1 = 0?{§
y?1 =?12(x?1)=x+ 2y?3 = 0
3:B(?2,4)μk2 =?4§§?μy? 4 =?4(x + 2)=4x + y + 4 = 0?{§?y? 4 = 14(x +
2)=x?4y+ 18 = 0
3,ey = f(x) = x3§|
(1) L-?t:x0,x0 +?x???£x0 = 2,?x?O?0.1§0.01§0.001¤?
(2) 3x = x0?-?.
)μ
(1)?k = f(x0 +?x)?f(x0)?x = (x0 +?x)
3?x3
x = 3x
2
0 + 3x0?x+ (?x)
2§
μ?x = 0.1?§k = 12.61??x = 0.01?§k = 12.0601??x = 0.001?§k = 12.006001.
(2) fprime(x) = lim
x→0
f(x0 +?x)?f(x0)
x = 3x
2§
u′fprime(x0) = 3x20
4,es = vt? 12gt2§|
(1) 3t = 1,t = 1 +?t?m2t?Y£?t = 1,0.1,0.01¤?
(2) 3t = 1]Y.
)μ
(1)?ˉv =
v(1 +?t)? 12g(1 +?t)2?
parenleftbigg
vt? 12gt2
parenrightbigg
t = v?g?
1
2g?t
2§
μ?t = 1?§ˉv = v? 32g??t = 0.1?§ˉv = v? 2120g??t = 0.01?§ˉv = v? 201200g.
(2) 3t = 1]Yv = lim
t→0
ˉv = v?g.
5,y = x23=?:21uy = 4x?5o3=?:R?u2x?6y+ 5 = 0o
)μy = 4x? 5k = 4§Kdfprime(x) = 2x = k§x = 2§=(2,4):21uy =
4x?5?
2x?6y + 5 = 0k = 13§Kdfprime(x) = 2x =?1k =?3§x =?32§=(?32,94):R?
u2x?6y+ 5 = 0.
6,|e?ê3¤?:?y?xμ
(1) y = √x(x = 2,?x = 0.01)
(2) y = 1x(x = 4,?x = 0.04)
51
)μ
(1)?y?x =
√x+?x?√x
x =
√2.01?√2
0.01 = 100
parenleftBig√
2.01?√2
parenrightBig
= 1√2.01 +√2
(2)?y?x =
1
x+?x?
1
x
x =?
1
x(x+?x) =?
1
4(4 + 0.04) =?
25
404
7,y2μ
(1)?(f(x)±g(x)) =?f(x)±?g(x)
(2)?[f(x)·g(x)] = g(x+?x)·?f(x) +f(x)·?g(x)
y2μ
(1)?(f(x)±g(x)) = [f(x+?x)±g(x+?)]?[f(x)±g(x)] = [f(x+?x)?f(x)]±[g(x+?x)?g(x)] =
f(x)±?g(x)
(2)?[f(x)·g(x)] = f(x+?x)·g(x+?x)?f(x)·g(x) = f(x+?x)·g(x+?x)?f(x)·g(x+?x)+f(x)·g(x+
x)?f(x)·g(x) = [f(x+?x)?f(x)]·g(x+?x)+f(x)[g(x+?x)?g(x)] = g(x+?x)·?f(x)+f(x)·?g(x)
52
§2,{ü?êê
1,dê|y = cosxê.
)μyprime = lim
x→0
cos(x+?x)?cosx
x = lim?x→0
2sin 2x+?x2 sin?x2
x =? lim?x→0sin
parenleftbigg
x+?x2
parenrightbiggsin?x
2
x
2
=
sinx§=(cosx)prime =?sinx.
2,dê|y = 3√xê.
)μyprime = lim
x→0
3√x+?x? 3√x
x = lim?x→0
x13
bracketleftBiggparenleftbigg
1 +?xx
parenrightbigg1
3?1
bracketrightBigg
x = lim?x→0
x?23
bracketleftBiggparenleftbigg
1 +?xx
parenrightbigg1
3?1
bracketrightBigg
x
x
= x
23
3 =
1
3 3√x2§=(
3√x)prime = 1
3 3√x2
3,Uy2μ?ó?êù?ê′ê§?êù?ê′ó?ê.
y2μf(x)ó?ê§Kf(?x) = f(x)?g(x)ê§Kg(?x) =?g(x)
u′fprime(?x) = lim
x→0
f(?x+?x)?f(?x)
x = lim?x→0
f(xx)?f(x)
x = limx→0
[f(xx)?f(x)]
x =
fprime(x)=?ó?êù?ê′ê?
gprime(?x) = lim
x→0
g(?x+?x)?g(?x)
x = lim?x→0
g(xx) +g(x)
x = limx→0
g(xx)?g(x)]
x = g
prime(x)=?
êù?ê′ó?ê.
4,Uy2μ?±ê§ù?êE?±ù?ê.
y2μf(x)±T?ê§Kf(x+T) = f(x)§
u′fprime(x+T) = lim
x→0
f(x+T +?x)?f(x+T)
x = lim?x→0
f(x+?x)?f(x)
x = f
prime(x)=?±ê§
ù?êE?±ù?ê.
53
§3,|{K
1,|^?2êúa§|e?êêμ
(1) y = x5
(2) y = x11
(3) y = x6
(4) y = 2x
(5) y = log10x
(6) y = 10x
)μ
(1) yprime = (x5)prime = 5x4
(2) yprime = (x11)prime = 11x10
(3) yprime = (x6)prime = 6x5
(4) yprime = (2x)prime = 2x ln2
(5) yprime = (log10x)prime = 1xln10
(6) yprime = (10x)prime = 10x ln10
2,|e?êêμ
(1) f(x) = 2x2?3x+ 1§?|fprime(0),fprime(1)
(2) f(x) = x5 + 3sinx§?|fprime(0),fprime
parenleftBigpi
2
parenrightBig
(3) f(x) = ex + 2cosx?7x§?|fprime(0),fprime(pi)
(4) f(x) = 4sinx?lnx+x2
(5) f(x) = anxn +an?1xn?1 +···+a1x+a0§?|fprime(0),fprime(1)
)μ
(1) fprime(x) = 4x?3§fprime(0) =?3,fprime(1) = 1
(2) fprime(x) = 5x4 + 3cosx§?|fprime(0) = 3,fprime
parenleftBigpi
2
parenrightBig
= 5pi
4
16
(3) fprime(x) = ex?2sinx?7§?|fprime(0) =?6,fprime(pi) = epi?7
(4) fprime(x) = 4cosx? 1x + 2x
(5) f(x) = nanxn?1 + (n1)an?1xn?2 +···+a1§?|fprime(0) = a1,fprime(1) =
nsummationtext
i=1
iai
3,|e?êêμ
(1) y = x2 sinx§?|fprime(0),fprime
parenleftBigpi
2
parenrightBig
(2) y = xcosx+ 3x2§?|fprime(?pi)úfprime(pi)
(3) y = xtanx+ 7x?6
(4) y = ex sinx?7cosx+ 5x2
(5) y = 4√x+ 1x?2x3
(6) y = (3x2 + 2x?1)sinx
)μ
(1) yprime = 2xsinx+x2 cosx§fprime(0) = 0,fprime
parenleftBigpi
2
parenrightBig
= pi
(2) yprime = cosx?xsinx+ 6x§fprime(?pi) =?1?6pi,fprime(pi) =?1 + 6pi
(3) yprime = tanx+xsec2x+ 7
(4) yprime = ex sinx+ex cosx+ 7sinx+ 10x = ex(sinx+ cosx) + 7sinx+ 10x
54
(5) yprime = 2√x? 1x2?6x2
(6) yprime = (3x2 + 2x?1)cosx+ (6x+ 2)sinx
4,|e?êêμ
(1) y = 2 + sinxx
(2) y = cotx
(3) y = 3x
2 + 7x?1
√x
(4) y = (1 +x
2)sinx
2x
(5) y = xlnx1 +x
(6) y = xe
x?1
sinx
)μ
(1) yprime = x(2 + sinx)
prime?(x+ sinx)
x2 =
xcosx?sinx?2
x2
(2) yprime =
parenleftBigcosx
sinx
parenrightBigprime
= sinx(cosx)
prime?cosx(sinx)prime
sin2x =?
1
sin2x =?csc
2x
(3) yprime =
√x(3x2 + 7x?1)prime?(√x)prime(3x2 + 7x?1)
x =
√x(6x+ 7)? 3x2 + 7x?1
2√x
x =
9x2 + 7x+ 1
2x√x =
9
2x
1
2 + 72x?
1
2 + 12x?
3
2
(4) yprime = 2x[(1 +x
2)sinx]prime?2(1 +x2)sinx
4x2 =
2x[2xsinx+ (1 +x2)cosx]?2(1 +x2)sinx
4x2 =
(x2?1)sinx+x(1 +x2)cosx
2x2
(5) yprime = (1 +x)(xlnx)
prime?xlnx
(1 +x)2 =
(1 +x)(lnx+ 1)?xlnx
(1 +x)2 =
x+ lnx+ 1
(1 +x)2
(6) yprime = sinx(xe
x?1)prime?(sinx)prime(xex?1)
sin2x =
ex sinx(x+ 1)?cosx(xex?1)
sin2x
5,|e?êêμ
(1) y =
√x+ cosx
x?1?7x
2
(2) y = xsinx+ cosxxsinx?cosx
(3) y = x2ex sinx+ 3 +x
2
√x?xlnx+ 8x2
(4) y = sinx1 + tanx
(5) y = xcosx?lnxx+ 1
(6) y = 1x+ cosx
)μ
(1) yprime =
(x?1)( 12√x?sinx)?(√x+ cosx)
(x?1)2? 14x =
(x?1)(1?2√xsinx)?(2x+ 2√xcosx)
2√x(x?1)2? 14x
(2) yprime = (xsinx?cosx)(sinx+xcosx?sinx)?(xsinx+ cosx)(sinx+xcosx+ sinx(xsinx?cosx)2 =?2(sinxcosx+x)(xsinx?cosx)2 =
2x+ sin2x(xsinx?cosx)2
55
(3) yprime = 2xex sinx+x2ex sinx+x2ex cosx+
2x√x? 3 +x
2
2√x
x? lnx? 1 + 16x = xe
x(2sinx+xsinx+
xcosx) + 3x
2?1
2x√x?lnx?1 + 16x
(4) yprime = cosx(1 + tanx)?sinx·sec
2x
(1 + tanx)2
(5) yprime =
(x+ 1)(cosx?xsinx? 1x)?(xcosx?lnx)
(x+ 1)2 =
xcosx?(x2 sinx+ 1)(x+ 1) +xlnx
x(x+ 1)2
(6) yprime =? 1?sinx(x+ cosx)2 = sinx?1(x+ cosx)2
6,|-?y+ 1 = (x?2)33:A(3,0)?§9{§.
)μ?y+ 1 = (x?2)3§Ky = (x?2)3?1§u′yprime = 3(x?2)2§K¤|k = y prime|x=3 = 3§
l
¤|§?μy = 3(x?3)=3x?y?9 = 0?¤|{§?μy =?13(x?3)=x+ 3y?3 = 0.
7,|-?y = lnx3:(1,0)?§ú{§.
)μ?y = lnx§Kyprime = 1x§u′¤|k = y prime|x=1 = 1§
l
¤|§?μy = x?1=x?y?1 = 0?¤|{§?μy =?(x?1)=x+y?1 = 0.
8,y = x2?2x+ 43=?:21ux?o3=?:x??45oo
)μ?y = x2?2x+ 4§yprime = 2x?2.
q21ux?k = 0§K2x?2 = 0§u′x = 1§=¤|:?(1,3)?
q?x??45ok = 1§K2x?2 = 1§u′x = 32§=¤|:?
parenleftbigg3
2,
13
4
parenrightbigg
.
9,÷$??N§ù$§?s = 3t4? 20t3 + 36t2§|ù?Y§?ˉ?Nc$?o $
o
)μ?s = 3t4?20t3 + 36t2§v = sprime = 12t3?60t2 + 72t.
v> 0=0 <t< 2?t> 3?§?N?c$v< 0=2 <t< 3?§?N? $?.
10,du ^§?¥÷XtE§D?Y?5§$§?s = 5t?t2§áˉd¥meEo
)μ?s = 5t?t2§v = sprime = 5?2t§v = 0=t = 52?§¥meE.
11,3x = 2?§?-?y = 0.1x3§áˉ: §d-3o
)μ?y = 0.1x3§yprime = 0.3x2§u′3x = 2?§k = y |x = 2 = 1.2§l
d-?3?
:(2,0.8)?§?y?0.8 = 1.2(x?2)§=6x?5y?8 = 0?d
braceleftbigg y = 0.1x3
6x?5y?8 = 0 §x
3?12x+16 =
0§K(x?2)2(x+ 4) = 0§)x1 = x2 = 2,x3 =?4§Kd-3:(?4,?6.4).
12,-?y = xn£n?ê¤t:(1,1)?x?u:(ξn,0)§| lim
n→∞
y(ξn).
)μ?y = xn§Kyprime = nxn?1§Kd-?3x = 1?k = y prime|x=1 = n§u′d-?3:(1,1)?
§?y?1 = n(x?1)=y = nx?n+ 1.
y = 0?§x = n?1n =ξn = n?1n §K lim
n→∞
y(ξn) = lim
n→∞
parenleftbiggn?1
n
parenrightbiggn
= lim
n→∞
parenleftbigg
1? 1n
parenrightbiggn
= 1e.
13,§?y = x2 +ax+b§áˉ:(x0,y0)?u§?±l:(x0,y0)édü^
^§o
)μ(x0,y0)?2?t:§(x,y)?L(x0,y0):.
d?§?k = yprime = 2x+a§K¤|y?y0 = (2x+a)(x?x0)=y0?y =
(2x?a)(x0?x)§
qy = x2+ax+b§Ky0?(x2+ax+b) = (2x+a)(x0?x)§x2?2x0x+y0?ax0§K? = 4x20?4(y0?b?ax0)
? > 0=y0 < x20 + ax0 + b?§ü^? = 0=y0 = x20 + ax0 + b?§^
? < 0=y0 >x20 +ax0 +b?§.
14,ˉ.êao§y = xaU?éê-?y = logaxo3o
)μdK?§xprime = (logax)prime§=1 = 1xlna§Kx = 1lna§u′y = 1lna.
qdu3?:§ùp?I7L?§K logax = 1lna§u′x = e§K?lna = 1e§=a = e1e=.
êa = e1e?§y = xaU?éê-?y = logax§3:(e,e).
56
§4,Eü?ê|{
1,|e?êêμ
(1) y = 2sin3x
(2) y = 4cos(3t?1)
(3) y = 3e2x + 5cos2x
(4) y = (x+ 1)2
(5) y = (1?x+x2)3
(6) y = 3e?2t + 1
(7) y = ln(x+ 1)
(8) y = (3x+ 1)4
(9) y = √1 +x2
(10) y =
parenleftbigg
1? 1x
parenrightbigg2
(11) y = tan x2 + sin3x
(12) y = lnsinx
(13) y = x√1 +x2
(14) y = 1√2pie?3t2
)μ
(1) yprime = 6cos3x
(2) yprime =?12sin(3t?1)
(3) yprime = 6e2x?10sin2x
(4) yprime = 2(x+ 1)
(5) yprime = 3(1?x+x2)2(2x?1)
(6) yprime =?6e?2t
(7) yprime = 1x+ 1
(8) yprime = 12(3x+ 1)3
(9) yprime = x√1 +x2
(10) yprime = 2
parenleftbigg
1? 1x
parenrightbigg
·
parenleftbigg
1x2
parenrightbigg
= 2(x?1)x3
(11) yprime = 12 sec2 x2 + 3cos3x
(12) yprime = cosxsinx = cotx
(13) yprime =
√1 +x2? x2√
1 +x2
1 +x2 =
1
(1 +x2)32
(14) yprime =?3
√2t
√pi e?3t2
2,|e?êêμ
(1) y = sin3 2x
(2) y = (at+b)e?2t(a,b?~ê)
(3) y = e2t sin3t+ t
2
2
57
(4) y = ln 1?x
2
1 +x2
(5) y = e
kt sinωt
1 +t (k,ω?~ê)
(6) y = 4(x+ cos2x)2
(7) y = e?t(cost+ sint)
(8) y = x√1 + cos2x
(9) y = (x?1)√x2 + 1
(10) y = (2 + 3t)sin2t+ 7t2?7
)μ
(1) yprime = 6sin2 2xcosx = 3sin4xsin2x
(2) yprime = ae?2t?2(at+b)e?2t =?(2at+ 2b?a)e?2t
(3) yprime = 2e2t sin3t+ 3e2t cos3t+t = e2t(2sin3t+ 3cos3t) +t
(4) yprime = 1 +x
2
1?x2 ·
2x(1 +x2)?2x(1?x2)
(1 +x2)2 =
4x
x4?1
(5) yprime = (1 +t)e
kt(?ksinωt+ωcosωt)?(e?kt sinωt
(1 +t)2 =
(kt+k+ 1)e?kt sinωt+ω(1 +t)e?kt cosωt
(1 +t)2
(6) yprime =?4[(x+ cos2x)
2]prime
(x+ cos2x)4 =?
8(1?2sin2x)
(x+ cos2x)2
(7) yprime =?e?t(cost+ sint) +e?t(?sint+ cost) =?2e?t sint
(8) yprime =
√1 + cos2x?x?2sinxcosx
2√1 + cos2x
1 + cos2x =
1 + cos2x+xsinxcosx
(1 + cos2x)32
(9) yprime = √x2 + 1 + (x?1) 2x2√x2 + 1 = 2x
2?x+ 1
√x2 + 1
(10) yprime = 3sin2t+ 2(2 + 3t)cos2t+ 14t
3,|e?êêμ
(1) y = e?kt(3cosωt+ 4sinωt)(k,ω?~ê)
(2) y = xarctanx
(3) y = (2x2 + 1)2e?x sin3x
(4) y = e
t sin3t
√1 +t2
(5) y = (3t+ 1)et(cos3t?7sin3t)
(6) y = tarcsin3t+ 7e?2t lnt+ 8t
(7) y = x√a2?x2 + x√a2?x2 (a?~ê)
)μ
(1) yprime =?ke?kt(3cosωt+4sinωt)+e?kt(?3ωsinωt+4ωcosωt) = e?kt[(4ω?3k)cosωt?(3ω+4k)sinωt]
(2) yprime = arctanx+ x1 +x2
(3) yprime = 4x(2x2 + 1)e?x sin3x? (2x2 + 1)2e?xsin3x+ 3(2x2 + 1)2e?xcos3x = e?x(2x2 + 1)[(?2x2 +
8x?1)sin3x+ 3(2x2 + 1)cos3x]
(4) yprime =
e?t(?sin3t+ 3cos3t)√1 +t2?e?t sin3t t√1 +t2
1 +t2 =
e?t[3(1 +t2)cos3t?(t2 +t+ 1)sin3t]
(1 +t2)32
58
(5) yprime = 3et(cos3t?7sin3t) + (3t+ 1)et(cos3t?7sin3t) + (3t+ 1)et(?3sin3t?21cos3t) =?et[(60t+
17)cos3t+ (30t+ 31)sin3t]
(6) yprime = arcsin3t+ 3t√1?9t2?14e?2t lnt+ 7e
2t
t + 8
(7) yprime = √a2?x2? x
2
√a2?x2 +
√a2?x2 + x2√
a2?x2
a2?x2 =
(a2?2x2)(a2?x2) +a2
(a2?x2)32
4,|e?êêμ
(1) y = sinnxcosnx
(2) y = sinhnxcoshnx
(3) y = e?x2+2x
(4) y = (sinx+ cosx)n
(5) y = arcsin(sinx·cosx)
(6) y = ln
radicalbigg(x+ 2)(x+ 3)
x+ 1
(7) y = arctan 2x1?x2
(8) y = xa2√a2 +x2
)μ
(1) yprime = nsinn?1xcosxcosnx?nsinnxsinnx =
nsinn?1xcos(n+ 1)x
(2) yprime = nsinhn?1xcoshxcoshnx+nsinhnxsinhnx =
nsinhnxcosh(n+ 1)x
(3) yprime =?2(x?1)e?x2+2x
(4) yprime = n(sinx+ cosx)n?1(cosx?sinx) = n(sinx+ cosx)n?2 cos2x
(5) yprime = cos2xradicalbig1?(sinx·cosx)2 = 2cos2x√4?sin22x
(6)?y = ln
radicalbigg(x+ 2)(x+ 3)
x+ 1 =
1
2[ln(x+2)+ln(x+3)?ln(x+1)]§y
prime = 1
2
bracketleftbigg 1
x+ 2 +
1
x+ 3?
1
x+ 1
bracketrightbigg
=
x2 + 2x?1
2(x+ 1)(x+ 2)(x+ 3).
(7) yprime = 1
1 +
parenleftbigg 2x
1?x2
parenrightbigg2 · 2(1?x
2) + 4x2
(1?x2)2 =
2
1 +x2
(8) yprime =
√a2 +x2? x2√
a2 +x2
a2(a2 +x2) =
1
(a2 +x2)32
5,|^éê2|?{§|e?êêμ
(1) y = x
radicalbigg1?x
1 +x
(2) y = x
2
1?x
radicalbigg x+ 1
1 +x+x2
(3) y = (x?α1)α1(x?α2)α2 ···(x?αn)αn
(4) y = (x+√1 +x2)n
(5) y = xmmx
)μ
59
(1)?y = x
radicalbigg1?x
1 +x§K lny = lnx+
1
2 ln(1?x)?
1
2 ln(1 +x)§ü>éx|§
1
yy
prime = 1
x +
1
2(1?x)?
1
2(1 +x)§
Kyprime = 1?x?x
2
(1 +x)√1?x2 (0 <|x|< 1)
(2)?y = x
2
1?x
radicalbigg x+ 1
1 +x+x2§K lny = 2lnx? ln(1?x) +
1
2 ln(x+ 1)?
1
2 ln(1 +x+x
2)§ü>éx|
§1yyprime = 2x + + 11?x + 12(1 +x)? 1 + 2x2(1 +x+x2)§
Kyprime = x
2
1?x
radicalbigg x+ 1
1 +x+x2
parenleftbigg2
x + 11?x+ 12(x+ 1)?
2x+ 1
2(1 +x+x2)
parenrightbigg
(3)?y = (x?α1)α1(x?α2)α2 ···(x?αn)αn =
nproducttext
i=1
(x?αi)αi9y3éê?òS§Aproducttext nlim
i=1
(x?αi)αi >
0§Klny =
nsummationtext
i=1
αi ln|x?αi|§ü>éx|ê§1yyprime =
nsummationdisplay
i=1
αi
x?αi§
Kyprime =
nsummationtext
i=1
αi
x?αi
nproductdisplay
i=1
(x?αi)αi(x∈D)ù¥D =
braceleftbigg nproducttext
i=1
(x?αi)αi > 0
bracerightbigg
(4)?y = (x + √1 +x2)n§K lny = nln(x + √1 +x2)§ü>éx|§1yyprime = n
1 + x√1 +x2
x+√1 +x2 =n
√1 +x2§Kyprime = n√1 +x2 (x+
radicalbig
1 +x2)n
(5)?y = xmmx§Klny = mln|x| +xlnm§ü>éx|§1yyprime = mx + lnm§Kyprime = xm?1mx+1 +
xmmx lnm
6,f(x)′éx?|?ê§|dydx.
(1) y = f(x2)
(2) y = f(ex)·ef(x)
(3) y = f(f(f(x)))
)μ
(1) dydx = 2xfprime(x2)
(2) dydx = exfprime(ex)·ef(x) +fprime(x)f(ex)ef(x) = ef(x)(exfprime(ex) +f(ex)fprime(x))
(3) dydx = fprime(f(f(x)))fprime(f(x))fprime(x)
7,?(x),ψ(x)?éx?|?ê§|dydx.
(1) y =radicalbig?2(x) +ψ2(x)
(2) y = arctan?(x)ψ(x)(ψ(x) negationslash= 0)
(3) y =?(x)radicalbigψ(x)(?(x) negationslash= 0,ψ(x) > 0)
(4) y = log?(x)ψ(x)(?(x) > 0,ψ(x) negationslash= 0)
)μ
(1) dydx =?(x)?
prime(x) +ψ(x)ψprime(x)
radicalbig?2(x) +ψ2(x)
(2) dydx =?
prime(x)ψ(x)?ψprime(x)?(x)
2(x) +ψ2(x)
(3) dydx =?(x)
radicalbig
ψ(x)
parenleftbigg ψprime(x)
(x)ψ(x)?
prime(x)lnψ(x)
2(x)
parenrightbigg
60
(4) dydx =
ψprime(x)
ψ(x) ln?(x)?
prime(x)
(x) lnψ(x)
(ln?(x))2 =
ψprime(x)
ψ(x)ln?(x)?
prime(x)lnψ(x)
(x)(ln?(x))2 =
log?(x)ψ(x)
bracketleftbigg ψprime(x)
ψ(x)lnψ(x)?
prime(x)
(x)ln?(x)
bracketrightbigg
8,|?4-7¤?-Y?\?w?$??Y.
)μ?s =
radicalbig
l2?r2 sin2ωt?rcosωt§v = sprime = rωsinωt? r
2ωsin2ωt
2
radicalbig
l2?r2 sin2ωt
.
9,|-?y = √1?x23x = 12?§ú{§.
)μ?yprime =? x√1?x2§K3x = 12?k =?
√3
3 §
u′¤|§?μy?
√3
2 =?
√3
3
parenleftbigg
x? 12
parenrightbigg
=x+√3y?2 = 0?
¤|{§?μy?
√3
2 =
√3parenleftbiggx? 1
2
parenrightbigg
=√3x?y = 0.
10,|-?y = e?xt?:§|LT:y =?ex21§??T:{§.
)μ?k = yprime =?e?x =?e§Kx =?1§KL(?1,e):y =?ex21§LT:{§
y?e = 1e(x+ 1)=x?ey+e2 + 1 = 0.
11,|-?y = √1?x2tY2.
)μ?k = yprime =? x√1?x2 = 0§Kx = 0§u′d-?3(0,1)?Y2§§?y = 1.
12,|-?y = 12(1 + 2x2 ±
radicalbig
1 + 4x2)tIx = U:?§.ù-?uo
)μ?yprime = 2x ± 2x√1 + 4x2§K-?3x = U?k = 2U ± 2U√1 + 4U2§u′d-?3?
:(U,12(1 + 2U2 ±
radicalbig
1 + 4U2))?§?y? 12(1 + 2U2 ±
radicalbig
1 + 4U2)) = (2U ± 2U√1 + 4U2 )(x?U)§
=2U(√1 + 4U2 ±1)x?√1 + 4U2y± 12 + 12(1?2U2)
radicalbig
1 + 4U2 = 0§d-?u?
U(
√1 + 4U2 ±1)
√1 + 4U2,12
1 + 2U2(
√1 + 4U2 ±1)2
1 + 4U2 ±
radicalBigg
1 + 4U
2(√1 + 4U2 ±1)2
1 + 4U2
.
13,y = f(x)3x0?§P?(t) = f(x0 +at)§a?~ê§|?prime(0).
)μea = 0§K?(t) = f(x0)§K?prime(0) = 0
eanegationslash= 0§K?prime(x) = lim
t→0
(x)(0)
t = limt→0
f(x0 +at)?f(x0)
t = alimt→0
f(x0 +at)?f(x0)
at = af
prime(x
0).
61
§5,9ù$?
1,|e?ê3:μ
(1) y = anxn +an?1xn?1 +···+a0§|dy(0),dy(1)
(2) y = secx+ tanx§|dy(0),dy
parenleftBigpi
4
parenrightBig
,dy(pi)
(3) y = 1a arctan xa§|dy(0),dy(a)
(4) y = 1x + 1x2§|dy(0.1),dy(0.01)
)μ
(1)?dy = [nanxn?1 + (n?1)an?1xn?2 +···+a1]dx§Kdy(0) = a1dx,dy(1) =
nsummationtext
i=1
iaidx
(2)?dy = (tanxsecx+ sec2x)dx§Kdy(0) = dx,dy
parenleftBigpi
4
parenrightBig
= (√2 + 2)dx,dy(pi) = dx
(3)?dy = dxa2 +x2dx§Kdy(0) = dxa2dx,dy(a) = dx2a2dx
(4)?y =?x+ 2x3 dx§Kdy(0.1) =?2100dx,dy(0.01) =?2010000dx
2,|e?êy = y(x)μ
(1) y = x? 12x2 + 13x3? 14x4
(2) y = x2 sinx
(3) y = x1?x2
(4) y = xlnx?x
(5) y = (1?x2)n
(6) y = √x+ lnx? 1√x
(7) y = lntanx
(8) y = sinaxcosbx
(9) y = eax cosbx
(10) y = arcsin√1?x2
)μ
(1) dy = (1?x+x2?x3)dx
(2) dy = (2xsinx+x2 cosx)dx
(3) dy = 1 +x
2
(1?x2)2dx
(4) dy = lnxdx
(5) dy =?2nx(1?x2)n?1dx
(6) dy = x+ 2
√x+ 1
x32
dx
(7) dy = 2sin2xdx
(8) dy = (acosaxcosbx?bsinaxsinbx)dx
(9) dy = eax(acosbx?bsinbx)dx
(10) dy =? x|x|√1?x2dx
3,|e?êyμ
(1) y = sin2t,t = ln(3x+ 1)
62
(2) y = ln(3t+ 1),t = sin2x
(3) y = e3u,u = 12 lnt,t = x2?2x+ 5
(4) y = arctanu,u = (lnt)2,t = 1 +x2?cotx
)μ
(1) dy = 3sin(2ln(3x+ 1))3x+ 1 dx
(2) y = 3sin2x3sin2x+ 1dx
(3) y = 3(3x
2?2)
2(x3?2x+ 5)e
3
2 ln(x
2?2x+5)dx
(4) y = 2ln(1 +x
2?cotx)(2x+ csc2x)
[1 + (ln(1 +x2?cotx))4](1 +x2?cotx)dx
4,eu,v,w?xê§|?êydyμ
(1) y = u·v·w
(2) y = u·wv2
(3) y = 1√u2 +v2
(4) y = ln√u2 +v2
(5) y = arctan uv
)μ
(1) dy = (uprime ·v·w+u·vprime ·w+u·v·wprime)dx
(2) dy = v
2(uprimew+uwprime)?2uvvprimew
v4 dx
(3) dy =? uu
prime +vvprime
(u2 +v2)32
dx(u2 +v2 > 0)
(4) dy = uu
prime +vvprime
u2 +v2 dx
(5) dy = u
primev?uvprime
u2 +v2 dx(v negationslash= 0)
63
§6,ê9?ê?§¤Lê|{
1,|eêêdydxμ
(1) x
2
a2 +
y2
b2 = 1§ù¥a,b?~ê
(2) y2 = 2px§ù¥p?~ê
(3) x2 +xy+y2 = a2§ù¥a?~ê
(4) x3 +y3?xy = 0
(5) y = x+ 12 siny
(6) x23 +y23 = a23§ù¥a?~ê
(7) y?cos(x+y) = 0
(8) y = x+ arctany
(9) y = 1?ln(x+y) +ey
(10) arctan yx = ln
radicalbig
x2 +y2
)μ
(1) 3?§üàéx|ê§?5?y′x?ê§òk2xa2 + 2yy
prime
b2 = 0§Ky
prime =?b
2x
a2y(y negationslash= 0).
(2) 3?§üàéx|ê§?5?y′x?ê§òk2yyprime = 2p§Kyprime = py(y negationslash= 0).
(3) 3?§üàéx|ê§?5?y′x?ê§òk2x+xyprime +y+ 2yyprime = 0§Kyprime =?2x+yx+ 2y.
(4) 3?§üàéx|ê§?5?y′x?ê§òk3x2 + 3y2yprime?xyprime?y = 0§Kyprime = 3x
2?y
x?3y2,
(5) 3?§üàéx|ê§?5?y′x?ê§òkyprime = 1 + y
prime
2 cosy§Ky
prime = 2
2?cosy.
(6) 3?§üàéx|ê§?5?y′x?ê§òk23x?13 + 23y?13yprime = 0§Kyprime =? 3
radicalbiggx
y.
(7) 3?§üàéx|ê§?5?y′x?ê§òkyprime+(1+yprime)sin(x+y) = 0§Kyprime =? sin(x+y)1 + sin(x+y).
(8) 3?§üàéx|ê§?5?y′x?ê§òkyprime = 1 + y
prime
1 +y2§Ky
prime = 1 +y
2
y2,
(9) 3?§üàéx|ê§?5?y′x?ê§òkyprime =?1 +y
prime
x+y +y
primeey§Kyprime = 1
(x+y)ey?x?y?1.
(10) 3?§üàéx|ê§?5?y′x?ê§òkxy
prime?y
x2 +y2 =
x+yyprime
x2 +y2§Ky
prime = x+y
x?y.
2,|eê3:êdydxμ
(1) y = cosx+ 12 siny§:
parenleftBigpi
2,0
parenrightBig
(2) yex + lny = 1§:(0,1)
)μ
(1) 3?§üàéx|ê§?5?y′x?ê§òkyprime =?sinx+ y
prime
2 cosy§Ky
prime = 2sinx
cosy?2§u′3
:
parenleftBigpi
2,0
parenrightBig
§yprime =?2.
(2) 3?§üàéx|ê§?5?y′x?ê§òkex(y +yprime) + y
prime
y = 0§Ky
prime =? y
2ex
yex + 1§u′3
:(0,1)?§yprime =?12.
64
3,|-?x32 +y32 = 163:(4,4)§ú{§.
)μ3?§üàéx|ê§?5?y′x?ê§òk32x12 + 32y12yprime = 0§Kyprime =?
radicalbiggx
y§u′y
prime|x=4
y=4
=
1§l
§?y?4 =?(x?4)§=x+y?8 = 0
{§?y?4 = x?4§=x = y.
4,|e?ê?§3¤?:êμ
(1)
braceleftbigg x = acost
y = bsint 3t =
pi
3ú
pi
4?
(2)
braceleftbigg x = t?sint
y = 1?cost §3t =
pi
2,pi?
(3)
braceleftbigg x = 1?t2
y = t?t3 §3t =
√2
2,
√3
3?
(4)
braceleftbigg x = a(t?sint)
y = a(1?cost) (a′~ê)§3t = 0,
pi
2?
)μ
(1)?xprime(t) =?asint,yprime(t) = bcost§Kdydx = y
prime(t)
xprime(t) =?
b
a cott§u′§t =
pi
3?§y
prime =?
√3b
3a?
t = pi4?§yprime =?ba
(2)?xprime(t) = 1? cost,yprime(t) = sint§Kdydx = y
prime(t)
xprime(t) =
sint
1?cost§u′§t =
pi
2?§y
prime = 1?t =
pi?§yprime = 0
(3)?xprime(t) =?2t,yprime(t) = 1? 3t2§Kdydx = y
prime(t)
xprime(t) =
3t2?1
2t §u′§t =
√2
2?§y
prime =
√2
4?t =√
3
3?§y
prime = 0
(4)?xprime(t) = a(1? cost),yprime(t) = asint§Kdydx = y
prime(t)
xprime(t) = cot
t
2§u′§t = 0?§y
primet =
pi
2?§y = 1
5,|e?ê?§êμ
(1)
braceleftbigg x = acosht
y = bsinht
(2)
braceleftbigg x = sin2t
y = cos2t
(3)
braceleftbigg x = acos3t
y = asin3t
(4)
braceleftbigg x = e2t cos2t
y = e2t sin2t
)μ
(1) dydx = y
prime(t)
xprime(t) =
asinht
bcosht =
a
b cotht
(2) dydx = y
prime(t)
xprime(t) =
2costsint
2sintcost =?1
(3) dydx = y
prime(t)
xprime(t) =
3sin2tcost
3cos2tsint =?!tant
(4) dydx = y
prime(t)
xprime(t) =
e2t(2sin2t+ 2sintcost)
e2t(2cos2t?2costsint) = tant·
sint+ cost
cost?sint
6,?
I/Nì§10o§to
4o£?4-11¤μ
(1) /\Y?§|YNèVéY?pYhCz
(2) |NèVéNì?
RCz?.
65
)μ?NèV?Nì?
R§Y?pYh'X?V = 13piR2h§?d?§R4 = h10=h = 52R§u
′
(1) V = 13pi
parenleftbigg2
5h
parenrightbigg2
h = 475pih3§l
dVdh = 425pih2?
(2) V = 13piR2 · 52R = 56piR3§l
dVdR = 52piR2.
7,?
I/Nì.t?X§§o?2arctan 34§8?p??,N§
(1) ?Nr?3§O\?Ydrdt?14?§NèO\?YdVdt′?o
(2) ?N6§NèO\?Y?24?§O\?Y′?o
)μ?NèVNr'X?V = 49pir3§V,r?′?mt?ê§ü>ét|§dVdt = 49pi(3r2)drdt=dVdt =
4
3pir
2dr
dt§K
(1) r = 3,drdt = 14?§dVdt = 3pi?
(2) ddrdt = 34pir2 dVdt§r = 6,dVdt = 24?§drdt = 12pi.
8,Ylp?18f?!.6f?
I/|ì6\5f?
/ùS.?|ì¥Y?12f§
|ì¥Y?eü?Y?1f?/?§|d?
ù¥Y?t,?Y.
)μlm?|Y?2t?¨
1 4
1?ü? 4?D?
1?ù Ctê
§1,?êVg
1,)e?a§?x?xμ
(1)?2 < 1x+ 2
(2) (x?1)(x+ 2)(x?3) < 0
(3) 1x?1 <a
(4) 0 lessorequalslant cosxlessorequalslant 12
(5)
braceleftbigg x2?16 < 0
x2?2xgreaterorequalslant 0
)μ
(1) x<?52?x>?32
a45
a27a24
0 x-1-2-3 a98a98
(2) 1 <x< 3?x<?2
a45
a27 a24a24
0 x-1-2 31 2a99 a99a99
(3) a> 0?§x< 1?x> 1 + 1a?
a45
a24a27
0 x1 1 + 1
a
a99 a99
a< 0?§1 + 1a <x< 1
a45
a27 a24
0 x11 + 1
a
a99a99
a = 0?§x< 1
a45
a24
0 x1a99
2
(4) 2kpi+ pi3 lessorequalslantxlessorequalslant 2kpi+ pi2?2kpi? pi2 lessorequalslantxlessorequalslant 2kpi? pi3(k∈Z)
a45a3a0a3a0a3a0a3a0 0 x
(5)?4 <xlessorequalslant 0?2 lessorequalslantx< 4
a45a11 a8 a11 a80 x-4 2 4a99 a99
2,y2eyéaμ
(1) |x?y|greaterorequalslant||x|?|y||
(2) |x1 +x2 +x3 +···+xn|lessorequalslant|x1|+|x2|+···+|xn|
(3) |x+x1 +···+xn|greaterorequalslant|x|?(|x1|+···+|xn|)
y2μ
(1)?|x||y|greaterorequalslantxy§K(x?y)2 greaterorequalslant (|x|?|y|)2§u′|x?y|greaterorequalslant||x|?|y||
(2) ^ê?8B{y2.
(i) n = 2?§d|x1 +x2|lessorequalslant|x1|+|x2|§(?¤á.
(ii) bn = k?(?¤á§=k|x1 +x2 +x3 +···+xk|lessorequalslant|x1|+|x2|+···+|xk|.
Kn = k+ 1?§|x1 +x2 +x3 +···+xk+1|lessorequalslant|x1 +x2 +x3 +···+xk|+|xk+1|lessorequalslant|x1|+|x2|+
···+|xk|+|xk+1|
nt?§ég,ên§|x1 +x2 +x3 +···+xn|lessorequalslant|x1|+|x2|+···+|xn|t¤á.
(3) |x+x1 +···+xn|greaterorequalslant|x|?|x1 +x2 +x3 +···+xn|greaterorequalslant|x|?(|x1|+···+|xn|)
3,)eyéa§?x?xμ
(1) |x|>|x+ 1|
(2) 2 < 1|x| < 4
(3) |x|>A
(4) |x?a|<η,η?~ê§η> 0
(5)
vextendsinglevextendsingle
vextendsinglevextendsinglex?2
x+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle> x?2
x+ 1
(6) 2 < 1|x+ 2| < 3
)μ
(1) x<?12
a45
a24
0 x-1 a98
(2)?12 <x<?14?14 <x< 12
a45
a11a8a11a8
0 x1
2-
1
2
a101a101 a101 a101
3
(3) Agreaterorequalslant 0?§x<?A?x>A
a45
a24 a27
0 xA-A a101a101
A< 0?§x∈R
(4) a?η<x<a+η
a45
a27 a24
a0 xa+ηa?η a101a101
(5) adux?2x+ 1 < 0§K?1 <x< 2
a45
a27 a24
0 x-1 1 2a98 a98
(6)?53 <x<?3252 <x<?73
a45
a7a4 a7a4
0 x-1-2-3 a101a101 a101a101
4,|e?ê9§3:t?ê?μ
(1) y = f(x) =?x+ 1x9f(?1),f(1)úf(2)?
(2) y = f(x) = √a2?x29f(0),f(a)úf
parenleftBig
a2
parenrightBig
(3) s = s(t) = 1te?t9s(1),s(2)?
(4) y = g(α) = α2 tanα9g(0),g
parenleftBigpi
4
parenrightBig
,g
parenleftBig
pi4
parenrightBig
(5) x = x(θ) = sinθ+ cosθ9x
parenleftBig
pi2
parenrightBig
,x(?pi)
(6) y = f(x) = 1(x?1)(x+ 2)9f(0),f(?1)
4
)μ
(1)?êX = (?∞,0)uniontext(0,∞)§f(?1) = 0,f(1) = 0,f(2) =?32
(2)?êX = [?|a|,|a|]§f(0) = |a|,f(a) = 0,f
parenleftBig
a2
parenrightBig
=
√3
2 |a|
(3)?ê(?∞,0)uniontext(0,∞)§s(1) = 1e,s(2) = 12e2
(4)?ê
braceleftBig
x
vextendsinglevextendsingle
vextendsinglex∈R,xnegationslash= kpi+ pi2,k∈Z
bracerightBig
§g(0) = 0,g
parenleftBigpi
4
parenrightBig
= pi
2
16,g
parenleftBig
pi4
parenrightBig
=?pi
2
16
(5)?êX = (?∞,∞)§x
parenleftBig
pi2
parenrightBig
=?1,x(?pi) =?1
(6)?êX = (?∞,?2)uniontext(?2,1)uniontext(1,+∞)§f(0) =?12,f(?1) =?12
5,|e?ê9μ
(1) y = √2 +x?x2
(2) y = √cosx
(3) y = ln
parenleftBig
sin pix
parenrightBig
(4) y = 1sinpix
)μ
(1)?êX = [?1,2]§
bracketleftbigg
0,32
bracketrightbigg
(2)?ê
bracketleftBig
2kpi? pi2,2kpi+ pi2
bracketrightBig
(k∈Z)§[0,1]
(3)?ê
parenleftbigg 1
2k+ 1,
1
2k
parenrightbigg
(k∈Z)§(?∞,0]
(4)?ê(n?1,n)(n = 0,±1,±2,···)§(?∞,?1]uniontext[1,+∞)
6,f(x) = x+ 1,?(x) = x?2§á)?§|f(x) +?(x)| = |f(x) +|?(x)|
)μd?§f(x)?(x) greaterorequalslant 0=(x+ 1)(x?2) greaterorequalslant 0§Kxgreaterorequalslant 2?xlessorequalslant?1.
7,f(x) = (|x|+x)(1?x)§|÷ve?ax?μ
(1) f(0) = 0
(2) f(x) < 0
)μ
(1)?f(x) = 0§K|x|+x = 0?1?x = 0§=xlessorequalslant 0?x = 1
(2)?|x|+xgreaterorequalslant 0§K?f(x) < 0§1?x< 0=?§=x> 1
8,?1-5L?>3|V!?>{R0ú?C>{R|¤>′.3?mS§A,Bü:m>?V?±w
¤~t.|?>6Iú?C>{R?êa.
)μd?9?n?£§V = I(R0 +R).
9,3
/NìS?,?M?§T
/Nì.′a§p?h§?M?pY′x£?1-6¤,T
M?NèVúx?m?ê'XV = V(x)§??§ú.
)μd?§V = pia2x§§[0,h]§[1,pia2h]
10.,/Y±?è′F/§X?1-7§.°2?§>??45o§CDL?Y?§|?ABCD?
èS?Yh?ê'X.
)μd?9?§S = h(h+ 2).
11,k??H?3§X^Rò?±z|¨ωlY?Yl?3S?L-?§|-?./?
lsú?mt?ê'X£?1-8¤.
)μd?9?§s = H?ωRt
parenleftbigg
t∈
bracketleftbigg
0,Hωt
bracketrightbiggparenrightbigg
12,y = f(x) =
braceleftbigg 1 +x2,x< 0
x?1,xgreaterorequalslant 0 §|f(?2),f(?1),f(0),f(1)úf
parenleftbigg1
2
parenrightbigg
.
)μd?§f(?2) = 5,f(?1) = 2,f(0) =?1,f(1) = 0,f
parenleftbigg1
2
parenrightbigg
=?12.
5
13,x(t) =
0,0 lessorequalslantt< 10
1 +t2,10 lessorequalslanttlessorequalslant 20
t?10,20 <tlessorequalslant 30
§|x(0),x(5),x(10),x(15),x(20),x(25),x(30)§?x?ùê?/.
)μd?§x(0) = 0,x(5) = 0,x(10) = 101,x(15) = 226,x(20) = 401,x(25) = 15,x(30) = 20
14,e]y′&?-tx?ê.Uìe?5?§éuIS ×2&§U&?-t§z-20?AGe]8?§?
v20±20?O?.&?-t360?±S?§á?ùêL?a§?x?§?/.
)μd?§y = f(x) =
8,0 <xlessorequalslant 20
16,20 <xlessorequalslant 40
24,40 <xlessorequalslant 60
15,óàu)ì)n?§ù?/X?1-9§ê'Xu = u(t)(0 lessorequalslanttlessorequalslant 20).
)μd?9?§u = u(t) =
braceleftbigg 1.5t,0 lessorequalslanttlessorequalslant 10
30?1.5t,10 <tlessorequalslant 20
16,e?êfú?′§oo
(1) f(x) = xx,?(x) = 1
(2) f(x) = x,?(x) = √x2
(3) f(x) = 1,?(x) = sin2x+ cos2x
)μ
(1)?f(?∞,0)uniontext(0,+∞)§?(?∞,+∞)§ùüê.
(2)?f(x) = x,?(x) = |x|§ùüê?êL?a§Kùüê.
(3)(x) = sin2x+ cos2x = 1e¤á§ùüê?.
17,y2éuêf(x) = ax + b§egCê?x = xn(n = 1,2,···)|¤?
ê§KéA?ê
yn = f(xn)(n = 1,2,···)?|¤?
ê.
y2μxm?1,xm,xm+1′xn¥3ê(2 lessorequalslantmlessorequalslantn)
aK?§2xm = xm?1 +xm+1
qyn = f(xn) = axn + b§Kym?1 = axm?1 + b,ym = axm + b,ym+1 = axm+1 + b§u′2ym =
2axm + 2b,ym+1 +ym?1 = axm+1 +b+axm?1 +b = 2axm + 2b§l
2ym = ym?1 +ym+1
qxm?1,xm,xm+1′xn¥3ê§Kym?1,ym,ym+1′yn¥3ê§u′yn = f(xn)(n =
1,2,···)?|¤?
ê.
18,XJ-?y = f(x)t^u?pu§¤?l£?1-10¤§y2?af(x1) +f(x2)2 >f
parenleftBigx1 +x2
2
parenrightBig
é
u¤kx1,x2(x1 negationslash= x2)¤á£kt?A5?ê?à?ê¤.
y2μ3-?t?ü:A(x1,f(x1)),B(x2,f(x2))§?AB§ù¥:C(xC,yC)§Kf(x1) + f(x2) =
2yC,x1 +x2 = 2xC
q-?txD = x1 +x22 ¤é:p?I?yD = f
parenleftBigx1 +x2
2
parenrightBig
§KxC = xD
q-?y = f(x)t^u?pu§¤?l?x1,x2?u?l:§KyC > yD=f(x1) +f(x2)2 >
f
parenleftBigx1 +x2
2
parenrightBig
éu¤kx1,x2(x1 negationslash= x2)¤á.
a45
a54
a28
a28
a28
a28
a28
a28
a28a28
0 x1 x2 x
A
C
B
xD
y
f(x)
19,y2eê3¤mS′üNO\?êμ
(1) y = x2(0 lessorequalslantx< +∞)
(2) y = sinx
parenleftBig
pi2 lessorequalslantxlessorequalslant pi2
parenrightBig
y2μ
6
(1) 0 lessorequalslantx1 <x2
Ky2?y1 = x22?x21 = (x2 +x1)(x2?x1) > 0§u′?êy = x20 lessorequalslantxüNO\.
(2) ?pi2 lessorequalslantx1 <x2 lessorequalslant pi2
Ky2?y1 = sinx2?sinx1 = 2cos x2 +x12 sin x2?x12
q?pi2 lessorequalslant x1 < x2 lessorequalslant pi2§K?pi2 < x1 +x22 < pi2,0 < x2x
1
2 lessorequalslant pi2§u′cos x1 +x22 > 0,sin x2?x12 >
0§l
y2?y1 > 0=?êy = sinx?pi2 lessorequalslantxlessorequalslant pi2üNO\.
20,y2e?ê3¤mS′üN~?êμ
(1) y = x2(?∞<xlessorequalslant 0)
(2) y = cosx(0 lessorequalslantxlessorequalslantpi)
y2μ
(1) 0 lessorequalslantx1 <x2
Ky2?y1 = x22?x21 = (x2 +x1)(x2?x1) < 0§u′?êy = x2xlessorequalslant 0üN~.
(2) 0 lessorequalslantx1 <x2 lessorequalslantpi
Ky2?y1 = cosx2?cosx1 =?2sin x2 +x12 sin x2?x12
q0 lessorequalslant x1 < x2 lessorequalslant pi§K0 < x1 +x22 < pi,0 < x2x
1
2 lessorequalslant pi2§u′sin x1 +x22 > 0,sin x2?x12 > 0§l
y2?y1 < 0=?êy = cosx0 lessorequalslantxlessorequalslantpiüN~.
21,e?ê?ó5μ
(1) y = x+x2?x5
(2) y = a+bcosx
(3) y = x+ sinx+ex
(4) y = xsin 1x
(5) y = sgnx =
1,x> 0?
0,x = 0?
1 x< 0?
(6) y =
2
x2,
1
2 <x< +∞?
sinx2,? 12 lessorequalslantxlessorequalslant 12?
1
2x
2,?∞<x<?1
2?
)μ
(1)?y = f(x) = x+x2?x5§Kf(?x) =?x+x2 +x5§f(?x) negationslash= f(x),f(?x) negationslash=?f(x)§u′d?ê
′ó?ê.
(2)?y = f(x) = a+bcosx§Kf(?x) = a+bcos(?x) = a+bcosx = f(x)§u′d?ê′ó?ê.
(3)?y = f(x) = x+sinx+ex§Kf(?x) =?x?sinx+e?x§f(?x) negationslash= f(x),f(?x) negationslash=?f(x)§u′d
ê′ó?ê.
(4)?y = f(x) = xsin 1x§Kf(?x) =?xsin 1?x = xsin 1x = f(x)§u′d?ê′ó?ê.
(5)?y = f(x) =
1,x> 0?
0,x = 0?
1 x< 0?
§
Kf(?x) =
1,?x> 0?
0,?x = 0?
1 ?x< 0?
=
1,x> 0?
0,x = 0?
1 x< 0?
=?f(x)§u′d?ê′ê.
7
(6)?y = f(x) =
2
x2,
1
2 <x< +∞?
sinx2,? 12 lessorequalslantxlessorequalslant 12?
1
2x
2,?∞<x<?1
2?
§
Kf(?x) =
2
(?x)2,
1
2 <?x< +∞?
sin(?x)2,? 12 lessorequalslant?xlessorequalslant 12?
1
2(?x)
2,?∞<?x<?1
2?
=
1
2x
2,1
2 <x< +∞?
sinx2,? 12 lessorequalslantxlessorequalslant 12?
2
x2,?∞<x<?
1
2?
§
f(?x) negationslash= f(x),f(?x) negationslash=?f(x)§u′d?ê′ó?ê.
22,áyü?ó?ê|è′ó?ê§üê|è′ê§êó?ê|è′ê.
y2μf1(x),f2(x)3(?a,a)(a > 0)Só?ê§g1(x),g2(x)3(?a,a)(a > 0)S
ê§F1(x) = f1(x)f2(x),F2(x) = g1(x)g2(x),F3(x) = f1(x)f2(x)
Kf1(?x) = f1(x),f2(?x) = f2(x),g1(x) =?g1(x),g2(?x) =?g2(x)§u′
F1(?x) = f1(?x)f2(?x) = f1(x)f2(x) = F1(x)
F2(?x) = g1(?x)g2(?x) = (?g1(x))(?g2(x)) = g1(x)g2(x) = F2(x)
F3(?x) = f1(?x)g1(?x) = f1(x)(?g1(x)) =?f1(x)g1(x) =?F3(x)
l
F1(x)′ó?ê?F2(x)′ó?ê?F3(x)′ê.
23,f(x)3(?∞,+∞)Sê§y2F1(x) ≡f(x) +f(?x)′ó?ê§F2(x) ≡f(x)?f(?x)′?
ê.?éAue?êF1(x),F2(x)μ
(1) y = ax
(2) y = (1 +x)n
y2μ?F1(?x) = f(?x) +f(x) = F1(x)§KF1(x) = f(x) +f(?x)′ó?ê
qF2(?x) = f(?x)?f(x) =?F2(x)§KF2(x) = f(x)?f(?x)′ê.
(1) F1(x) = f(x) +f(?x) = ax +a?x,F2(x) = f(x)?f(?x) = ax?a?x
(2) F1(x) = f(x) +f(?x) = (1 +x)n + (1?x)n,F2(x) = f(x)?f(?x) = (1 +x)n?(1?x)n
24,`2e?ê=
′±ê§?|?±?μ
(1) y = sin2x
(2) y = sinx2
(3) y = sinx+ 12 sin2x
(4) y = cos pi4x
(5) y = |sinx|+|cosx|
(6) y = √tanx
(7) y = x?[x]
(8) y = sinnpix
)μ
(1)?y = sin2x = 12? 12 cos2x§KT = 2pi2 = pi
(2) by = sinx2±ê?T = ω> 0
a±ê§éx ∈ (?∞,+∞)§ksin(x + ω)2 = sinx2§AOéx = 0?AT¤á§
Ksinω2 = 0§u′ω2 = kpi,ω = √kpi(k∈Z+)
qéx = √2ω = √2kpi?¤á§sin(√2ω + ω)2 = sinω2 = 0§K(√2 + 1)2kpi = npi(n ∈ Z+)§u
′(√2 + 1)2 = kn(k,n∈Z+)
q(√2 + 1)2 = 3 + 2√2 ∈Q?§
kn ∈Q+§Kb?¤á§=?êy = sinx2?′±ê.
(3)?y1 = sinxT = 2pi?y2 = 12 sin2xT = pi§Ky = sinx+ 12 sin2xT = 2pi.
(4) T = 2pipi
4
= 8
8
(5)?f(x) = |sinx|+|cosx|,f
parenleftBig
x+ pi2
parenrightBig
=
vextendsinglevextendsingle
vextendsinglesin
parenleftBig
x+ pi2
parenrightBigvextendsinglevextendsingle
vextendsingle+
vextendsinglevextendsingle
vextendsinglecos
parenleftBig
x+ pi2
parenrightBigvextendsinglevextendsingle
vextendsingle= |cosx|+|sinx| = f(x)
a2§y = |sinx|+|cosx|T = pi2.
(6)?f(x) = tanxT = pi§Ky = √tanxT = pi.
(7)?y = x?[x] = (x)§Ky = x?[x]T = 1.
(8) T = 2pinpi = 2n
9
§2,Eü?êúê
1,e?êU?¤Eü?êy = f(?(x))§XJU
¤KdEü?êúμ
(1) y = f(u) = 2u,u =?(x) = x2
(2) y = f(u) = lnu,u =?(x) = 1?x2
(3) y = f(u) = u2 +u3,u =?(x) =
braceleftbigg 1,x?knê?
1,xnê?
(4) y = f(u) = 2§U1§u =?(x)§X§U2
(5) y = f(u) = √u,u =?(x) = cosx
)μ
(1)?y = f(u) = 2u(?∞,+∞)§u =?(x) = x2[0,+∞)
Kd?êU¤Eü?êy = 2x2§§(?∞,+∞)§[1,+∞)
(2)?y = f(u) = lnu(0,+∞)§u =?(x) = 1?x2(?∞,1]
Kd?êU¤Eü?êy = ln(1?x2)§§(?1,1)§(?∞,0]
(3)?y = f(u) = u2 +u3(?∞,+∞)§
u =?(x) =
braceleftbigg 1,x?knê?
1,xnê? {?1,1}
Kd?êU¤Eü?êy =
braceleftbigg 2,x?knê?
0,xnê? §§(?∞,+∞)§{0,2}
(4)?y = f(u) = 2U1§u =?(x)U2
U1intersectiontextU2 negationslash= φ?§d?êU¤Eü?êy = 2§§à?N?ê
§{2}?
U1intersectiontextU2 = φ?§d?ê?U¤Eü?ê
(5)?y = f(u) = √u[0,+∞)§u =?(x) = cosx[?1,1]
Kd?êU¤Eü?êy = √cosx§§
bracketleftBig
2kpi? pi2,2kpi+ pi2
bracketrightBig
(k = 0,±1,±2,···)§
[0,1]
2,f(x) = ax2 +bx+c§y2f(x+ 3)?3f(x+ 2) + 3f(x+ 1)?f(x) ≡ 0
y2μd?§
f(x+3)?3f(x+2)+3f(x+1)?f(x) = a(x+3)2 +b(x+3)+c?3[a(x+2)2 +b(x+2)+c]+3[a(x+1)2 +
b(x+1)+c]?(ax2 +bx+c) = a[(x+3)2?x2]+b(x+3?x)?3a[(x+2)2?(x+1)2]?3b[x+2?(x+1)] =
6ax+ 9a+ 3b?3a(2x+ 3)?3b≡ 0
3,(1) y = f(x) = a+bx+ cx§|f
parenleftbigg2
x
parenrightbigg
(2) y = f(x) = x2 ln(1 +x)§|f(e?x)
(3) y = f(x) = √1 +x+x2§|f(x2)9f(?x2)
(4) y = f(t) = 1√a2 +x2§|f(atanx)
)μ
(1)?y = f(x) = a+bx+ cx§Kf
parenleftbigg2
x
parenrightbigg
= a+ 2bx + c2
x
= a+ 2bx + cx2 = cx
2 + 2ax+ 4b
2x
(2)?y = f(x) = x2 ln(1 +x)§Kf(e?x) = (e?x)2 ln(1 +e?x) = ln(e
x + 1)?x
e2x
(3)?y = f(x) = √1 +x+x2§Kf(x2) = √1 +x2 +x4,f(?x2) = √1?x2 +x4
(4)?y = f(t) = 1√a2 +x2§Kf(atanx) = 1radicalbiga2 + (atanx)2 = 1√a2 sec2x = 1|asecx|
4,ef(x) = x2,?(x) = 2x§|f(?(x))9?(f(x)).
)μ?f(x) = x2,?(x) = 2x§Kf(?(x)) = (2x)2 = 22x = 4x,?(f(x)) = 2x2
5,e?(x) = x3 + 1§|?(x2),(?(x))29?(?(x)).
)μ(x) = x3 + 1§K
(x2) = (x2)3 +1 = x6 +1,(?(x))2 = (x3 +1)2 = x6 +2x3 +1,?(?(x)) = (x3 +1)3 +1 = x9 +3x6 +3x3 +2
10
6,f(x) = 11?x§|f(f(x)),f(f(f(x))),f
parenleftbigg 1
f(x)
parenrightbigg
.
)μ?f(x) = 11?x§K
f(f(x)) = 1
1? 11?x
= x?1x,f(f(f(x))) = 1
1? 1
1? 11?x
= 1
1? x?1x
= x,f
parenleftbigg 1
f(x)
parenrightbigg
= 11?(1?x) =
1
x
7,|e?êê9êμ
(1) y = x2(?∞<xlessorequalslant 0)
(2) y = √1?x2(?1 lessorequalslantxlessorequalslant 0)
(3) y = sinx
parenleftbiggpi
2 lessorequalslantxlessorequalslant
3
2pi
parenrightbigg
(4) y =
x,?∞<x< 1?
x2,1 lessorequalslantxlessorequalslant 4?
2x,4 <x< +∞?
)μ
(1)?y = x2(?∞<xlessorequalslant 0)§Kx =?√y(0 lessorequalslanty< +∞)§l
d?êê?y =?√x(0 lessorequalslanty< +∞)
(2)?y = √1?x2(?1 lessorequalslantxlessorequalslant 0)§Kx =?radicalbig1?y2(0 lessorequalslanty lessorequalslant 1)§l
d?êê?y =?√1?x2(0 lessorequalslant
xlessorequalslant 1)
(3)?y = sinx
parenleftbiggpi
2 lessorequalslantxlessorequalslant
3
2pi
parenrightbigg
§Kx = pi? arcsiny(?1 lessorequalslant y lessorequalslant 1)§l
d?êê?y = pi?
arcsinx(?1 lessorequalslantxlessorequalslant 1)
(4)?y =
x,?∞<x< 1?
x2,1 lessorequalslantxlessorequalslant 4?
2x,4 <x< +∞?
§Kx =
y,?∞<y< 1?√
y,1 lessorequalslanty lessorequalslant 16?
log2y,16 <x< +∞?
§l
d?êê
y =
x,?∞<x< 1?√
x,1 lessorequalslantxlessorequalslant 16?
log2x,16 <x< +∞?
.
11
§3,?D?ê
1,re3[0,1)t?êò??¢?t§|§¤?±1?±??êμ
(1) y = x2
(2) y = sinx
(3) y = ex
)μ
(1) ò? ?ê?y = (x?n)2(nlessorequalslantx<n+ 1,n∈Z)
(2) ò? ?ê?y = sin(x?n)(nlessorequalslantx<n+ 1,n∈Z)
(3) ò? ?ê?y = ex?n(nlessorequalslantx<n+ 1,n∈Z)
2,re3[0,+∞)t?êò??¢?t§(a)|§?¤ê?(b)|§?¤?ó?êμ
(1) y = x2
(2) y = sinx
)μ
(1) ò? ?ê?μ
(a) f(x) =
braceleftbigg x2,xgreaterorequalslant 0
x2,x< 0
(b) f(x) = x2
(2) ò? ?ê?μ
(a) f(x) = sinx
(b) f(x) = sin|x|
3,?e?ê?/μ
(1) y = sgncosx
(2) y = [x]?2
bracketleftBigx
2
bracketrightBig
)μ
(1)
a45
a54
0 pi x-pi
y
1
-1
a113a113 a113a113
a98a98
a98 a98
a98
a98
a98
(2)
a45
a54
0 1 2 3-1-2-3 x
y
1a99 a98
a98 a98a98a98 a98
4,êy = (x)?/.
)μ
a45
a54
a0
a0a0
a0
a0a0
a0
a0a0
a0a0
a0a0
a0
a0a0
a0
a0a0a0
0 1 2 3-1-2-3 x
y
1a99 a98a98 a98a98a98a98
5,êy = [x]?x?/.
)μ
a45a54
a64
a64a64
a64
a64a64
a64
a64a64
a64a64a64
a64a64
a64
a64a64
a64
a64a64a64a64
0 1 2 3-1-2-3 x
y
-1a99 a98a98 a98a98a98a98
12
6,ê′^e{μ3z?mn lessorequalslant x < n + 1(ù¥n?ê)Sf(x)′?5?f(n) =
1,f
parenleftbigg
n+ 12
parenrightbigg
= 0§á?d?ê?/.
)μ
a45
a54
a1
a1
a1
a1a1
a1
a1
a1
a1a1
a1
a1
a1
a1a1
a1a1a1
a1
a1
a1a1
a1
a1
a1
a1a1
a1
a1
a1
a1a1a1a1
0 1 2 3-1-2-3 x
y
1
-1
a99 a98a98 a98a98a98a98
7,êy = |sinx+ 2cosx|?/.
)μ
a45
a54
0 pi
2
pi?pi
2
pi x
y
√5
-1
8,e??êf(x) = tanx§?e?ê?/μ
(1) y = f(2x)
(2) y = f(kx+b)(knegationslash= 0)
(3) y = f
parenleftBigx
2
parenrightBig
1
)μ
(1)
a45
a54
0 pi
4
pi
2
3pi
4-
pi
4-
pi
2-
3pi
4
x
y
(2) (k,b> 0)
13
a45
a54
0 pi?2b2k
pi?b
k 3pi?2b
2k
-bk
-pi+2b2k-pi+bk x
y
(3)
a45
a54
0 2pipi
-pi
-2pi x
y
9,e??êy = f(x)?/§êy1 = |f(x)|,y2 = f(?x),y3 =?f(?x)?/§?`2y1,y2,y3?/
y?/'X.
)μy = f(x)?/Xeμ
a45
a54
0 x
y
Ky1?/?μ
a45
a54
0 x
y
Ky2?/?μ
a45
a54
0 x
y
Ky3?/?μ
a45
a54
0 x
y
y1?/f(x) < 0y?/'ux?é?§f(x) > 0y?/??
y2?/?y?/'uy?é?§
y3?/?y?/'u:é?§
14
10,e?f(x),g(x)?/§áêy = 12{f(x)+g(x)+|f(x)?g(x)|}?/§?`2y?/?f(x),g(x)?
/'X.
)μy = max{f(x),g(x)}
a45
a54
0 x
y
g(x) f(x)
11,éu3[0,pi]t?êy = x§kr§ò?[0,2pi]|§'ux = pi?é?§, 2r?ò?[0,2pi]t?
êò??¢?t|?ê?±2pi?±??ê.
)μ¤|?ê?:f(x) =
x,x∈ [0,pi]
2pi?x,x∈ [pi,2pi]
x?2npi,x∈ [2npi,(2n+ 1)pi](n = ±1,±2,···)
2npi?x,x∈ [(2n?1)pi,2npi](n = 0,?1,±2,···)
= pi
vextendsinglevextendsingle
vextendsinglexpi?2
bracketleftBigx+pi
2pi
bracketrightBigvextendsinglevextendsingle
vextendsingle
a45
a54
a0
a0
a0
a0a0a64a64
a64
a64a64
a64
a64
a64
a64a64a0a0
a0
a0a0
0 pi?pi 2pi
-pi
-2pi x
y
pi
15
1ù 4Y
§1,ê4?út
1,?eêco?μ
(1) xn = 13n sinn3
(2) xn = m(m?1)···(m?n+ 1)n! xn
(3) xn = 1√n2 + 1 + 1√n2 + 2 +···+ 1√n2 +n
(4) x1 = a> 0,y1 = b> 0,xn+1 = √xnyn,yn+1 = xn +yn2
(5) x2n = 1 + 12 +···+ 1n (n = 1,2,3,···)
x2n+1 = 1n (n = 1,2,···)
):
(1) x1 = 13 sin1,x2 = 16 sin8,x3 = 19 sin27,x4 = 112 sin64
(2) x1 = mx,x2 = m(m?1)2 x2,x3 = m(m?1)(m?2)6 x3,
x4 = m(m?1)(m?2)(m?3)24 x4
(3) x1 = 1√2,x2 = 1√5 + 1√6,x3 = 1√10 + 1√11 + 1√12,
x4 = 1√17 + 1√18 + 1√19 + 1√20
(4) x1 = a,x2 = √ab,x3 =
radicalbigg√
aba+b2,
x4 = 8√ab· 4
radicalbigga+b
2 ·
√a+√b
2
y1 = b,y2 = a+b2,y3 = (
√a+√b)2
4,
y4 = (
√a+√b)2
4 +
4√abradicalbig2(a+b)
16
(5) x2 = 1,x3 = 1,x4 = 32,x5 = 12
2,Uy2±eêtμ
(1) n+ 1n2 + 1
(2) sinnn
(3) n+ (?1)
n
n2?1
(4) 1n!
(5) 1n? 12n + 13n?···+ (?1)n+1 1n2
(6) (?1)n(0.999)n
(7) 1n +e?n
16
(8) e
n
n
(9) √n+ 1?√n
(10) 1 + 2 + 3 +···+nn3
y2:
(1) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglen+ 1
n2 + 1?0
vextendsinglevextendsingle
vextendsinglevextendsingle = n+ 1
n2 + 1 <
2n
n2 =
2
n§?|
vextendsinglevextendsingle
vextendsinglevextendsinglen+ 1
n2 + 1?0
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§2
n < ε=?"
N =
bracketleftbigg2
ε
bracketrightbigg
+ 1,Kn>N?§
vextendsinglevextendsingle
vextendsinglevextendsinglen+ 1
n2 + 1?0
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§¤±n+ 1
n2 + 1 → 0(n→∞)
(2) é?ε> 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglesinn
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsinglesinn
n
vextendsinglevextendsingle
vextendsinglevextendsinglelessorequalslant 1
n§?|
vextendsinglevextendsingle
vextendsinglevextendsinglesinn
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle<ε§1
n <ε=?"N =
bracketleftbigg1
ε
bracketrightbigg
+ 1§
Kn>N?§
vextendsinglevextendsingle
vextendsinglevextendsinglesinn
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§¤±sinn
n → 0(n→∞)
(3) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglen+ (?1)n
n2?1?0
vextendsinglevextendsingle
vextendsinglevextendsingle = n+ (?1)n
n2?1 <
n+ 1
n2?1 =
1
n?1§?|
vextendsinglevextendsingle
vextendsinglevextendsinglen+ (?1)n
n2?1?0
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§?
1n?1 < ε=?"N =
bracketleftbigg1
ε
bracketrightbigg
+ 1§Kn > N?§
vextendsinglevextendsingle
vextendsinglevextendsinglen+ (?1)n
n2?1?0
vextendsinglevextendsingle
vextendsinglevextendsingle< εo¤á§¤±n+ (?1)n
n2?1 →
0(n→∞)
(4) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle 1
n!?0
vextendsinglevextendsingle
vextendsinglevextendsingle = 1
n! <
1
n§?|
vextendsinglevextendsingle
vextendsinglevextendsingle 1
n!?0
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§1
n < ε=?"N =
bracketleftbigg1
ε
bracketrightbigg
+ 1§K
n>N?§
vextendsinglevextendsingle
vextendsinglevextendsingle 1
n!?0
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§¤± 1
n! → 0(n→∞)
(5) Sn = 1n? 12n + 13n?···+ (?1)n+1 1n2
é?ε> 0§duSn = 1n(1? 12 + 13?···+ (?1)n+1 1n)
δn = 1?12+13?···+(?1)n+1 1n§KSn = δnnn = 2k+1?§k0 <δn = 1?(12?13)?(14?15)?···?
( 12k? 12k+ 1) < 1?n = 2k?§k0 <δn = 1?(12?13)?(14?15)?···?( 12k?2? 12k?1)? 12k < 1"
o?§k0 <δn < 1l
|Sn?0| = Sn = δnn < 1n?||Sn?0|<ε§1n <ε=?"N =
bracketleftbigg1
ε
bracketrightbigg
+1§
Kn>N?§|Sn?0|<εo¤á§¤±1n? 12n + 13n?···+ (?1)6n+ 1 1n2 → 0(n→∞)
(6) é?ε > 0§dun > lnn§Ken > n§u′e?n < 1n§l
vextendsinglevextendsingle
vextendsinglevextendsingle1
n +e
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle = 1
n + e?n <
2
n§?
||(?1)n(0.999)n?0|<ε§(0.999)n <ε=?"N =
bracketleftbigg
2500ln 1ε
bracketrightbigg
+1§Kn>N?§|(?1)n(0.999)n?
0|<εo¤á§¤±(?1)n(0.999)n → 0(n→∞)
(7) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle1
n +e
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle = 1
n! <
1
n§?|
vextendsinglevextendsingle
vextendsinglevextendsingle1
n +e
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle< ε§2
n < ε=?"N =
bracketleftbigg2
ε
bracketrightbigg
+
1§Kn>N?§
vextendsinglevextendsingle
vextendsinglevextendsingle1
n +e
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§¤±1
n +e
n → 0(n→∞)
(8) é?ε > 0§due?n < e0 = 1§K
vextendsinglevextendsingle
vextendsinglevextendsinglee?n
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle = e?n
n <
1
n§?|
vextendsinglevextendsingle
vextendsinglevextendsinglee?n
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§1
n < ε=?"
N =
bracketleftbigg1
ε
bracketrightbigg
+ 1§Kn>N?§
vextendsinglevextendsingle
vextendsinglevextendsinglee?n
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§¤±e?n
n → 0(n→∞)
(9) é?ε> 0§du|√n+ 1?√n?0| = 1√n+ 1 +√n < 12√n§?||√n+ 1?√n?0|<ε§ 12√n <
ε=?"N =
bracketleftbigg 1
4ε2
bracketrightbigg
+1§Kn>N?§|√n+ 1?√n?0|<εo¤á§¤±√n+ 1?√n→ 0(n→
∞)
(10) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle1 + 2 + 3 +···+n
n3?0
vextendsinglevextendsingle
vextendsinglevextendsingle = n+ 1
2n2 <
2n
2n2 =
1
n§?|
vextendsinglevextendsingle
vextendsinglevextendsingle1
n?0
vextendsinglevextendsingle
vextendsinglevextendsingle< ε§1
n < ε=?"
N =
bracketleftbigg1
ε
bracketrightbigg
+ 1§Kn > N?§
vextendsinglevextendsingle
vextendsinglevextendsingle1 + 2 + 3 +···+n
n3?0
vextendsinglevextendsingle
vextendsinglevextendsingle < εo¤á§¤±1 + 2 + 3 +···+n
n3 →
0(n→∞)
17
3,T~`2e'ut′μ
(1) éε> 0§3N§n>N?§¤áxn <ε?
(2) éε> 0§3xn§||xn|<ε.
):
(1) ~Xμê{?1 + (?1)n+1}(?{?n})={0,?2,0,?2,···} (?{?1,?2,?3,···})÷vt?^?§?′
t?
(2) ~Xμê{1,12,1,13,···,1,1n,···}÷vt?^?§?′t"
4,Uy2μ
(1) lim
n→∞
3n2 +n
2n2?1 =
3
2
(2) lim
n→∞
(0.
nbracehtipdownleft bracehtipuprightbracehtipupleft bracehtipdownright
99···9) = 1
(3) lim
n→∞
√n2 +n
n = 1
(4) xn = 11·2 + 12·3 +···+ 1(n?1)·n → 1(n→∞)
(5) lim
n→∞
rn = 1§d?rn =
n?1
n n?óên+ 1
n nê
(6) lim
n→∞
rn = 1§d?rn =
3 n = 3k(k = 1,2,3,···)
3n+ 1
n n = 3k+ 1
2 + 1 +n3?√n+n n = 3k+ 2
y2μ
(1) é?ε> 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle3n2 +n
2n2?1?
3
2
vextendsinglevextendsingle
vextendsinglevextendsingle = 2n+ 3
4n2?2 <
4(n+ 1)
4(n+ 1)(n?1) =
1
n?1(n greaterorequalslant 2)§?|
vextendsinglevextendsingle
vextendsinglevextendsingle3n2 +n
2n2?1?
3
2
vextendsinglevextendsingle
vextendsinglevextendsingle<
ε§ 1n?1 < ε=?"N = max(
bracketleftbigg1
ε
bracketrightbigg
+ 1,2),Kn > N?§
vextendsinglevextendsingle
vextendsinglevextendsingle3n2 +n
2n2?1?
3
2
vextendsinglevextendsingle
vextendsinglevextendsingle < εo¤á§¤
±3n
2 +n
2n2?1 →
3
2(n→∞)
(2) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle0.
nbracehtipdownleft bracehtipuprightbracehtipupleft bracehtipdownright
99···9?1
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle = (0.1)n =
1
10n§?|
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle0.
nbracehtipdownleft bracehtipuprightbracehtipupleft bracehtipdownright
99···9?1
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle< ε§
1
10n < ε=?"N =
bracketleftbigg
lg 1ε
bracketrightbigg
+ 1,Kn>N?§
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle0.
nbracehtipdownleft bracehtipuprightbracehtipupleft bracehtipdownright
99···9?1
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§¤±0.
nbracehtipdownleft bracehtipuprightbracehtipupleft bracehtipdownright
99···9 → 1(n→∞)
(3) é?ε> 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle
√n2 +n
n?1
vextendsinglevextendsingle
vextendsinglevextendsingle =
√n2 +n?n
n =<
1√
n2 +n+n <
1
2n§?|
vextendsinglevextendsingle
vextendsinglevextendsingle
√n2 +n
n?1
vextendsinglevextendsingle
vextendsinglevextendsingle<ε§?
12n <ε=?"N =
bracketleftbigg 1
2ε
bracketrightbigg
+ 1,Kn>N?§
vextendsinglevextendsingle
vextendsinglevextendsingle
√n2 +n
n?1
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§¤±
√n2 +n
n → 1(n→
∞)
(4) é?ε> 0§duxn = 1? 12 + 12? 13 +···+ 1n?1? 1n = 1? 1n§K|xn?1| = 1n§?||xn?1|<ε§
1n <ε=?"N =
bracketleftbigg1
ε
bracketrightbigg
+ 1,Kn>N?§|xn?1|<εo¤á§¤±xn → 1(n→∞)
(5) é?ε> 0§du|rn?1| =
vextendsinglevextendsingle
vextendsinglevextendsinglen±1
n?1
vextendsinglevextendsingle
vextendsinglevextendsingle = 1
n§?||rn?1| <ε§
1
n <ε=?"N =
bracketleftbigg1
ε
bracketrightbigg
+ 1,K
n>N?§|rn?1|<εo¤á§¤±rn → 1(n→∞)
(6) é?ε > 0§du|r3k?3| = 0,|r3k+1?3| = 1n,|r3k+2?3| =
√n?2
3?√n+n =
n?4
n√n+n+√n+ 6 <
n
n√n =
1√
n§?||rn?3| < ε§
1
n < ε?
1√
n < ε=?"N = max
parenleftbiggbracketleftbigg1
ε
bracketrightbigg
+ 1,
bracketleftbigg 1
ε2
bracketrightbigg
+ 1
parenrightbigg
,K
n>N?§|rn?3|<εo¤á§¤±rn → 3(n→∞)
18
5,(1) Uy2§ean →a(n→∞)§Kég,êk§an+k →a(n→∞)
(2) Uy2§ean →a(n→∞)§K|an|→|a|.q′?¤áo
(3) e|an|→ 0§áˉan →a′¤áooo
y2μ
(1) duan → a(n → ∞)§é?ε > 0,?N ∈ Z+§n > N?§|an?a| < ε§Ké?k ∈ Z+,n + k >
N?§|an+k?a| < ε§u′é?ε > 0,?N ∈ Z+§n + k > N?§|an+k?a| < ε§l
an+k →
a(n→∞)
triangled(?`2μKêc?k§K?ù5"
(2) (i) duan → a§é?ε > 0,?N ∈ Z+§n > N?§|an?a| < ε.qvextendsinglevextendsingle|an|?|a|vextendsinglevextendsingle< |an?a|§u′
é?ε> 0,?N ∈Z+§n>N?§vextendsinglevextendsingle|an|?|a|vextendsinglevextendsingle<ε¤á§=|an|→|a|(n→∞
(ii)¤á"
~μ
(a)?¤áμan = (?1)n§K|an|→ 1§
an?4
(b) ¤áμan = 1n§K|an|→ 0,an → 0
(3) du|an| → 0§é?ε > 0,?N ∈ Z+§n > N?§vextendsinglevextendsingle|an|? 0vextendsinglevextendsingle < ε§q|an? 0| = vextendsinglevextendsingle|an|? 0vextendsinglevextendsingle§u
′é?ε > 0,?N ∈ Z+§n > N?§|an? 0| < ε¤á§=an → 0(n → ∞)"l
e|an| → 0§
Kan → 0¤á"
6,Uy2§exn →a§?a>b§K3N§n>N?§¤áxn >b.
y2μduxn → a§é?ε > 0,?N ∈ Z+§n > N?§|xn? 0| < ε§=a?ε < xn < a+ε.qa > b§
a?b> 0§Kε = a?b> 0§l
N ∈Z+§n>N?§kxn >a?ε = a?(a?b) = b.=3N§
n>N?§¤áxn >b.
7,e{xnyn}§U{xn},{yn}.
)μ?U"
~μxn = (?1)n,yn = (?1)n(n = 1,2,···),xnyn ≡ 1(n = 1,2,···)§K{xnyn}§{xn},{yn}t
"e{xnyn}§?U{xn},{yn}.
8,|^4?5?9O?y2μ
(1) lim
n→∞
parenleftbigg 1
n2 +
1
(n+ 1)2 +···+
1
(2n)2
parenrightbigg
= 0
(2) lim
n→∞
parenleftbigg 1
√n2 + 1 + 1√n2 + 2 +···+ 1√n2 +n
parenrightbigg
= 1
(3) |^(1 +h)n =
nsummationtext
k=0
Cknhk = 1 +nh+ n(n?1)2 h2 +···+hn
y2μ
(i) lim
n→∞
n
an = 0(a> 1)
(ii) lim
n→∞
n5
en = 0(e≈ 2.7)
y2μ
(1) é?n∈Z+§k0 lessorequalslant 1n2 + 1(n+ 1)2 +···+ 1(2n)2 lessorequalslant n+ 1n2 §? lim
n→∞
n+ 1
n2 = 0§K limn→∞
parenleftbigg 1
n2 +
1
(n+ 1)2 +···+
1
(2n)2
parenrightbigg
=
0
(2) é?n ∈ Z+§k nn+ 1 < 1√n2 + 1 + 1√n2 + 2 + ··· + 1√n2 +n < nn = 1? lim
n→∞
n
n+ 1 = 1§
K lim
n→∞
parenleftbigg 1
√n2 + 1 + 1√n2 + 2 +···+ 1√n2 +n
parenrightbigg
= 1
(3) (i) a = 1 +h(h> 0)§du0 < nan = n(1 +h)n = n
1 +nh+ n(n1)2 h2 +···+hn
< nn(n?1)
2 h
2
=
2
(n?1)h2§q
2
h2§
1
n?1 → 0(n→∞)§K
2
(n?1)h2 → 0.l
limn→∞
n
an = 0
19
(ii) e = 1 + h(h ≈ 1.7)§du0 < n
5
en =
n5
(1 +h)n =
n5
1 +nh+C2nh2 +···+hn <
n5
C6nh6 <
720n5
(n?5)6h6§q
720
h6§
n5
(n?5)6 → 0(n→∞)§K
720n5
(n?5)6h6 → 0(n→∞)§l
limn→∞
n5
en =
0
9,|e4?μ
(1) lim
n→∞
3n3 + 2n2?n+ 1
2n3?3n2 + 2
(2) lim
n→∞
6n2?n+ 1
n3 +n2 + 2
(3) lim
n→∞
parenleftbigg
1? 1n√2
parenrightbigg
cosn
(4) lim
n→∞
1 + 12 +···+ 12n
1 + 14 +···+ 14n
(5) lim
n→∞
bracketleftBigg
(sinn!)
parenleftbiggn?1
n2 + 1
parenrightbigg10
parenleftbigg 1
1·2 +
1
2·3 +···+
1
(n?1)·n
parenrightbigg2n2 + 1
n2?1
bracketrightBigg
(6) lim
n→∞
(?2)n + 3n
(?2)n+1 + 3n+1
)μ
(1) lim
n→∞
3n3 + 2n2?n+ 1
2n3?3n2 + 2 =
3
2
(2) lim
n→∞
6n2?n+ 1
n3 +n2 + 2 = 0
(3) dun√2 → 1(n→∞)§1? n√2 → 0(n→∞)§q|cosn|lessorequalslant 1§l
lim
n→∞
parenleftbigg
1? 1n√2
parenrightbigg
cosn = 0
(4) lim
n→∞
1 + 12 +···+ 12n
1 + 14 +···+ 14n
= lim
n→∞
1?(12)n+1
1? 12
1?(14)n+1
1? 14
= 24
3
= 32
(5) du{sinn!}?k.ê§
parenleftbiggn?1
n2 + 1
parenrightbigg10
→ 0,1? 1n → 1,2n
2 + 1
n2 + 1 → 2(n→∞)§
lim
n→∞
bracketleftBigg
(sinn!)
parenleftbiggn?1
n2 + 1
parenrightbigg10
parenleftbigg 1
1·2 +
1
2·3 +···+
1
(n?1)·n
parenrightbigg2n2 + 1
n2?1
bracketrightBigg
=?2
(6) lim
n→∞
(?2)n + 3n
(?2)n+1 + 3n+1 = limn→∞
(?23 )n + 1
(?2)(?23 )n + 3
= 13
10,exn →a> 0§áyμ
(1) √xn →√a
(2)
radicalbig
a0xmn +a1xm?1n +···+am?1xn +am →radicalbiga0am +a1am?1 +···+am?1a+am
(ù¥a0am +a1am?1 +···+am?1a+am > 0)
y2μ
(1) duxn → a > 0§é?ε > 0,?N ∈ Z+§n > N?§|xn? a| < √aε§?|√xn? √a| =vextendsingle
vextendsinglevextendsingle
vextendsingle
xn?a√
xn +√a
vextendsinglevextendsingle
vextendsinglevextendsingle < |xn?a|√
a < ε§=ét?ε > 0,?N ∈ Z
+§n > N?§|√xn? √a| < ε§l
√xn →√a(n→∞)
20
(2) duxn →a(n→∞)§a0xmn +a1xm?1n +···+am?1xn+am →a0am+a1am?1+···+am?1a+am > 0§
Ka(1)radicalbig
a0xmn +a1xm?1n +···+am?1xn +am →radicalbiga0am +a1am?1 +···+am?1a+am
11,éê{xn}§ex2k →a(k→∞),x2k+1 →a(k→∞)§y2μxn →a(n→∞)
y2μ?ε> 0§?x2k →a(n→∞)§?K1 ∈Z+§|k>K1?§|x2k?a|<ε¤á"
q?x2k+1 →a(n→∞)§?K2 ∈Z+§|k>K2?§|x2k+1?a|<ε¤á"
N = max{2K1,2K2 + 1}§Kn>N?§en?óê§n = 2k>N greaterorequalslant 2K1,k>K1,|xn?a| = |x2k?a|<
ε§
enê§n = 2k+ 1 >N greaterorequalslant 2K2 + 1,k>K2,|xn?a| = |x2k+1?a|<ε§
dxn →a(n→∞)
12,|^üNk.7k4?§y2 lim
n→∞
xn3§?|?§μ
(1) x1 = √2,···,xn = √2xn?1
(2) x0 = 1,x1 = 1 + x01 +x
0
,···,xn+1 = 1 + xn1 +x
n
y2μ
(1) w,x1 < x2§bxn?1 < xn§Kxn = √2xn?1 < √2xn§d8B{§{xn}′üNO\§qxn =√
2xn?1§x2n = 2xn1 lessorequalslant 2xn§u′xn lessorequalslant 2§={xn}dt."l
lim
n→∞
xn3§P lim
n→∞
xn = l§
3x2n = 2xn?1ü>-n→∞§l2 = 2l§)?l = 2§= lim
n→∞
xn = 2"
(2) w,xn greaterorequalslant 1§k^?xn = 1 + xn?11 +x
n?1
= 2? 11 +x
n?1
< 2§{xn}k."qx1 = 1 + x01 +x
0
=
1 + 11 + 1 = 32 > 1 = x0§bxn1 < xn§Kxn = 2? 11 +x
n?1
< 2? 11 +x
n
= xn+1§d
8B{§{xn}′üNO\"l
lim
n→∞
xn3§P lim
n→∞
xn = l§3xn = 2? 11 +x
n?1
ü>-
n → ∞§l = 2? 11 +l§=l2 = 1 + l§)l1 = 1 +
√5
2,l2 =
1?√5
2 £?üK?§¤§
= lim
n→∞
xn = 1 +
√5
2 "
13,ex1 = a> 0,y1 = b> 0(a<b),xn+1 = √xnyn,yn+1 = xn +yn2 §y2μ lim
n→∞
xn = lim
n→∞
yn.
y2μdu√xnyn lessorequalslant xn +yn2?da??=xn = yn§xn+1 lessorequalslant yn+1ò¤á?=xn =
yn.q0 <a<b§x1 <y1§Kd4íúa§xn+1 <yn+1?xn > 0,yn > 0(n∈Z+).
xn+1 = √xnyn >
√x
nxn = xn,yn+1 =
xn +yn
2 <
yn +yn
2 = yn§Kxn <xn+1 <yn+1 <yn.qdx1 = a> 0,y1 = b> 0§
a < xn < xn+1 < yn+1 < yn < b§`2{xn}?{yn}?′üNk.ê§l
{xn},{yn}tk4?§
lim
n→∞
xn = α,lim
n→∞
yn = β§qdxn+1 = √xnyn§x2n+1 = xnyn§3aü>-n → ∞§α2 = αβ q
d0 <a<xn <xn+1§?k0 <alessorequalslantα§l
α = β=k lim
n→∞
xn = lim
n→∞
yn.
14,|^üNk.7k4?y2±eê7k4?μ
(1) xn = 1 + 122 +···+ 1n2
(2) xn = 13 + 1 + 132 + 1 +···+ 13n + 1
(3) xn = n
k
an(a> 1,k?ê)
(4) xn = n√a (0 <a< 1)
y2μ
(1) duxn+1?xn = 1(n+ 1)2 > 0§xn+1 > xn§K{xn}?üNO\,q1 < xn < 1 + 11˙2 + ··· +
1
n˙(n+ 1) = 1 +
parenleftbigg
1? 12 +···+ 1n
1
1n
parenrightbigg
= 2? 1n < 2§{xn}k.§u′{xn}34?"
(2) duxn+1?xn = 13n+1 + 1 > 0§xn+1 >xn§K{xn}?üNO\,q14 <xn < 14+ 132 +···+ 13n <
1
3 +
1
32 +···+
1
3n =
1
3
1? 13
= 12§{xn}k.§u′{xn}34?"
21
(3) dua > 1,k?ê§xn = n
k
an > 0§K{xn}ke."q
xn+1
xn =
parenleftbigg
1 + 1n
parenrightbiggk
a =
1
a
parenleftbigg
1 + 1n
parenrightbiggk
→
1
a(n → ∞) < 1§?N ∈ Z
+§n > N?§kxn+1
xn < 1§KlN + 1?mkxn+1 < xn§u
′{xn}?üN~(n>N)§l
{xn}34?"
(4) dulnxn = 1n lna = yn,0 <a< 1§{yn}′üNO\§l
dxn = n√a = eyn{xn}′üNO\
"q0 <xn = n√a< n√1 = 1§{xn}k.§u′{xn}34?"
15,y2μexnt,§yneü§
xn?ynt§Kxnúyn7kó?4?"
y2μdxnt,§x1 lessorequalslant x2 lessorequalslant ··· lessorequalslant xn lessorequalslant ···§qyneü§y1 greaterorequalslant y2 greaterorequalslant ··· greaterorequalslant yn greaterorequalslant ···§qxn?yn
t§{xn?yn}k.§|xn?yn|lessorequalslantC(n = 1,2,···)£ù¥C?,~ꤧK?C lessorequalslantxn?yn lessorequalslantC=xn lessorequalslant
yn +C lessorequalslant y1 +C§u′{xn}kt.§l
{xn}34?"qyn greaterorequalslant xn?C greaterorequalslant x1?C§u′{yn}ke.§l
{yn}34?§K lim
n→∞
xn? lim
n→∞
yn = lim
n→∞
(xn?yn) = 0§u′ lim
n→∞
xn = lim
n→∞
yn.
16,x¢ê§qyn(x) = sinsin···sinbracehtipupleft bracehtipdownrightbracehtipdownleft bracehtipupright
n
x§y2{yn(x)}4?3§?|d4?.
y2μk0 lessorequalslant x lessorequalslant pi§K0 lessorequalslant sinx lessorequalslant x§l
kyn+1(x) = sinyn(x) lessorequalslant yn(x)§{yn(x)}′±0?e.ü
Neü?ê§7k4?§Ké?x0 ∈ [0,pi]§k0 lessorequalslant u0 = lim
n→∞
yn(x0) = sin
parenleftBig
lim
n→∞
fn?1(x0)
parenrightBig
= sinu0§
Ku0 = 0§l
é?x∈ [0,pi],lim
n→∞
yn(x) = 0.
ón?yx∈ [?pi,0]k lim
n→∞
yn(x) = 0.
2d±?5? lim
n→∞
yn(x) = 0
17,e lim
n→∞
xn = a§áyμ lim
n→∞
x1 +x2 +···+x+n
n = a
y2μd lim
n→∞
xn = a§é?ε> 0,?N1 ∈Z+§n>N1?§k|xn?a|< ε2§Kk
vextendsinglevextendsingle
vextendsinglex1 +x2 +···+xnn?a
vextendsinglevextendsingle
vextendsingle=vextendsingle
vextendsinglevextendsingle
vextendsingle
(x1?a) + (x2?a) +···+ (xn?a)
n
vextendsinglevextendsingle
vextendsinglevextendsinglelessorequalslant |x1?a|+|x2?a|+···+|xN1?a|+|xN1+1?a|+···+|xn?a|
n <
|x1?a|+|x2?a|+···+|xN1?a|
n +
n?N1
n ·
ε
2 <|x
1?a|+|x2?a|+···+|xN1?a|
n +
ε
2(∵
n?N1
n < 1)
M = max(|x1?a|,|x2?a|,···,|xn1?a|)§K|x1?a|+|x2?a|+···+|xN1?a|n lessorequalslant N1 ·Mn §qN1·M?
§KN1 ·Mn → 0(n→∞)§
u′ét?ε> 0,?N2 =
bracketleftbigg2N
1 ·M
ε
bracketrightbigg
∈Z+§n>N2?§k
|x1?a|+|x2?a|+···+|xN1?a|
n <
ε
2
N = max(N1,N2)§Kn>N?§k
vextendsinglevextendsingle
vextendsinglex1 +x2 +···+xnn?a
vextendsinglevextendsingle
vextendsingle< ε2 + ε2 = ε§
=k lim
n→∞
x1 +x2 +···+x+n
n = a
5μe lim
n→∞
x1 +x2 +···+xn
n = anotdblarrowright limn→∞xn3"
~μxn = (?1)n?1(n = 1,2,···)§Kw,lim
n→∞
x1 +x2 +···+xn
n = 0§ limn→∞xn?3"
18,y2μe lim
n→∞
an = a,lim
n→∞
bn = b§K lim
n→∞
a1bn +a2bn?1 +···+anb1
n = aby2μ
(1) a = 0§y lim
n→∞
a1bn +a2bn?1 +···+anb1
n = 0
d lim
n→∞
bn = b§Ka?n4(P38)§?M > 0§||bn|lessorequalslantM(n∈Z+)
d lim
n→∞
an = 0§Ké?ε> 0,?N1 ∈Z+§n>N1?§k|an|< ε2M.N = max
braceleftbiggbracketleftbigg2(|a
1|+···+|an|)M
ε
bracketrightbigg
+ 1,N1
bracerightbigg
§
u′ngreaterorequalslantN(greaterorequalslantN1)?§k
vextendsinglevextendsingle
vextendsinglevextendsinglea1bn +a2bn?1 +···+anb1
n
vextendsinglevextendsingle
vextendsinglevextendsingle=
vextendsinglevextendsingle
vextendsinglevextendsinglea1bn +a2bn?1 +···+aN1bn?N1+1 +aN1+1bn?N1 +···+anb1
n
vextendsinglevextendsingle
vextendsinglevextendsingle
lessorequalslant
vextendsinglevextendsingle
vextendsinglevextendsinglea1bn +a2bn?1 +···+aN1bn?N1+1
n
vextendsinglevextendsingle
vextendsinglevextendsingle+
vextendsinglevextendsingle
vextendsinglevextendsingleaN1+1bn?N1 +···+anb1
n
vextendsinglevextendsingle
vextendsinglevextendsinglelessorequalslant (|a1|+···+|aN1|)M
n +
(n?N1)· ε2M ·M
n <
22
ε
2 +
ε
2 = ε§l
limn→∞
a1bn +a2bn?1 +···+anb1
n = 0
(2) anegationslash= 0,bnegationslash= 0?§d lim
n→∞
bn = b§ lim
n→∞
bn +bn?1 +···+b1
n = bnegationslash= 0§q limn→∞an = a§ limn→∞(an?a) = 0
d(1) lim
n→∞
(a1?a)bn +···+ (an?a)b1
n = 0§
u′ lim
n→∞
a1 ·
bn
n +···+an ·
b1
n
bn +···+b1
n
a
= lim
n→∞
(a1?a)· bnn +···+ (an?a)· bnn
bn +···+b1
n
= 0b = 0§
= lim
n→∞
a1 · bnn +···+an · b1n
bn +···+b1
n
= a§
l
lim
n→∞
a1bn +a2bn?1 +···+anb1
n = limn→∞
a1 ·
bn
n +···+an ·
b1
n
bn +···+b1
n
· bn +···+b1n
= ab
19,Uy2eêtμ
(1) √n
(2) n!
(3) lnn
(4) n
2 + 1
2n+ 1
(5) n
2 + 1
2n?1
(6) 1 + 12 + 13 +···+ 1n
y2μ
(1) é?G > 0§?||√n| > G§n > G2=?.N = [G2]§Kn > N?§|√n| > Go¤á§
{√n}′t"
(2) é?G > 0§du|n!| > n§?||n!| > G§n > G=?.N = [G]§Kn > N?§|n!| > Go¤
á§{n!}′t"
(3) é?G > 0§?||lnn| > G§n > eG=?.N = [eG]§Kn > N?§|lnn| > Go¤á§
{lnn}′t"
(4) é?G > 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglen2 + 1
2n+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle > n2
3n =
n
3§?|
vextendsinglevextendsingle
vextendsinglevextendsinglen2 + 1
2n+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle > G§n
3 > G=?.N = [3G]§Kn >
N?§
vextendsinglevextendsingle
vextendsinglevextendsinglen2 + 1
2n+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle>Go¤á§{n2 + 1
2n+ 1}′t"
(5) é?G > 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglen2 + 1
2n?1
vextendsinglevextendsingle
vextendsinglevextendsingle > n2
2n =
n
2§?|
vextendsinglevextendsingle
vextendsinglevextendsinglen2 + 1
2n?1
vextendsinglevextendsingle
vextendsinglevextendsingle > G§n
2 > G=?.N = [2G]§Kn >
N?§
vextendsinglevextendsingle
vextendsinglevextendsinglen2 + 1
2n?1
vextendsinglevextendsingle
vextendsinglevextendsingle>Go¤á§{n2 + 1
2n?1}′t"
(6) é?G > 0§du lim
n→∞
parenleftbigg
1 + 1n
parenrightbiggn
= e?
parenleftbigg
1 + 1n
parenrightbiggn
üNO\§K
parenleftbigg
1 + 1n
parenrightbiggn
< e§u′ln
parenleftbigg
1 + 1n
parenrightbigg
<
1
n§l
1+
1
2+
1
3+···+
1
n > ln2+ln
3
2+···+ln
parenleftbigg
1 + 1n
parenrightbigg
= ln(n+1) > lnn§K?|
vextendsinglevextendsingle
vextendsinglevextendsingle1 + 1
2 +
1
3 +···+
1
n
vextendsinglevextendsingle
vextendsinglevextendsingle>
G§lnn > G=?.N = [eG]§Kn > N?§
vextendsinglevextendsingle
vextendsinglevextendsingle1 + 1
2 +
1
3 +···+
1
n
vextendsinglevextendsingle
vextendsinglevextendsingle > Go¤á§{1 + 1
2 +
1
3 +···+
1
n}′t"
20,y2μe{xn}′t§xn negationslash= 0(n = 1,2,3,···)§K
braceleftbigg 1
xn
bracerightbigg
′t"
y2μdu{xn}′t§é?ε> 0,?N ∈Z+§n>N?§k|xn|<ε
23
qxn negationslash= 0(n = 1,2,3,···)§ 1x
n
3?
vextendsinglevextendsingle
vextendsinglevextendsingle 1
xn
vextendsinglevextendsingle
vextendsinglevextendsingle> 1
ε
qε′§1ε?′§l
braceleftbigg 1
xn
bracerightbigg
′t"
21,y2μe{xn}t§{yn}?k.Ct§K{xn ±yn}t"
ddO?e4?μ
(1) lim
n→∞
parenleftbigg
sinn+ n
2
√n2 + 1
parenrightbigg
(2) lim
n→∞
(n?arctann)
(3) lim
n→∞
bracketleftbigg
n+ (?1)n
parenleftbigg 1
1·3 +
1
3·5 +···+
1
(2n?1)(2n+ 1)
parenrightbiggbracketrightbigg
qμütú4?NoáU?/"
i)y2μdu{yn}?k.Ct§73êM§||yn| lessorequalslant M§q{xn}t§é?G > M >
0,?N ∈ Z+§n > N?§k|xn| > G§Kn > N?§k|xn ±yn| greaterorequalslant |xn|?|yn| > G?M.dG5
9G>M > 0§?G?M > 0?G?M′§l
{xn ±yn}t"
ii))μ
(1) du lim
n→∞
n2√
n2 + 1 = ∞?|sinn|lessorequalslant 1§K limn→∞
parenleftbigg
sinn+ n
2
√n2 + 1
parenrightbigg
= ∞
(2) du lim
n→∞
n = ∞?|arctann|lessorequalslant pi2§K lim
n→∞
(n?arctann) = ∞
(3) xn = (?1)n
parenleftbigg 1
1·3 +
1
3·5 +···+
1
(2n?1)(2n+ 1)
parenrightbigg
§Kxn = (?1)
n
2
bracketleftbigg
1? 13 + 13? 15 +···+ 12n?1? 12n+ 1
bracketrightbigg
=
(?1)n
2
parenleftbigg
1? 12n+ 1
parenrightbigg
= (?1)
n
2 ·
2n
2n+ 1 =
(?1)n
2 + 1n
§k13 <|xn|< 12.qd lim
n→∞
n = ∞§l
lim
n→∞
bracketleftbigg
n+ (?1)n
parenleftbigg 1
1·3 +
1
3·5 +···+
1
(2n?1)(2n+ 1)
parenrightbiggbracketrightbigg
= ∞
iii))μ
(1) xn = n→ +∞,yn = 2n→ +∞;xn +yn = 3n→ +∞
(2) xn =?n→?∞,yn =?2n→?∞;xn +yn =?3n→?∞
(3) xn =?n→?∞,yn = 2n→ +∞;xn +yn = n→ +∞
(4) xn = n→ +∞,yn =?2n→?∞;xn +yn =?n→?∞
(5) xn = n+a→ +∞,yn =?n→?∞;xn +yn = a£~t¤
(6) xn = n+ (?1)n → +∞,yn =?n→ +∞;xn +yn = (?1)n?4?
22,tútú!
!?4??/"
)μ
(1) ú!
μ?yn → 0(n → ∞)§{yn}k."qxn → ∞(n → ∞)§KdtK(?§k{xn ±yn}
t"
(2)?μxn negationslash= 0,yn negationslash= 0?§duxn →∞,yn → 0(n→∞)§Kkyn · 1x
n
→ 0§=ynx
n
→ 0,xny
n
→∞
23,T~`2tút|è?Uu)/"
)μ
(1) xn = n→ +∞,yn = 1n2 → 0(n→∞);xn ·yn = 1n → 0(n→∞)
(2) xn = n2 → +∞,yn = 1n → 0(n→∞);xn ·yn = n→ +∞(n→∞)
(3) xn = n→ +∞,yn = an → 0(n→∞);xn ·yn = a£~t¤
(4) xn = n(?1)n →∞,yn = 1n → 0(n→∞);xn ·yn = (?1)n?4?k.
(5) xn = n2n(?1)n → ∞,yn = 1n → 0(n→ ∞);xn ·yn = n·n(?1)n = n1+(?1)n?4?§?.£′?
t¤
24
24,exn →∞,yn →anegationslash= 0§y2xnyn →∞
y2μduxn → ∞(n → ∞)§ 1x
n
→ 0(n → ∞)?qyn → a negationslash= 0(n → ∞)§ 1y
n
→ 1a(n → ∞)§u
′ 1x
n
· 1y
n
→ 0(n→∞)§l
xnyn →∞(n→∞)
25,exn → +∞,yn →?∞§y2xnyn →?∞.
y2μ?xn → +∞§Ké?G1 > 0,?N1 ∈ Z+§n > N1?§kxn > G1?qyn →?∞§Ké?G2 >
0,?N2 ∈ Z+§n > N2?§k?yn > G2 > 0,N = max(N1,N2)§Kn > N?§k?xnyn > G1G2§
=xnyn <?G1G2.dG1,G25§G1G2′?G1G2 > 0§Kxnyn →?∞.
26,exn → +∞§y2x1 +x2 +···+xnn → +∞
y2μ?xn → +∞§Ké?G > 0,?N1 ∈ Z+§n > N1?§kxn > 3G§u′x1 +x2 +···+xnn =
x1 +···+xN1
n +x
N1+1 +···+xn
n >
x1 +···+xN1
n +
n?N1
n ·3G§
M = max(|x1|,···,|xN1|)§K
vextendsinglevextendsingle
vextendsinglex1 +·+xN1n
vextendsinglevextendsingle
vextendsingle lessorequalslant |x1|+···+|xN1|n lessorequalslant N1 ·Mn §u′ét?G > 0§
N2 =
bracketleftbigg2N
1 ·M
G
bracketrightbigg
§Kn>N2?§k
vextendsinglevextendsingle
vextendsinglex1 +···+xN1n
vextendsinglevextendsingle
vextendsingle< G2§l
x1 +···+xN1n >?G2"q limn→∞ n?N1n =
1§éuε = 12,?N3 ∈Z+§n>N3?§k
vextendsinglevextendsingle
vextendsinglevextendsinglen?N1
n?1
vextendsinglevextendsingle
vextendsinglevextendsingle< 1
2§l
n?N1
n >
1
2§N = max{N1,N2,N3}§
Kn>N?§kx1 +x2 +···+xnn >?G2 + 3G2 = G§ddx1 +x2 +···+xnn → +∞(n→∞).
25
§2,?ê4?
1,^y2μ
(1) lim
x→?1
x?3
x2?9 =
1
2
(2) lim
x→3
x?3
x2?9 =
1
6
(3) lim
x→1
x?1√
x?1 = 2
(4) lim
x→1
(x?2)(x?1)
x?3 = 0
(5) lim
t→1
t(t?1)
t2?1 =
1
2
(6) lim
x→∞
x?1
x+ 2 = 1
(7) lim
x→3
x
x2?9 = ∞
(8) lim
x→∞
x2 +x
x+ 1 = ∞
y2μ
(1) é?ε> 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglex?3
x2?9?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle=
vextendsinglevextendsingle
vextendsinglevextendsingle 1
x+ 3?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle=
vextendsinglevextendsingle
vextendsinglevextendsingle x+ 1
2x+ 6
vextendsinglevextendsingle
vextendsinglevextendsingle§?x→?1§|x+ 1|< 1§K?2 <x<
0§l
2 < |2x + 6| < 6§u′
vextendsinglevextendsingle
vextendsinglevextendsingle x+ 1
2x+ 6
vextendsinglevextendsingle
vextendsinglevextendsingle < |x+ 1|
2 §?|
vextendsinglevextendsingle
vextendsinglevextendsinglex?3
x2?9?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§|x+ 1|
2 < ε=?"
δ = min{2ε,1}> 0§K0 <|x?(?1)|<δ?§òk
vextendsinglevextendsingle
vextendsinglevextendsinglex?3
x2?9?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§ lim
x→?1
x?3
x2?9 =
1
2
(2) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglex?3
x2?9?
1
6
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle 1
x+ 3?
1
6
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle x?3
6x+ 18
vextendsinglevextendsingle
vextendsinglevextendsingle§?x → 3§|x? 3| < 1§K2 < x <
4§l
30 < |6x + 18| < 42§u′
vextendsinglevextendsingle
vextendsinglevextendsingle x?3
6x+ 18
vextendsinglevextendsingle
vextendsinglevextendsingle < |x?3|
30 §?|
vextendsinglevextendsingle
vextendsinglevextendsinglex?3
x2?9?
1
6
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§|x?3|
30 < ε=
"δ = min{30ε,1}> 0§K0 <|x?3|<δ?§òk
vextendsinglevextendsingle
vextendsinglevextendsinglex?3
x2?9?
1
6
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§lim
x→3
x?3
x2?9 =
1
6
(3) é?ε> 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle x?1√
x?1?2
vextendsinglevextendsingle
vextendsinglevextendsingle = |√x+ 1?2| = |√x?1| =
vextendsinglevextendsingle
vextendsinglevextendsingle x?1√
x+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle§?x→ 1§|x?1|< 1§
K0 < x < 2§l
1 < |√x + 1| < √2 + 1§u′
vextendsinglevextendsingle
vextendsinglevextendsingle x?1√
x+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle < |x? 1|§?|
vextendsinglevextendsingle
vextendsinglevextendsingle x?1√
x?1?2
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§?
|x? 1| < ε=?"δ = min{ε,1} > 0§K0 < |x? 1| < δ?§òk
vextendsinglevextendsingle
vextendsinglevextendsingle x?1√
x?1?2
vextendsinglevextendsingle
vextendsinglevextendsingle < εo¤á§
lim
x→1
x?1√
x?1 = 2
(4) é?ε > 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle(x?2)(x?1)
x?3?0
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle
parenleftbigg
1 + 1x?3
parenrightbigg
(x?1)
vextendsinglevextendsingle
vextendsinglevextendsingle§?x → 1§|x? 1| < 1§K0 <
x < 2§l
0 <
vextendsinglevextendsingle
vextendsinglevextendsingle1 + 1
x?3
vextendsinglevextendsingle
vextendsinglevextendsingle < 2
3§u′
vextendsinglevextendsingle
vextendsinglevextendsingle1 + 1
x?3
vextendsinglevextendsingle
vextendsinglevextendsingle < 2
3|x? 1|§?|
vextendsinglevextendsingle
vextendsinglevextendsingle(x?2)(x?1)
x?3?0
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§?
23|x?1|<ε=?"δ = min
braceleftbigg3
2ε,1
bracerightbigg
> 0§K0 <|x?1|<δ?§òk
vextendsinglevextendsingle
vextendsinglevextendsingle(x?2)(x?1)
x?3?0
vextendsinglevextendsingle
vextendsinglevextendsingle<εo
¤á§lim
x→1
(x?2)(x?1)
x?3 = 0
(5) é?ε> 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglet(t?1)
t2?1?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle t
t+ 1?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle t?1
2t+ 2
vextendsinglevextendsingle
vextendsinglevextendsingle§?t→ 1§|t?1|< 1§K0 <t< 2§
l
2 < |2t + 2| < 6§u′
vextendsinglevextendsingle
vextendsinglevextendsingle t?1
2t+ 2
vextendsinglevextendsingle
vextendsinglevextendsingle < |t?1|
2 §?|
vextendsinglevextendsingle
vextendsinglevextendsinglet(t?1)
t2?1?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§|t?1|
2 < ε=?"
δ = min{2ε,1}> 0§K0 <|x?(?1)|<δ?§òk
vextendsinglevextendsingle
vextendsinglevextendsinglet(t?1)
t2?1?
1
2
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§lim
t→1
t(t?1)
t2?1 =
1
2
26
(6) é?ε> 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglex?1
x+ 2?1
vextendsinglevextendsingle
vextendsinglevextendsingle=
vextendsinglevextendsingle
vextendsinglevextendsingle 3
x+ 2
vextendsinglevextendsingle
vextendsinglevextendsingle§?x→∞§|x|> 2§K|x+2|>|x|?2§u′
vextendsinglevextendsingle
vextendsinglevextendsingle 3
x+ 2
vextendsinglevextendsingle
vextendsinglevextendsingle<
3
|x|?2§?|
vextendsinglevextendsingle
vextendsinglevextendsingle 3
x+ 2
vextendsinglevextendsingle
vextendsinglevextendsingle < ε§ 3
|x|?2 < ε=?§=|x| >
3
ε"X =
3
ε + 2§K|x| > X?§ò
k
vextendsinglevextendsingle
vextendsinglevextendsinglex?1
x+ 2?1
vextendsinglevextendsingle
vextendsinglevextendsingle<εo¤á§ lim
x→∞
x?1
x+ 2 = 1
(7) é?G > 0§du
vextendsinglevextendsingle
vextendsinglevextendsingle x
x2?9
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle x
x+ 3
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle 1
x?3
vextendsinglevextendsingle
vextendsinglevextendsingle§?x → 3§|x? 3| < 1§K2 < x < 4§l
27 <
vextendsinglevextendsingle
vextendsinglevextendsingle x
x+ 3
vextendsinglevextendsingle
vextendsinglevextendsingle < 4
5§u′
vextendsinglevextendsingle
vextendsinglevextendsingle x
x+ 3
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle 1
x?3
vextendsinglevextendsingle
vextendsinglevextendsingle > 2
7
vextendsinglevextendsingle
vextendsinglevextendsingle 1
x?3
vextendsinglevextendsingle
vextendsinglevextendsingle§?|
vextendsinglevextendsingle
vextendsinglevextendsingle x
x2?9
vextendsinglevextendsingle
vextendsinglevextendsingle > G§2
7
vextendsinglevextendsingle
vextendsinglevextendsingle 1
x?3
vextendsinglevextendsingle
vextendsinglevextendsingle > G=
"δ = min
braceleftbigg 2
7G,1
bracerightbigg
> 0§K0 <|x?3|<δ?§òk
vextendsinglevextendsingle
vextendsinglevextendsingle x
x2?9
vextendsinglevextendsingle
vextendsinglevextendsingle>Go¤á§lim
x→3
x
x2?9 = ∞
(8) é?G > 0§du
vextendsinglevextendsingle
vextendsinglevextendsinglex2 +x
x+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle = |x|§?x → ∞§X = G > 0§K|x| > X?§òk
vextendsinglevextendsingle
vextendsinglevextendsinglex2 +x
x+ 1
vextendsinglevextendsingle
vextendsinglevextendsingle> Go¤
᧠lim
x→∞
x2 +x
x+ 1 = ∞
2,|4?μ
(1) lim
x→0
x2?1
2x2?x?1
(2) lim
x→1
x2?1
2x2?x?1
(3) lim
x→∞
x2?1
2x2?x?1
(4) lim
x→0
(1 +x)(1 + 2x)(1 + 3x)?1
x
(5) lim
t→1
t2(t?1)
t2?1
(6) lim
t→1
t2?√t√
t?1
(7) lim
x→3
√1 +x?2
x?3
(8) lim
x→0
(1 +x)5?(1 + 5x)
x2 +x5
(9) lim
x→0
(1 +mx)n?(1 +nx)m
x2 £m,n?g,ê¤
(10) lim
x→3
x2?5 + 6
x2?8x+ 15
(11) lim
x→∞
x2 + 3x
x2
(12) lim
x→∞
5x?7
2x+√x
)μ
(1) lim
x→0
x2?1
2x2?x?1 = 1
(2) lim
x→1
x2?1
2x2?x?1 = limx→1
(x?1)(x+ 1)
(2x+ 1)(x?1) = limx→1
x+ 1
2x+ 1 =
2
3
(3) lim
x→∞
x2?1
2x2?x?1 =
1
2
(4) lim
x→0
(1 +x)(1 + 2x)(1 + 3x)?1
x = limx→0(6 + 11x+ 6x
2) = 6
(5) lim
t→1
t2(t?1)
t2?1 = limt→1
t2
t+ 1 =
1
2
(6) lim
t→1
t2?√t√
t?1 = limt→1
√t(√t?1)(t+√t+ 1
√t?1 =
lim
t→1
√t(t+√t+ 1) = 3
27
(7) lim
x→3
√1 +x?2
x?3 = limx→3
1√
1 +x+ 2 =
1
4
(8) lim
x→0
(1 +x)5?(1 + 5x)
x2 +x5 = limx→0
10x2 + 10x3 + 5x4 +x5
x2 +x5 = 10
(9) lim
x→0
(1 +mx)n?(1 +nx)m
x2 =
lim
x→0
(C2nm2?C2mn2)x2 + (C3nm3?C3mn3)x3 +···+mnxn?nmxm
x2 = C
2
nm
2?C2
mn
2 = n2m?m2n
2
(10) lim
x→3
x2?5 + 6
x2?8x+ 15 = limx→3
(x?2)(x?3)
(x?3)(x?5) = limx→3
x?2
x?5 =?
1
2
(11) lim
x→∞
x2 + 3x
x2 = 1
(12) lim
x→∞
5x?7
2x+√x =
5
2
3, R(x) = P(x)Q(x)
a¥P(x)úQ(x)?xa§P(a) = Q(a) = 0§ˉlim
x→a
k=
U?o
)μduP(x)úQ(x)?xa?P(a) = Q(a) = 0§
KP(x) = (x?a)mP1(x),Q(x) = (x?a)nQ1(x)(P1(a) negationslash= 0,Q1(x) negationslash= 0)§u′lim
x→a
R(x) = lim
x→a
P(x)
Q(x) =
lim
x→a
(x?a)mP1(x)
(x?a)nQ1(x)
μ
(1) n = m?§lim
x→a
R(x) = P1(a)Q
1(a)
(2) n>m?§lim
x→a
(x?a)m?n = ∞?lim
x→a
P1(x)
Q1(x) =
P1(a)
Q1(a) negationslash= 0§limx→aR(x) = ∞
(3) n<m?§lim
x→a
(x?a)m?n = 0?lim
x→a
P1(x)
Q1(x) =
P1(a)
Q1(a)§limx→aR(x) = 0
4,|e4?μ
(1) lim
x→0
sin2x?sin3x
x
(2) lim
h→0
cos(x+h)?cosx
h
(3) lim
x→+∞
(√x2 + 1?x)
(4) lim
x→?∞
(√x2 + 1?x)
(5) lim
x→0
x2
1?cosx
(6) lim
x→+∞
radicalBig
x+radicalbigx+√x
x+ 1
(7) lim
x→0
cosx?cos3x
x2
(8) lim
x→0
sin5x?sin3x
sin2x
(9) lim
x→1
(1?x)tan pix2
(10) lim
x→a
sinx?sina
x?a
(11) lim
x→0
(√1 +x2 +x)n?(√1 +x2?x)n
x
(12) lim
x→0
x
bracketleftbigg1
x
bracketrightbigg
)μ
28
(1) lim
x→0
sin2x?sin3x
x = limx→0
sin2x
x? limx→0
sin3x
x = 2?3 =?1
(2) lim
h→0
cos(x+h)?cosx
h = limh→0
2sin 2x+h2 sin h2
h = limh→0
sin h2
h sin
2x+h
2 =?sinx
(3) lim
x→+∞
(√x2 + 1?x) = lim
x→+∞
1√
x2 + 1 +x = 0
(4) lim
x→?∞
(√x2 + 1?x) = +∞
(5) lim
x→0
x2
1?cosx = limx→0
x2
x2
2
= 2
(6) lim
x→+∞
radicalBig
x+radicalbigx+√x
x+ 1 = 0
(7) lim
x→0
cosx?cos3x
x2 = limx→0
2sinxsin2x
x2 = 4
(8) lim
x→0
sin5x?sin3x
sin2x = limx→0
2sinxcos4x
2x = 1
(9) -y = x? 1§Klim
x→1
(1?x)tan pix2 = lim
y→0
ytan
parenleftBigpi
2(1 +y)
parenrightBig
= lim
y→0
ycot pi2y = lim
y→0
ycos pi2y
sin pi2y
=
lim
y→0
y
pi
2y
= 2pi
(10) lim
x→a
sinx?sina
x?a = limx→a
2cos x+a2 sin x?a2
x?a = cosa
(11) lim
x→0
(√1 +x2 +x)n?(√1 +x2?x)n
x =
lim
x→0
2C1n(1 +x2)n?12 x+ 2C3n(1 +x2)n?32 x2 +···
x =
lim
x→0
bracketleftBig
2n(1 +x2)n?12 + 2C3n(1 +x2)n?32 x+···
bracketrightBig
= 2n
(12) du
bracketleftbigg1
x
bracketrightbigg
= 1x?
parenleftbigg1
x
parenrightbigg
0 lessorequalslant
parenleftbigg1
x
parenrightbigg
< 1§
Klim
x→0
x
bracketleftbigg1
x
bracketrightbigg
= lim
x→0
braceleftbigg
1?x
parenleftbigg1
x
parenrightbiggbracerightbigg
= 1? lim
x→0
x
parenleftbigg1
x
parenrightbigg
= 1
5,e lim
x→x0
f(x) = A,lim
x→x0
g(x) = B§3δ> 0§0 <|x?x0|<δ?kf(x) greaterorequalslantg(x)§y2AgreaterorequalslantB.
qe0 <|x?x0|<δ?f(x) >g(x)§′¤áA>B
y2μ
(1) ^?y{"bA<B§Kd lim
x→x0
f(x) = A,lim
x→x0
g(x) = B95?1§?δ0 > 0§|0 < |x?x0| <
δ0?§kg(x) > f(x)"ùμ?δ > 0§0 < |x?x0| < δ?§kf(x) greaterorequalslant g(x)g?§b?¤
á§=AgreaterorequalslantB¤á"
(2)"~μ
(i) ¤á"f(x) = 2(x
2 + 3x4)
x2,g(x) = x
2 + 3x4x2,?δ > 0§0 < |x| < δ?§kf(x) > g(x)"
qA = lim
x→x0
f(x) = 2,B = lim
x→x0
g(x) = 1§A>B¤á"
(ii)?¤á"f(x) = x
2 + 3x4
x2,g(x) = x
2 +x4x2,?δ > 0§0 < |x| < δ?§kf(x) > g(x)"qA =
lim
x→x0
f(x) = 1,B = lim
x→x0
g(x) = 1§kA = B"
6,e3:x0?Skg(x) lessorequalslant f(x) lessorequalslant h(x)§g(x)úh(x)3x04?3uA§y2 lim
x→x0
f(x) =
A.
y2μXJéxn,xn →x0,xn negationslash= x0 §bxn ∈O(x0,δ)?{x0}§kg(xn) lessorequalslantf(xn) lessorequalslanth(xn)
±9g(xn) → A,h(xn) → A(n → ∞) §dê4?5?μf(xn) → A(n → ∞) §ùòy2
f(x) →
A(x→x0).
29
7,e lim
x→x0
f(x) = A,lim
x→x0
g(x) = B negationslash= 0§y2 lim
x→x0
f(x)
g(x) =
A
B.
y2μ
vextendsinglevextendsingle
vextendsinglevextendsinglef(x)
g(x)?
A
B
vextendsinglevextendsingle
vextendsinglevextendsingle=
vextendsinglevextendsingle
vextendsinglevextendsingleBf(x)?Ag(x)
Bg(x)
vextendsinglevextendsingle
vextendsinglevextendsingle=
vextendsinglevextendsingle
vextendsinglevextendsingleBf(x)?AB +AB?Ag(x)
BG(x)
vextendsinglevextendsingle
vextendsinglevextendsinglelessorequalslant |B||f(x)?A|+|A||g(x)?B|
|B||g(x)| §
du lim
x→x0
f(x) = A,lim
x→x0
g(x) = B§é?ε> 0,?δ1 > 0§0 <|x?x0|<δ1?§k|f(x)?A|<ε?ét
ε> 0,?δ2 > 0§0 <|x?x0|<δ2?§k|g(x)?B|<ε
qa|{$?μ lim
x→x0
Bg(x) = B2 > B
2
2 §Ka5?3§?δ3 > 0§0 <|x?x0|<δ3?§kBg(x) >
B2
2
δ = min{δ1,δ2,δ3}§0 <|x?x0|<δ?§k
vextendsinglevextendsingle
vextendsinglevextendsinglef(x)
g(x)?
A
B
vextendsinglevextendsingle
vextendsinglevextendsingle< (|A|+|B|)ε
B2
2
= 2(|A|+|B|)B2 ε
u′§é?ε> 0,?δ> 0§0 <|x?x0|<δ?§k
vextendsinglevextendsingle
vextendsinglevextendsinglef(x)
g(x)?
A
B
vextendsinglevextendsingle
vextendsinglevextendsingle< 2(|A|+|B|)
B2 ε§l
limx→x0
f(x)
g(x) =
A
B.
8,(1) f(x) =
0 x> 1
1 x = 1
x2 + 2 x< 1
|f(x)3x = 1?m4?"
(2) f(x) =
xsin 1x x> 0
1 +x2 x< 0
|f(x)3x = 0?m4?"
)μ
(1) lim
x→1?0
f(x) = lim
x→1?0
(x2 + 2) = 3,lim
x→1+0
f(x) = 0
(2) lim
x→?0
f(x) = lim
x→?0
(1 +x2) = 1,
lim
x→+0
f(x) = lim
x→+0
(xsin 1x) = 0
9,`2e?ê3¤?:?m4/μ
(1) y =
1
2x 0 <xlessorequalslant 1
x2 1 <x< 2 (3x = 1.5,2,1n:)
2x 2 <x< 3
(2) y = x·sin 1x£3x = 0:¤
(3) y = 2
1
x + 1
21x?1
£3x = 0:¤
(4) y = 1x?
bracketleftbigg1
x
bracketrightbigg
£3x = 1n:¤
(5) D(x) =
braceleftbigg 1 x?knê
0 xnê (3:)
(6) y = (x?1)(?1)
[x]
x2?1 (3x =?1¤
)μ
(1) lim
x→1.5?0
y = lim
x→1.5+0
y = 2.25,
lim
x→2?0
y = lim
x→2?0
x2 = 4,lim
x→2+0
y = lim
x→2+0
(2x) = 4
lim
x→1?0
y = lim
x→1?0
1
2x =
1
2,limx→1+0y = limx→1+0x
2 = 1
(2) lim
x→+0
y = lim
x→+0
y = 0
(3) du lim
x→+0
1
x = +∞,limx→?0
1
x =?∞§
K lim
x→+0
21x = +∞,lim
x→?0
21x = 0§
u′ lim
x→+0
y = lim
x→=0
21x + 1
21x?1
= lim
x→+0
parenleftbigg
1 + 2
21x?1
parenrightbigg
= 1,lim
x→+?0
y = lim
x→?0
21x + 1
21x?1
=?1
30
(4) lim
x→1n+0
y = lim
x→1n+0
parenleftbigg1
x?
bracketleftbigg1
x
bracketrightbiggparenrightbigg
= n?(n?1) = 1
lim
x→1n?0
y = lim
x→1n?0
parenleftbigg1
x?
bracketleftbigg1
x
bracketrightbiggparenrightbigg
= n?n = 0
(5) d?ê3:?m43"
x0?Rt:§dknêú?nê3ê?tè?5§?knS{x(1)n } → x0 + 0§?nS
{x(2)n }→x0 + 0§
lim
x(1)n →x0+0
D
parenleftBig
x(1)
parenrightBig
= 1,lim
x(2)n →x0+0
D
parenleftBig
x(2)
parenrightBig
= 0§l
d?ê3:m43
ón§d?ê3:?43
l
d?ê3:?m43"
(6) y = (x?1)(?1)
[x]
x2?1 =
(?1)[x]
x+ 1? limx→?1+0[x] =?1,limx→?1?0[x] =?2
K lim
x→?1+0
y =?∞,lim
x→?1+0
y =?∞
10,e4?μ
(1) lim
x→∞
sinx
x
(2) lim
x→∞
ex sinx
(3) lim
x→∞
xarctanx
(4) lim
x→∞
xtanx(xnegationslash= npi+ pi2)
)μ
(1) du lim
x→∞
1
x = 0?sinx′k.t§ limx→∞
sinx
x = 0
(2) du lim
x→+∞
ex = +∞§exn = 2npi → +∞(n → ∞)§Kexn sinxn = e2npi sin2npi = 0 → 0(n →
∞)?exn = pi2 + 2npi → +∞(n → ∞)§Kexn sinxn = epi2 +2npi sin
parenleftBigpi
2 + 2npi
parenrightBig
= epi2 +2npi →
+∞(n→∞)§ lim
x→+∞
ex sinx?3§l
lim
x→∞
ex sinx?3.
(3) du lim
x→?∞
arctanx =?pi2,lim
x→+∞
xarctanx = pi2§
K lim
x→?∞
xarctanx = +∞,lim
x→+∞
xarctanx = +∞§l
lim
x→∞
xarctanx = +∞
(4) xn = npi → ∞(n → ∞)§k lim
n→∞
xn tanxn = lim
n→∞
npitannpi = 0?,xn = pi4 +npi → ∞(n →
∞)§k lim
n→∞
xn tanxn = lim
n→∞
parenleftBigpi
4 +npi
parenrightBig
tan
parenleftBigpi
4 +npi
parenrightBig
= lim
n→∞
parenleftBigpi
4 +npi
parenrightBig
= +∞§ lim
x→∞
xtanx(xnegationslash=
npi+ pi2)?3.
11,l^? lim
x→∞
parenleftbiggx2 + 1
x+ 1?ax?b
parenrightbigg
= 0§|~êaúb.
)μdu lim
x→∞
parenleftbiggx2 + 1
x+ 1?ax?b
parenrightbigg
= lim
x→∞
(x2 + 1)?ax(x+ 1)?b(x+ 1)
x+ 1 = limx→∞
(1?a)x2?(a+b)x?b+ 1
x+ 1 =
0§Kk
braceleftbigg 1?a = 0
a+b = 0 §l
braceleftbigg a = 1
b =?1
12,l^? lim
x→?∞
(√x2?x+ 1?a1x?b1) = 0,lim
x→?∞
(√x2?x+ 1?a2x?b2) = 0§|~êa1,b1,a2,b2.
)μdu lim
x→?∞
(√x2?x+ 1?a1x?b1) = lim
x→?∞
(1?a21)x2?(1 + 2a1b1)x+ 1?b21√
x2?x+ 1 +a1x+b1 = 0§K
braceleftbigg 1?a2
1 = 0
1 + 2a1b1 = 0 §
u′
braceleftBigg a
1 = ±1
b1 =?12,
qa^μea1 = 1§K lim
x→?∞
(√x2?x+ 1?a1x?b1) = +∞§l
braceleftBigg a
1 =?1
b1 = 12 §ón
braceleftBigg a
2 = 1
b2 =?12,
13,e lim
x→+∞
[f(x)?(kx+b)] = 0§Ky = kx+b′-?y = f(x)x→ +∞ìC?.|^ù§í?ì
C?37^?.
y2μe-?3ìC?§Kk
lim
x→+∞
[f(x)?(kx+b)] = 0,(1)
31
f(x)x = 1x[f(x)?kx?b] +k+ bx§-x→ +∞üà45?(1)a§
lim
x→+∞
f(x)
x = k (2)
.
Q|?
k§2l(1)a|
b = lim
x→+∞
[f(x)?kx] (3)
.
§e(2)!(3)üa¤á§á=?w?^?(1)¤á.
-?y = f(x)x → +∞?3ìC?y = kx+b7?^?′4? lim
x→+∞
f(x)
x = k! limx→+∞[f(x)?
kx] = bt¤á.
14,e lim
x→?∞
f(x) = A> 0§y23X > 0§|x<?X¤áμA2 <f(x) < 32A.
y2μdu lim
x→?∞
f(x) = A > 0§éε = A2 > 0,?X > 0 §x <?X?§k|f(x)?A| < A2§
=A2 <f(x) < 32A.
15,e lim
x→+∞
f(x) = A,lim
x→+∞
g(x) = B§y2 lim
x→+∞
f(x)g(x) = AB.
y2μdu lim
x→+∞
f(x) = A§é?ε > 0,?X1 > 0§x > X1?§k|f(x)?A| < εX2 > 0,M > 0§
x>X2?§k|f(x)|<A.
q lim
x→+∞
g(x) = B§ét?ε> 0,?X3 > 0§x>X3?§k|g(x)?B|<ε.
X = max{X1,X2,X3}§ét?ε> 0§x>X?§
k|f(x)g(x)?AB| = |f(x)g(x)?f(x)B+f(x)B?AB|lessorequalslant|f(x)||g(x)?B|+|B||f(x)?A|lessorequalslantMε+|B|ε =
(M +|B|)ε§= lim
x→+∞
f(x)g(x) = AB.
16,y2 lim
x→+∞
f(x) = A^?′μéêxn → +∞,f(xn) →A.
y2μ
du lim
x→+∞
f(x) = A§é?ε> 0,?X > 0§x>X?§k|f(x)?A|<ε.
qxn → +∞(n → ∞)§ét?X > 0,?N ∈ Z+§n > N?§kxn > X§l
|f(xn)?A| < ε§u
′ lim
n→∞
f(xn) = A.
^?y{"b lim
x→+∞
f(x) negationslash= A§K?ε0 > 0§é?X > 0§?kxprime§xprime >X?§k|f(xprime)?A| greaterorequalslant
ε0.
AO/§X?1,2,3,···§?xprime1,xprime2,xprime3,···§|
xprime1 > 1?§k|f(xprime1)?A|greaterorequalslantε0?xprime2 > 2?§k|f(xprime2)?A|greaterorequalslantε0?xprime3 > 3?§k|f(xprime3)?A|greaterorequalslantε0?···
l?>?±w?xprimen → +∞(n → ∞)§
lm>w? lim
n→∞
f(xprimen) negationslash= A§g?§Kb?¤á§
lim
x→+∞
f(x) = A
17,y2 lim
x→x0+0
f(x) = +∞^?′μéêxn,xn >x0,xn →x0§kf(xn) → +∞.
y2μ
du lim
x→x0+0
f(x) = +∞§é?G> 0,?δ> 0§0 <x?x0 <δ?§kf(x) >G.
qxn > x0,xn → x0(n → ∞)§ét?δ > 0,?N ∈ Z+§n > N?§k0 < xn?x0 < δ§l
f(xn) >
G§u′ lim
n→∞
f(xn) = +∞.
^?y{"b lim
x→x0+0
f(x) negationslash= +∞§K?G0 > 0§é?δ > 0§?kxprime§0 < xprime?x0 < δ?§
kf(xprime) lessorequalslantG0.
AO/§δ?1,12,13,···§?xprime1,xprime2,xprime3,···§|
0 < xprime1? x0 < 1?§kf(xprime1) lessorequalslant G0?0 < xprime2? x0 < 12?§kf(xprime2) lessorequalslant G0?0 < xprime3? x0 < 13?§
kf(xprime3) lessorequalslantG0?···
l?>?±w?xprimen > x0,xprimen → x0§
lm>w? lim
x→x0+0
f(x) negationslash= +∞§g?§Kb?¤á§
lim
x→x0+0
f(x) = +∞
18,Tüe?|f(x)
(1) f(+0) = 0,f(?0) = 1
32
(2) f(+0)?3§∞,f(?0) = 0
(3) f(+∞) = 0,f(?∞)?3
(4) f(+∞) = f(?∞) = A£~ê¤
(5) f(x0 + 0)úf(x0?0)3
(6) f(x0 + 0) = +∞,f(x0?0) =?∞
(7) f(x0 + 0) = 1,f(x0?0) = +∞
(8) f(+∞)?3§∞,f(?∞) =?∞
)μ
(1) f(x) =
braceleftbigg 0 x> 0
1 xlessorequalslant 0
(2) f(x) =
braceleftBigg
sin 1x x> 0
0 xlessorequalslant 0
(3) f(x) = e?x
(4) f(x) = Ax+ 1x
(5) f(x) = sin 1x?x
0
(6) f(x) = 1x?x
0
(7) f(x) = 1 +e?
1
x?x0
(8) f(x) =
braceleftbigg sinx xgreaterorequalslant 0
x x< 0
33
§3,?Y?ê
1,Uy2e?ê3S?Yμ
(1) y = √x
(2) y = 1x
(3) y = |x|
(4) y = sin 1x
y2μ
(1) x0?(0,+∞)S:§|√x?√x0|< |x?x0|√x+√x
0
lessorequalslant |x?x0|√x
0
é?ε> 0§δ = √x0ε§|x?x0|<δ?§k|√x?√x0|< |x?x0|√x
0
<ε§y = √x3x0:?Y.
qdx03(0,+∞)¥5§Ky = √x3(0,+∞)S?Y.
x0 = 0?§ét?ε> 0§δ = ε2§0 <x?x0 <δ?§k|√x?√x0|<√x<ε§f(+0) = 0 =
f(0)§
l
y = √x3[0,+∞)S?Y.
(2) x0?(0,+∞)S:§|x?x0| < x02 §Kx> x02,xx0 > x
2
0
2 §u′|
1
x?
1
x0 | =
|x?x0|
xx0 <
|x?x0|
x20
2
ex0?(?∞,0)S:§|x?x0|<?x02 §Kx< x02,xx0 > x
2
0
2 §u′|
1
x?
1
x0 | =
|x?x0|
xx0 <
|x?x0|
x20
2
x0?(?∞,0)uniontext(0,+∞)S:§
é?ε > 0§δ = min
braceleftbigg|x
0|
2,
x20
2 ε
bracerightbigg
> 0§|x?x0| < δ?§k
vextendsinglevextendsingle
vextendsinglevextendsingle1
x?
1
x0
vextendsinglevextendsingle
vextendsinglevextendsingle = |x?x0|
xx0 > ε§y =
1
x3x0:?Y
qdx03(?∞,0)uniontext(0,+∞)S5§y = 1x3(?∞,0)uniontext(0,+∞)S?Y.
(3) x0?(?∞,+∞)S:§||x|?|x0||lessorequalslant|x?x0|.
é?ε> 0§δ = ε> 0§|x?x0|<δ?§k||x|?|x0||lessorequalslant|x?x0|<ε§y = |x|3x0:?Y
qdx03(?∞,+∞)S5§y = |x|3(?∞,+∞)S?Y.
(4) x0?(0,+∞)S:§|x? x0| < x02 §Kx > x02,xx0 > x
2
0
2 §u′
vextendsinglevextendsingle
vextendsinglevextendsinglesin 1
x?sin
1
x0
vextendsinglevextendsingle
vextendsinglevextendsingle =
2
vextendsinglevextendsingle
vextendsinglevextendsinglesin x+x0
2xx0
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsinglecos x?x0
2xx0
vextendsinglevextendsingle
vextendsinglevextendsinglelessorequalslant |x?x0|
xx0 <
|x?x0|
x20
2
ex0?(?∞,0)S:§|x?x0| <?x02 §Kx < x02,xx0 > x
2
0
2 §u′
vextendsinglevextendsingle
vextendsinglevextendsinglesin 1
x? sin
1
x0
vextendsinglevextendsingle
vextendsinglevextendsingle lessorequalslant
|x?x0|
xx0 <
|x?x0|
x20
2
x0?(?∞,0)uniontext(0,+∞)S:§
é?ε > 0§δ = min
braceleftbigg|x
0|
2,
x20
2 ε
bracerightbigg
> 0§|x?x0| < δ?§k
vextendsinglevextendsingle
vextendsinglevextendsinglesin 1
x?sin
1
x0
vextendsinglevextendsingle
vextendsinglevextendsingle lessorequalslant |x?x0|
xx0 < ε§
y = sin 1x3x0:?Y
qdx03(?∞,0)uniontext(0,+∞)S5§y = sin 1x3(?∞,0)uniontext(0,+∞)S?Y.
2,|^?Y?ê$?§|e?ê?Yμ
(1) y = tanx
34
(2) y = 1xn
(3) y = secx+ cscx
(4) y = 1√cosx
(5) y = ln(1 +x)x2?2x
(6) y = [x]tanx1 + sinx
)μ
(1)?y = tanx = sinxcosx§Kcosxnegationslash= 0?§y = tanx?Y§y = tanx?Y
parenleftBig
pi2 +kpi,pi2 +kpi
parenrightBig
(k∈
Z).
(2) en > 0§Ky = 1xn?Y(?∞,0)uniontext(0,+∞)?en lessorequalslant 0§Ky = 1xn?Y§=§?Y
(?∞,+∞).
(3)?secx?Y
parenleftbigg
k? 12
parenrightbigg
pi < x <
parenleftbigg
k+ 12
parenrightbigg
pi(k = 0,±1,±2,···)§cscx?Ykpi < x <
(k+ 1)pi(k = 0,±1,±2,···)§
y = secx+ cscx?Y
parenleftBig
kpi? pi2
parenrightBiguniontextparenleftBig
kpi,kpi+ pi2
parenrightBig
((k = 0,±1,±2,···).
(4) cosx> 0?§y = 1√cosx?Y§y = 1√cosx?Y
parenleftBig
pi2 + 2kpi,pi2 + 2kpi
parenrightBig
.
(5)?ln(1+x)x>?1Y§ 1x2?2xxnegationslash= 0,xnegationslash= 2Y§y = ln(1 +x)x2?2x ?Y(?1,0)uniontext(0,2)uniontext(2,+∞).
(6)?y = [x]tanx1 + sinx = [x]sinx(1 + sinx)cosx§Ksinx negationslash= 1,cosx negationslash= 0,x /∈ Z/{0}?§y = [x]tanx1 + sinx?Y§
y = [x]tanx1 + sinx?Yx∈
parenleftBig
kpi? pi2,kpi+ pi2
parenrightBig
x /∈Z/{0}(k∈Z).
3,e?ê?Y5§?x?ù?/.
(1) y =
x2?4
x?2,exnegationslash= 2
4,x = 2
(2) y =
vextendsinglevextendsingle
vextendsinglevextendsinglesinx
x
vextendsinglevextendsingle
vextendsinglevextendsingle,xnegationslash= 0
1,x = 0
(3) y ==
sinx
|x|,xnegationslash= 0
1,x = 0
(4) y=[x]
)μ
(1)?lim
x→2
y = lim
x→2
x2?4
x?2 = limx→2(x+ 2) = 4§?x = 2?§y = 4§?ê3x = 2?Y
xnegationslash= 2?§y = x
2?4
x?2 = x+ 2w,?Y§
y =
x2?4
x?2,exnegationslash= 2
4,x = 2
3(?∞,+∞)S?Y.
(2) x negationslash= 0?§y =
vextendsinglevextendsingle
vextendsinglevextendsinglesinx
x
vextendsinglevextendsingle
vextendsinglevextendsingle = sinx
x?y =?
sinx
x w,?Y"qlimx→0
vextendsinglevextendsingle
vextendsinglevextendsinglesinx
x
vextendsinglevextendsingle
vextendsinglevextendsingle = 1 = f(0)§?ê3x = 0?
Y§
u′y =
vextendsinglevextendsingle
vextendsinglevextendsinglesinx
x
vextendsinglevextendsingle
vextendsinglevextendsingle,xnegationslash= 0
1,x = 0
3(?∞,+∞)S?Y.
35
(3)? lim
x→+0
y = lim
x→+0
sinx
|x| = 1,limx→?0y = limx→?0
sinx
|x| =?1 §limx→0y?3"qx> 0?§y =
sinx
|x| =
sinx
x §x< 0?§y =
sinx
|x| =?
sinx
x §w,?Y§d?ê3?0 ?Y§=3(?∞,0)
uniontext(0,+∞)S
Y.
(4)? lim
x→k+0
y = lim
x→k+0
[x] = k,lim
x→k?0
y = lim
x→k?0
[x] = k? 1(k ∈ Z)§Klim
x→k
y?3§x = k(k ∈
Z)?y = [x]m?:§3m?:?m?Y
k<x<k+ 1(k∈Z)?§y = [x]w,?Y§d?ê3?k(k∈Z) ?Y.
4,ef(x)?Y§|f(x)|úf2(x)′Yoqe|f(x)|?f2(x)?Y§f(x)′Yo
)μ
(1) f(x)3ùIt?Y§x0?It:
f(x)3x0:?Y§é?ε> 0,?δ> 0§|x?x0|<δ?§k|f(x)?f(x0)|<ε
||f(x)|?|f(x0)||lessorequalslant|f(x)?f(x0)|<ε§=é?ε> 0,?δ> 0§|x?x0|<δ?§k|f(x)?f(x0)|<ε§
|f(x)|3x0:?Y
qdx03It5§|f(x)|3ItY
ó|f2(x)? f2(x0)| = |f(x)? f(x0)||f(x) + f(x0)| = |f(x)? f(x0)||f(x)? f(x0) + 2f(x0)| lessorequalslant
|f(x)?f(x0)|(|f(x)?f(x0)|+ 2f(x0)) <ε(ε+ 2f(x0))§f2(x)3x0:?Y
qdx03It5§f2(x)3ItY
(2)?L5§e|f(x)|?f2(x)?Y§f(x)Y.
(i)Y"~μf(x) =
braceleftbigg 1,xgreaterorequalslant 0
1,x< 0 §|f(x)| = 1úf
2(x) = 1t3(?∞,+∞)S?Y§f(x)3x =
0:Y?
(ii)?Y"~μf(x) = x,Kf(x)!|f(x)|!f2(x)3(?∞,+∞)St?Y"
5,(1)?êf(x)x = x0Y§
êg(x)x = x0Y§ˉd?êú3x0:′Yo
(2) x = x0êf(x)úg(x)Y§ˉd?êúf(x) +g(x)3?:x0′?7Yo
):
(1) ^?y{"bf(x) +g(x)3x0:?Y"
f(x)x = x0Y§Kd?Y?ê5?§g(x) = [f(x) +g(x)]?f(x)x0Yg?"
b?¤á§=f(x) +g(x)3x0:?Y.
(2)"
(i)?Yμ~μf(x) =
braceleftbigg 1,xgreaterorequalslant 0
1,x< 0,g(x) =
braceleftbigg?1,xgreaterorequalslant 0
1,x< 0 3x = 0Y§f(x) +
g(x) = 03x = 0?Y.
(ii)Yμ~μf(x) = g(x) = 1x3x = 0Y§f(x) +g(x) = 2x3x = 0Y.
6,(1)?êf(x)3x0?Y§
êg(x)3x0Y?
(2) x = x0êf(x)úg(x)Y§ˉd?ê|èf(x)g(x)3?:x0′?7Yo
):
(1)"
(i)?Yμ~μf(x) = 03x = 0?Y§g(x) =
braceleftbigg 1,xgreaterorequalslant 0
0,x< 0 3x = 0Y§f(x)g(x) = 03x =
0?Y.
(ii)Yμ~μf(x) = x3x = 0?Y§g(x) = 1x23x = 0Y§f(x)g(x) = 1x3x = 0Y.
(2)"
(i)?Yμ~μf(x) =
braceleftbigg 1,xgreaterorequalslant 0
1,x< 0,g(x) =
braceleftbigg?1,xgreaterorequalslant 0
1,x< 0 3x = 0Y§f(x)g(x) =
13x = 0?Y.
(ii)Yμ~μf(x) = g(x) = 1x3x = 0Y§f(x)g(x) = 1x23x = 0Y.
7,ef(x)3[a,∞)?Y§ lim
x→∞
f(x)3§y2f(x)3[a,∞)k..
y2μdu lim
x→∞
f(x)3§ lim
x→∞
f(x) = A
Kéε = 1,?X > 0§x>X?§k|f(x)?A|<ε = 1¤á§l
|f(x)| = |f(x)?A+A|lessorequalslant|f(x)?A|+
36
|A|< 1 +|A|
X1 = max{X,a+ 1}§Kf(x)3(X1,∞)Sk.§?|f(x)|<|A|+ 1,x∈ (X1,∞)
qduf(x)3[a,X1]t?Y§f(x)3[a,X1]tk.§ù.?M > 0§=?x∈ [a,X1]§k|f(x)|lessorequalslantM
G = max{|A|+ 1,M}§K?x∈ [a,∞),f(x) lessorequalslantG§
=f(x)3[a,∞)k..
8,eéε> 0§f(x)3[a+ε,b?ε]?Y§ˉμ
(1) f(x)′?(a,b)3?Yo
(2) f(x)′?3[a,b]?Yo
)μ
(1)?x0 ∈ (a,b)§ε = min
braceleftbiggx
0?a
2,
b?x0
2
bracerightbigg
§Kx0 ∈ [a+ε,b?ε]
éε> 0§f(x)3[a+ε,b?ε]?Y§f(x)3x0:?Y
dx0 ∈ (a,b)5§f(x)3(a,b)S?Y.
(2)Y"
(i)Y"~μf(x)3[0 +ε,1?ε](ε> 0)S?Y§f(x)3[0,1]tY§3x = 0:?m.
(ii)?Y"~μf(x)3[1 +ε,2?ε](ε> 0)S?Y§?f(x)3[1,2]t?Y.
9,ef(x)3x0:?Y§f(x0) > 0§y23x0δ?O(x0,δ)§x ∈ O(x0,δ)?§f(x) greaterorequalslant c> 0§c?,
~ê.
y2μduf(x)3x0:?Y§?f(x0) > 0§Kf(x0) >c> 0
éε = f(x0)?c> 0,?δ> 0§|x?x0|<δ?§k|f(x)?f(x0)|<ε = f(x0)?c§Kf(x0)?[f(x0)?
c] lessorequalslantf(x)§=f(x) greaterorequalslantc> 0.
10,y2e?Y?ê3kn:?ê0§Kd?êe?0.
y2μf(x)?¢?t?Y?ê§x0n:.
dkn:3ê?tè?5§?±?nê{xn}§|xn →x0(n→∞).
f(x)3x0?Y§Kf(x0) = lim
n→∞
f(xn) = 0§
dx0:5§f(x)3¤k?n:?ê0.
qf(x)3kn:?ê0§Kd?êe?0.
11,ef(x)3[a,b]?Y§e§Uy2 1f(x)3[a,b]?Y.
y2μduf(x)3[a,b]?Y§e§Kf(x)3(a,b)?Y§f(x) > 0§ 1f(x)3§x∈ [a,b]
x0?(a,b)S:§Ké?ε> 0,?δ> 0§|x?x0|<δ?§k|f(x)?f(x0)|<ε.
qf(x)3[a,b]?Y§Kd4?m?Y?ê5?2§?f(x)3[a,b]t?m > 0§=f(x) greaterorequalslant m,x ∈
[a,b]§u′
vextendsinglevextendsingle
vextendsinglevextendsingle 1
f(x)?
1
f(x0)
vextendsinglevextendsingle
vextendsinglevextendsingle= |f(x)?f(x0)|
f(x)f(x0) <
ε
m2§ limx→x0
1
f(x) =
1
f(x0)§l
1
f(x)3x0?Y.
dx03(a,b)S5§f(x)3(a,b)S?Y.
qf(a+ 0) = f(a) > 0§K 1f(a+ 0) = 1f(a)§f(x)3[a,b)?Y?
qf(b?0) = f(b) > 0§K 1f(b?0) = 1f(b)§f(x)3[a,b]?Y.
12,ef(x)úg(x)?3[a,b]?Y§áy2max(f(x),g(x))±9min(f(x),g(x))?3[a,b]?Y.
y2μduf(x)úg(x)?3[a,b]?Y§f(x)?g(x)úf(x) +g(x)?3[a,b]?Y.
d14K(?§k|f(x)?g(x)|3[a,b]?Y.
-?(x) = max(f(x),g(x)) = 12(f(x) +g(x) +|f(x)?g(x)|),
ψ(x) = min(f(x),g(x)) = 12(f(x) +g(x)?|f(x)?g(x)|)§
?(x),ψ(x)?3[a,b]?Y.
13,ef(x)′?Y§y2éc> 0§?êg(x) =
c,ef(x) <?c
f(x),e|f(x)|lessorequalslantc
c,ef(x) >c
′?Y.
y2μdug(x) = max(?c,min(f(x),c))
qduf(x)?Y§?éc> 0§?(x) = c?Y§ψ(x) =?c?Y§
KdtK(?§min(f(x),c)?Y§l
2dtK(?§g(x)?Y.
14,e?êY:5?£=Y:¤μ
(1) y = x(1 +x)2
37
(2) y = 1 +x1 +x3
(3) y = x
2?1
x3?3x+ 2
(4) y = xsinx
(5) y = cos2 1x
(6) y = [x] + [?x]
(7) y = 1lnx
(8) y = x
2?x
|x|(x2?1)
(9) y =
1
q,x =
p
q(q> 0,q,p?p?ê)
0,xnê
(10) y =
braceleftbigg x,|x|lessorequalslant 1
1,|x|> 1
(11) y =
braceleftBigg
cos pix2,|x|lessorequalslant 1
|x?1|,|x|> 1
(12) y =
braceleftbigg sinpix,x?knê
0,xnê
)μ
(1)? lim
x→?1?0
x
(1 +x)2 =?∞§x =?1?1aY:£m?:¤.
(2)? lim
x→?1
1 +x
1 +x3 =
1
3§y3x =?1:vk§x =?1£Y:.
(3)?y = x
2?1
x3?3x+ 2 =
(x?1)(x+ 1)
(x?1)(x2 +x+ 1)?3(x?1) =
(x?1)(x+ 1)
(x?1)(x2 +x?2) =
(x?1)(x+ 1)
(x?1)2(x+ 2)§
q lim
x→1?0
y =?∞,lim
x→?2?0
y =?∞§x =?2,x = 1?1aY:.
(4)?lim
x→0
x
sinx = 1y3x = 0§x = 0£Y:?
q lim
x→kpi
k∈Z,knegationslash=0
x
sinx = ∞§x = kpi(k∈Z,knegationslash= 0)?1aY:.
(5)?lim
x→0
cos2 1x3[0,1]m
§?
.4?§d43§u′x = 0?1aY:.
(6)?x→k+ 0?§?x→?k?0§ lim
x→k+0
y = lim
x→k+0
([x] + [?x]) = k+ (?k?1) =?1?
q?x→k?0?§?x→?k+ 0§ lim
x→k?0
y = lim
x→k?0
([x] + [?x]) = k?1 + (?k) =?1(k∈Z)
qx = k?§y = [x] + [?x] = [k] + [?k] = 0(k∈Z)§ê:t£Y:.
(7)? lim
x→1+0
1
lnx = +∞§x =?1?1aY:?
lim
x→?0
1
lnx?3§x = 0?1aY:.
(8) y = x(x?1)|x|(x?1)(x+ 1)
lim
x→1
y = 12y3x = 1§x = 1£Y:?
lim
x→+0
y = 1,lim
x→?0
y =?1§x = 0?1?aY:£am?:¤?
lim
x→?1+0
y =?∞§x =?1?1am?:.
(9)?d?ê′±1?±??ê§?3?m[0,1]§ù§?m?/?daq.
3[0,1]t§?1?1knêkü?μ01,111?2knêkμ12?
1?3knêkü?μ13,231?4knêkü?μ14,34?
1?5knêko?μ15,25,35,451?6knêkü?μ16,56?···
38
o?§?1Lkknê?êllessorequalslant 2 + 1 + 2 + 3 +···+ (k?1) = k(k?1)2 + 2§=?1Lkk
nê?kk"
e?5y§3:x0 ∈ [0,1]§x→x0?§y → 0.
é?ε> 0§k =
bracketleftbigg1
ε
bracketrightbigg
§3[0,1]t§?1Lkknê?r1,r2,···,rl.
δ = min
limits1lessorequalslantilessorequalslantl|ri?x0|§K0 <|x?x0|<δ§=x /∈{r1,r2,···,rn}§?ò′xnê§k
nêpq§?q greaterorequalslantk+ 1 >k?§òk|y?0| =
1
q lessorequalslant
1
k+ 1,x?knêx =
p
q,q>k
0 <ε,xnê
.
lim
x→x0
y = 0 §u′μn:?′d?ê?Y:§kn:?′d?ê?£Y:.
(10)? lim
x→?1+0
y =?1,lim
x→?1?0
y = 1§x =?1?1?aY:.
(11)? lim
x→?1+0
y = 0,lim
x→?1?0
y = 2§x =?1?1?aY:.
(12) (i) x0 negationslash= n,n∈Z§
kn:rn →x0?rn >x0§K lim
rn→x0+0
f(rn) = sinpix0 negationslash= 0?
?n:xn →x0?xn >x0§K lim
xn→x0+0
f(xn) = 0"
f(x0 + 0)?3§l
xnegationslash= n(n∈Z)ê1aY:.
(ii) x0 = n,n∈Z§
xnê?§|f(x)?f(n)| = 0?
x?knê?§|f(x)?f(n)| lessorequalslant pi|x?n|§é?ε > 0,?δ = εpi > 0§||x?n| < δ?§k|f(x)?
f(n)|<ε§f(x)3x = n(n∈Z)?Y.
15,x = 0?e?êf(x)§áf(0)ê?§|f(x)3x = 0?Yμ
(1) f(x) =
√1 +x?1
3√1 +x?1
(2) f(x) = tan2xx
(3) f(x) = sinx·sin 1x
(4) f(x) = (1 +x)1x
)μ
(1)?lim
x→0
f(x) = lim
x→0
√1 +x?1
3√1 +x?1 = limx→0
3radicalbig(1 +x)2 + 3√1 +x+ 1
√1 +x+ 1 = 32§
f(0) = 32.
(2)?lim
x→0
f(x) = lim
x→0
tan2x
x = 2§
f(0) = 2.
(3)?lim
x→0
f(x) = lim
x→0
sinx·sin 1x = 0§
f(0) = 0.
(4)?lim
x→0
f(x) = lim
x→0
(1 +x)1x = e§
f(0) = e.
16,ef(x)3[a,b]?Y§a<x1 <x2 <···<xn <b§K3[x1,xn]¥7kξ§|f(ξ) = f(x1) +f(x2) +···+f(xn)n,
y2μM = max
1lessorequalslantilessorequalslantn
f(xi),m = min
1lessorequalslantilessorequalslantn
f(xi)
Kf(x1) +f(x2) +···+f(xn)n lessorequalslantM?
ónf(x1) +f(x2) +···+f(xn)n greaterorequalslantm.
duf(x)3[x1,xn]? [a,b]t?Y§d0n§7?ξ ∈ [x1,xn]? [a,b]§|f(ξ) = f(x1) +f(x2) +···+f(xn)n,
17,^Yyμ
39
(1) f(x) = 3√x3[0,1]t′Y?
(2) f(x) = sinx3(?∞,+∞)t′Y?
(3) f(x) = sinx23(?∞,+∞)tY.
y2μ
(1) éx1,x2 ∈ [0,1]§| 3√x1? 3√x2| = |x1?x2|3radicalbigx2
1 + 3
√x
1x2 + 3
radicalbigx2
2
= |x1?x2|3
4(
3√x1 + 3√x2)2 + 1
4(
3√x1? 3√x2)2 lessorequalslant
|x1?x2|
1
4(
3√x1? 3√x2)2§
=14| 3√x1? 3√x2|3 lessorequalslant|x1?x2|§?=| 3√x1? 3√x2|lessorequalslant 3radicalbig4|x1?x2|
é?ε> 0,?δ = ε
3
4 > 0§|é?x1,x2 ∈ [0,1]§|x1?x2|<δ?§ok|
3√x1? 3√x2|lessorequalslant 3
radicalbig4|x
1?x2|<
ε
l
f(x) = 3√x3[0,1]t′Y.
(2) éx1,x2 ∈ (?∞,+∞)§|sinx1?sinx2| = 2
vextendsinglevextendsingle
vextendsinglecos x1 +x22 sin x1?x22
vextendsinglevextendsingle
vextendsinglelessorequalslant 2
vextendsinglevextendsingle
vextendsinglex1?x22
vextendsinglevextendsingle
vextendsingle= |x1?x2|§
é?ε > 0,?δ = ε > 0§|é?x1,x2 ∈ (?∞,+∞)§|x1?x2| < δ?§ok|sinx1? sinx2| lessorequalslant
|x1?x2|<ε
l
f(x) = sinx3(?∞,+∞)t′Y.
(3) ε0 = 1§éδ> 0§xprimen =radicalbig2npi+ pi2,xprimeprimen =radicalbig2npi? pi2§|xprimen?xprimeprimen| = |radicalbig2npi+ pi2?radicalbig2npi? pi2| =vextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle piradicalbig2npi+ pi
2 +
radicalbig2npi? pi
2
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle→ 0(n→∞)
n§k|xprimen?xprimeprimen|<δ§
|sin(xprimen)2?sin2(xprimeprimen)2| = |1?(?1)| = 2 > 1 = ε0
l
f(x) = sinx23(?∞,+∞)tY.
40
§4,tút
1,|etx→ 0?úì?ü?μ
(1) x3 +x6
(2) 4x2 + 6x3?x5
(3) √x·sinx
(4) radicalbigx2 + 3√x
(5) √1 +x?√1?x
(6) tanx?sinx
(7) ln(1 +x)
)μ
(1) dulim
x→0
x3 +x6
x3 = limx→0(1 +x
3) = 1§§′3t§§ì?üx3.
(2) dulim
x→0
4x2 + 6x3?x5
4x2 = limx→0(1 +
3
2x?
x3
4 ) = 1§§′2t§§ì?ü4x
2.
(3) dulim
x→0
√x·sinx
|x| = limx→0
radicalbigg
sinx
x = 1§§′1t§§ì?ü|x|.
(4) dulim
x→0
radicalbigx
2 + 3√x
6√x = limx→0
radicalBig
x53 + 1 = 1§§′16t§§ì?ü 6√x.
(5) dulim
x→0
√1 +x?√1?x
x = limx→0
2x
x(√1 +x+√1?x) = 1§§′1t§§ì?ü?
x.
(6) dulim
x→0
tanx?sinx
x3
2
= lim
x→0
2tanx?sinxx3 = lim
x→0
2(1?cosx)
cosx·x2 = limx→0
x2
x2 = 1§§′3
t§§ì?üx
3
2,
(7) dulim
x→0
ln(1 +x)
x = 1§§′1t§§ì?üx.
2,x→∞?§|eCtúì?ü?μ
(1) x2 +x6
(2) 4x2 + 6x4?x5
(3) 3
radicalbigg
x2 sin 1x
(4)
radicalBig
1 +radicalbig1 +√x
(5) 2x
5
x3?3x+ 1
)μ
(1) du lim
x→∞
x2 +x6
x6 = 1§§′6t§§ì?üx
6.
(2) du lim
x→∞
4x2 + 6x4?x5
x5 = 1§§′5t§§ì?üx
5.
(3) du lim
x→∞
3
radicalbigg
x2 sin 1x
3√x = limx→∞
3√x
3√x = 1§§′
1
3t§§ì?ü
3√x.
(4) du lim
x→∞
radicalBig
1 +radicalbig1 +√x
8√x = limx→∞
radicaltpradicalvertex
radicalvertexradicalbtparenleftbigg1
x
parenrightbigg1
4 +
radicalBiggparenleftbigg
1
x
parenrightbigg1
2 + 1 = 1§§′1
8t§§ì?
ü 8√x.
41
(5) du lim
x→∞
2x5
x3?3x+ 1
2x2 = limx→∞
x3
x3?3x+ 1 = 1§§′2t§§ì?ü2x
2.
3,áyμ?x→ 0?
(1) o(?xm) +o(?xn) = o(?xn)(m>n> 0)
(2) o(?xm)o(?xn) = o(?xm+n)(m,n> 0)
(3) |f(x)|lessorequalslantM§Kf(x)o(?x) = o(?x)
(4)?xm ·o(1) = o(?xm)
y2μ
(1) du?x→ 0§?xm → 0,?xn → 0§u′o(?x
m)
xm → 0,
o(?xn)
xn → 0
qm>n> 0§?x
m
xn =?x
m?n → 0 §u′o(?xm) +o(?xn)
xn =
o(?xm)
xm ·
xm
xn +
o(?xn)
xn → 0§
l
o(?xm) +o(?xn) = o(?xn)
(2) du?x→ 0§?xm → 0,?xn → 0§u′o(?x
m)
xm → 0,
o(?xn)
xn → 0
u′o(?x
m)o(?xn)
xm+n =
o(?xm)
xm ·
o(?xn)
xn → 0§
l
o(?xm)o(?xn) = o(?xm+n)
(3)?x → 0§o(?x)?x → 0§q|f(x)| lessorequalslant M§f(x)k.§u′f(x)o(?x)?x = f(x)o(?x)?x → 0§l
f(x)o(?x) = o(?x).
(4) do(1)u′t§Ko(1) → 0§u′?x
m ·o(1)
xm =
xm
xmo(1) = o(1) → 0§l
x
m ·o(1) =
o(?xm).
42
1ü? 4?Y?
1nù 'u¢ê??n9
4?mt?Y?ê5?y2
§1,'u¢ê??n
1,luy2e(.5.
y2μα,αprime?′ê8Ee(.§u′?x∈E§?kxgreaterorequalslantα§=α′Ee.?xgreaterorequalslantαprime§=αprime′Ee..
duα′Ee(.§′e.¥§l
kα greaterorequalslant αprime?ódαprime′Ee(.§kαprime greaterorequalslant α.dd
α = αprime.
2,β = supE,β /∈E§áygE¥?àê{xn}§ù4β?qeβ ∈E§K?/X?o
y2μ
(1) duβ = supE,β /∈E§Kdt(.§
(i) é?x∈E§?kx<β?
(ii) é?ε> 0§?3êx0 ∈E§|x0 >β?ε.
εn = 1n§éz?εn?kxn ∈ E§|β > xn > β?εn§=0 < β?xn < εn§u′?àê
{xn}?E.
q lim
n→∞
(β?εn) = β? lim
n→∞
εn = β?β greaterorequalslant lim
n→∞
xn greaterorequalslant lim
n→∞
(β?εn) = β§ lim
n→∞
xn = β.
(2) β ∈ E?§·K¤á"~μ?¤á"E = (1,12,13,···,1n,···),β = supE = 1,1 ∈ E.
q1n → 0(n→∞)§KE¥f4?t?0§β ∈E?§·K?¤á"
¤á"E =
braceleftbigg
sin pi8,sin 2pi8,···,sin npi8,···
bracerightbigg
,β = supE = 1,1 ∈E§xn = sin 16n+ 48 pi§K lim
n→∞
xn =
1§β ∈E?§·K¤á"
3,T~μ
(1) kt(.?e(.ê?
(2) 1kt(.?1ke(.ê?
(3) Q1kt(.q1ke(.ê?
(4) Q?1kt(.§q?1ke(.ê§ù¥t!e(.?k?.
)μ
(1) {xn} = {?n},sup{xn} =?1
(2) {xn} = {1n},sup{xn} = 1 ∈{xn},inf{xn} = 0 /∈{xn}
(3) {xn} = {1 + (?1)n},sup{xn} = 2 ∈{xn},inf{xn} = 0 ∈{xn}
(4) E =
parenleftbigg
1,12,1 + 12,13,1 + 23,···,1n,1 + n?1n
parenrightbigg
,supE = 2 /∈E,infE = 0 /∈E
4,áyê7kt(.úe(.§au+∞ê7ke(.§au?∞ê7kt(..
y2μ
(1) éue?~êê§w,t!e(.t.
éu?e?~êê§?{xn}§={xn}k4?§Kd1ù§1?n4§ê{xn}′k.ê.
l
dù?nn§ê{xn}kt!e(.§=ê7kt!e(..
5μy2μt!e(.β,α¥?káu{xn}.
ˉ¢t§eα = β§Kα = β = xn,n = 1,2,···
eαnegationslash= β§?α /∈{xn}§KdSK2§3f
braceleftBig
x(1)nk
bracerightBig
u�3f
braceleftBig
x(2)nk
bracerightBig
uβ§
{xn}§ù{xn}g?§α,β¥?káu{xn}.
(2)?{xn}′au+∞ê§K?N ∈Z+§n>N?§ekxn >x1§u′x1,x2,···,xN¥??§=
{xn}e(."
43
(3)?{xn}′au?∞ê§K?N ∈Z+§n>N?§ekxn <x1§u′x1,x2,···,xN¥§=
{xn}t(."
5,|ê{xn}t!e(.:
(1) xn = 1? 1n
(2) xn =?n[2 + (?2)n]
(3) x2k = k,x2k+1 = 1 + 1k(k = 1,2,3,···)
)μ
(1) α = 0£¤§β = 1£¤
(2)? lim
k→∞
bracketleftbig?2kparenleftbig2 + (?2)2kparenrightbigbracketrightbig=?∞,lim
k→∞
bracketleftbig?(2k+ 1)parenleftbig2 + (?2)2k+1parenrightbigbracketrightbig= +∞§{x
n}?t!e(..
(3)? lim
k→∞
x2k = lim
x→∞
k = +∞§{xn}?t(.?
q?x2k greaterorequalslant 1,k = 1,2,3,··· ;x2k+1 > 1?min{x2k} = 1§inf{xn} = 1£¤.
6,y2μüN~ke.ê7k4?.
y2μdu{yn}ke.§{yn}7ke(..
de(.kμ(i)yn greaterorequalslantα(n = 1,2,3,···)?(ii)é?ε> 0§?kyN ∈{yn}§|yN <α+ε.
du{yn}′üN~ê§n > N?§kyn < α+ε§=n > N?§k0 lessorequalslant yn?α < ε§u′yn →
α(n→∞).
l
üN~ke.ê7k4?.
7,ám@?n^?μeò4?mU?m?m§(JX?oeò^?[a1,b1]? [a2,b2]? ···K?ò^
bn?an → 0K§(JNoáT~`2.
)μ
(1) 3?m@?n¥§eò4?mU?m?m§=
(i) (an+1,bn+1)? (an,bn)?
(ii) lim
n→∞
(bn?an) = 0
K?±y2{an},{bn}Euó?4?ξ§= lim
n→∞
an = lim
n→∞
bn = ξ§d?ξ?U??áuù
m
m§=ξ /∈ (an,bn)(n∈Z+)§?=ξ?U(an,bn)ú:.
~μm?m
braceleftbigg
(0,1n)
bracerightbigg
§
(i)
parenleftbigg
0,1n+ 1
parenrightbigg
parenleftbigg
0,1n
parenrightbigg
(ii) lim
n→∞
parenleftbigg1
n?0
parenrightbigg
= lim
n→∞
1
n = 0?
an = 0 → 0(n→∞);bn = 1n → 0(n→∞)§Kξ = 0 /∈
parenleftbigg
0,1n
parenrightbigg
§=(¤á.
(2) eò^?[an+1,bn+1]? [an,bn]K§=?k^?bn?an → 0¤á§K?Uy{an}?{bn}.
~μ4?m
bracketleftbigg
n? 1n,n+ 1n
bracketrightbigg
′@,lim
n→∞
bracketleftbigg
n+ 1n?
parenleftbigg
n? 1n
parenrightbiggbracketrightbigg
= lim
n→∞
2
n = 0§
limn→∞
parenleftbigg
n+ 1n
parenrightbigg
lim
n→∞
parenleftbigg
n? 1n
parenrightbigg
.
?3ξ?{an},{bn}ú4?§=(¤á.
(3) eò^?bn?an → 0K§=?k^?[an+1,bn+1]? [an,bn]¤á.K?±y2{an},{bn}£m
@?ny2?¤§?Uy lim
n→∞
bn = lim
n→∞
an¤á§l
[an,bn]ú:§$yú
?m.
~μ4?m
bracketleftbigg
1? 1n+ 1,2 + 1n+ 1
bracketrightbigg
bracketleftbigg
1? 1n,2 + 1n
bracketrightbigg
,n∈Z+§? lim
n→∞
bracketleftbigg
2 + 1n?
parenleftbigg
1? 1n
parenrightbiggbracketrightbigg
= 1.
d lim
n→∞
an = 1,lim
n→∞
bn = 2§[1,2]?
bracketleftbigg
1? 1n,2 + 1n
bracketrightbigg
,n∈Z+§=(¤á.
8,e{xn}?.§t§K73ü?fx(1)nk →∞,x(2)nk →a(a?,k?ê).
y2μky
braceleftBig
x(1)nk
bracerightBig
′t.
du{xn}?.§é¢êM > 0§?knprime ∈Z+§||xnprime|>M.
M = 1§K73n1§|
vextendsinglevextendsingle
vextendsinglex(1)n1
vextendsinglevextendsingle
vextendsingle > 1?M = 2§K73n2§|
vextendsinglevextendsingle
vextendsinglex(1)n2
vextendsinglevextendsingle
vextendsingle > 2?···?M = K§K7
44
3nK >nK?1§|
vextendsinglevextendsingle
vextendsinglex(1)nK
vextendsinglevextendsingle
vextendsingle>K§···.
K??f
braceleftBig
x(1)nk
bracerightBig
§é?M ∈Z+§K = M§Kk>K?§òk
vextendsinglevextendsingle
vextendsinglex(1)nk
vextendsinglevextendsingle
vextendsingle>M§k limk→∞x(1)nk = ∞.
d?{xn}?′t§Kd§?M0 > 0§é?N ∈ Z+§?km ∈ Z+§m > N?§
k|xm|<M0.
yN = m0parenleftbigm0 ∈Z+parenrightbig§K?km1 >m0§||xm1|lessorequalslantM0
2N = m1§K?km2 >m1§||xm2|lessorequalslantM0§···
Xd?1e§K??mtμm1 < m2 < ··· < mt < ···§||xmt| lessorequalslant M0§=f{xmt}?|xmt| lessorequalslant
M0(mt ∈Z+)§ù`2f{xmt}k.§d5?n§k.f{xmt}7kf.
Pùf?{x(2)nk}§§?′{xn}f?§ua.= lim
k→∞
x(2)nk = a£a?,k?ê¤.
9,k.ê{xn}e§K73ü?fx(1)nk →a,x(2)nk →b(anegationslash= b).
y2μdu{xn}k.§Kd5?n§7kfx(1)nk →a.
du{xn}§3ε0 > 0§3(a?ε0,a+ε0) k{xn}§¤{xn}f§P?
braceleftBig
x(2)n
bracerightBig
.
du
braceleftBig
x(2)n
bracerightBig
k.§3fx(2)nk →b§w,anegationslash= b.
10,e3?m[a,b]¥ü?ê
braceleftBig
x(1)n
bracerightBig
9
braceleftBig
x(2)n
bracerightBig
÷vx(1)n?x(2)n → 0(n→∞)§K3düê¥Ué?k?óv
Inkf§|x(1)nk →x0,x(1)nk →x0(k→∞).
y2μ?
braceleftBig
x(1)n
bracerightBig
[a,b]§K
braceleftBig
x(1)n
bracerightBig
k.ê§Kd5?n§
braceleftBig
x(1)n
bracerightBig
7kf§P?
braceleftBig
x(1)nk
bracerightBig
§
lim
k→∞
x(1)n = x0.
3
braceleftBig
x(2)n
bracerightBig
¥
braceleftBig
x(1)nk
bracerightBig
k?óvIf
braceleftBig
x(2)nk
bracerightBig
.
x(1)n?x(2)n → 0(n→∞)§K lim
k→∞
parenleftBig
x(1)nk?x(2)nk
parenrightBig
= 0§
u′ lim
k→∞
x(2)nk = lim
k→∞
bracketleftBig
x(1)nk?
parenleftBig
x(1)nk?x(2)nk
parenrightBigbracketrightBig
= lim
k→∞
x(1)nk? lim
k→∞
parenleftBig
x(1)nk?x(2)nk
parenrightBig
= x0?0 = x0.
11,|^?üneê5μ
(1) xn = a0 +a1q+a2q2 +···+anqn(|q|< 1,|ak|lessorequalslantM)
(2) xn = 1 + sin12 + sin222 +···+ sinn2n
(3) xn = 1? 12 + 13?···+ (?1)n+1 1n
y2μ
(1) n>m§K|xn?xm| =vextendsinglevextendsingleam+1qm+1 +am+1qm+1 +···+anqnvextendsinglevextendsinglelessorequalslantMparenleftbig|q|m+1 +|q|m+2 +···+|q|nparenrightbig=
M|q|m+1 1?|q|
n?m
1?|q| <M|q|
m+1 1
1?|q| → 0(m→∞)
é?ε> 0,?N ∈Z+§n>m>N?§kM|q|m+1 11?|q| <ε§l
k|xn?xm|<ε.
d?ün§{xn}7.
(2) m > n§é?ε > 0£ε < 12¤§du|xm?xn| =
vextendsinglevextendsingle
vextendsinglevextendsinglesin(n+ 1)
2n+1 +
sin(n+ 2)
2n+2 +···+
sinm
2m
vextendsinglevextendsingle
vextendsinglevextendsingle lessorequalslant
1
2n+1 +
1
2n+2 +···+
1
2m =
1
2n+1
parenleftbigg
1 + 12 +···+ 12m?n?1
parenrightbigg
= 12n+1
1?
parenleftbigg1
2
parenrightbiggm?n
1? 12
< 12n§e?|xm?
xn|<ε§ 12n <ε=?.
N =
lnε
ln 12
∈Z+§m>n>N?§k|x
m?xn|<ε.
d?ün§{xn}7.
£?μ3£1¤¥-a0 = 1,ak = sink,q = 12§Kd£1¤=£2¤¤.
(3) é?ε> 0§é?k∈Z+§du|xn+k?xn| =
vextendsinglevextendsingle
vextendsinglevextendsingle(?1)n+2
n+ 1 +
(?1)n+3
n+ 2 +···+
(?1)n+k?1
n+k
vextendsinglevextendsingle
vextendsinglevextendsingle=
vextendsinglevextendsingle
vextendsinglevextendsingle 1
n+ 1?
1
n+ 2 +···+
(?1)k?1
n+k
vextendsinglevextendsingle
vextendsinglevextendsingle=
1
n+ 1?
parenleftbigg 1
n+ 2?
1
n+ 3 +···+
(?1)k
n+k
parenrightbigg
< 1n+ 1 < 1n§e?|xn+k?xn|<ε§1n <ε=?.
45
N =
bracketleftbigg1
ε
bracketrightbigg
§Kn+k>n>N?§k|xn+k?xn|<ε.
d?ün§{xn}7.
12,|^k?CX?ny2?dA.d?n.
y2μ{xn}?k.ê§K73a,b§|alessorequalslantxn lessorequalslantb.
^?y{"b{xn}f§Kéx0 ∈ [a,b]§?kε0 > 0§|3O(x0,ε0)¥?1
k{xn}k.
Ké?ε> 0§3O(x0,ε)¥1k{xn}.
εn = 1n§w,3O(x0,εn)¥?1k{xn}§K3{xn}¥??μxn1 ∈ O(x0,1)§q?
xn2 ∈O
parenleftbigg
x0,12
parenrightbigg
(n2 >n1)§Xd?1e§?{xn}f{xnk},|xnk?x0|< 1k§é?M ∈Z+§
K = M§Kk>K?§òk|xnk?x0|< 1k < 1K < 1M§Kxnk →x0(k→∞)ù?bg?.
dx0 ∈ [a,b]5§é[a,b]¥z?:?kù?§|d1{xn}k§¤kù
?
¤[a,b]mCX.
dk?CX?n§K3kCX[a,b]§?
[a,b]1k{xn}k§ùxn ∈ [a,b]g
§b?¤á§K{xn}7kf.
13,|^?dA.d?ny2üNk.ê7k4?.
y2μ{xn}?üNO\k.ê§x1 lessorequalslantx2 lessorequalslant···lessorequalslantxn lessorequalslant···lessorequalslantM
a?dA.d?n§3f{xnk},lim
k→∞
xnk = a.
eyμ lim
n→∞
xn = a.
kyxn lessorequalslanta,n = 1,2,···.e?,§?N ∈Z+§|xN >a.
dunk →∞(k→∞)§k§7knk >N§l
xnk greaterorequalslantxN >a§u′a = lim
k→∞
xnk greaterorequalslantxN >ag?.
2y lim
n→∞
xn = a.
é?ε> 0,?k0§|
vextendsinglevextendsingle
vextendsinglexnk0?a
vextendsinglevextendsingle
vextendsingle= a?xnk0 <ε.
N = nk0§Kn>N?§kxn greaterorequalslantxnk0 = xN§l
k|a?xn| = a?xn lessorequalslanta?xnk0 <ε§ lim
n→∞
xn = a.
=üNO\k.ê7k4?.
ón?§üN~k.ê7k4?§l
üNk.ê7k4?.
14,(1) y2üNk.?ê3?!m4
(2) y2üNk.?êY:1?aY:.
y2μ
(1) d??f(x)3(a,b)tüNO\k.§?x0 ∈ (a,b)§β(x0) = sup
a<x<x0
f(x)§
dt(.§é?ε> 0§?kxprime ∈ (a,x0)§|f(xprime) >β(x0)?ε=f(xprime) +ε>β(x0)
δ = x0?xprime > 0§?f(x)3(a,b)tüNO\§δ>x0?x> 0=xprime <x?§kf(xprime) <f(x)§u′
kf(x) +ε>β(x0)=0 lessorequalslantβ(x0)?f(x) <ε§l
|β(x0)?f(x)|<ε
`2 lim
x→x0?0
f(x) = β(x0).=f(x)3x03?4?.
ón?§f(x)3(a,b)tüN~k.?§f(x)3x03?4?§l
üNk.?ê3?4?.
ón?§üNk.?ê3m4?.
(2) x0?f(x)Y:§Kd£1¤(?f (x0?0)úf (x0 + 0)3§d?f (x0?0) negationslash= f (x0 + 0)"
K§f (x0?0) = f (x0 + 0)§df(x)üN5§7kf (x0) = f (x0?0) = f (x0 + 0).
ù`2x0′?Y:§g?§f (x0?0) negationslash= f (x0 + 0)§l
x0′f(x)1?aY:.
15,y2 lim
x→+∞
f(x)37?^?′μéε > 0§3X > 0§xprime,xprimeprime > X?ek|f(xprime)?
f(xprimeprime)|<ε.
y2μ lim
x→+∞
f(x)3§ lim
x→+∞
f(x) = A.
é?ε> 0,?X > 0§x>X?§k|f(x)?A|< ε2
xprime,xprimeprime > X?§k|f(xprime)?A| < ε2,|f(xprimeprime)?A| < ε2§K|f(xprime)?f(xprimeprime)| = |f(xprime)?A? (f(xprimeprime)?A)| lessorequalslant
|f(xprime)?A|+|f(xprimeprime)?A|<ε§l
éε> 0§3X > 0§xprime,xprimeprime >X?ek|f(xprime)?f(xprimeprime)|<ε.
3f(x)S§àê{xn}§|xn → +∞(n→∞)
d?§é?ε> 0,?X > 0§xprime,xprimeprime >X?§ek|f(xprime)?f(xprimeprime)|<ε.
q?xn → +∞§u′ét?X > 0§N ∈ Z+§n > N?§kxn > X§l
n,m > N?§ò
kxn >X,xm >X§?
k|f(xn)?f(xm)|<ε.
46
d?ün§ lim
n→∞
f(xn)3§ lim
n→∞
f(xn) = A
dxn59?ê4ê4?'X§ lim
x→+∞
f(x) = A= lim
x→+∞
f(x)3.
16,y2 lim
x→x0
f(x)37?^?′μéε> 0§3δ > 0§0 < |xprime?x0| <δ,0 < |xprimeprime?x0| <
δ?§ek|f(xprime)?f(xprimeprime)|<ε.
y2μ lim
x→x0
f(x)3§ lim
x→x0
f(x) = A.
é?ε> 0,?δ> 0§0 <|x?x0|<δ?§k|f(x)?A|< ε2
0 < |xprime?x0| < δ,0 < |xprimeprime?x0| < δ?§k|f(xprime)?A| < ε2,|f(xprimeprime)?A| < ε2§K|f(xprime)?f(xprimeprime)| =
|f(xprime)?A? (f(xprimeprime)?A)| lessorequalslant |f(xprime)?A| + |f(xprimeprime)?A| < ε§l
éε > 0§3δ > 0§0 <
|xprime?x0|<δ,0 <|xprimeprime?x0|<δ?§ek|f(xprime)?f(xprimeprime)|<ε.
3f(x)S§àê{xn}§|xn →x0?xn negationslash= x0(n→∞)
d?§é?ε > 0,?δ > 0§xprime,xprimeprime ∈ D(f)§?0 < |xprime?x0| < δ,0 < |xprimeprime?x0| < δ?§òk|f(xprime)?
f(xprimeprime)|<ε.
q?xn →x0,xn negationslash= x0(n→ ∞)§u′ét?δ > 0§N ∈Z+§n>N?§k0 <|xn?x0|<δ§l
n,m>N?§òk0 <|xn?x0|<δ,0 <|xm?x0|<δ§?
k|f(xn)?f(xm)|<ε.
dê?ün§ lim
n→∞
f(xn)3§ lim
n→∞
f(xn) = A
d{xn}′±x0?4?ê?xn negationslash= x0 9?ê4ê4?'X§ lim
x→x0
f(x) = A= lim
x→x0
f(x)
3.
17,y2f(x)3x0:?Y7?^?′μéε> 0§3δ> 0§|xprime?x0|<δ,|xprimeprime?x0|<δ?§e
k|f(xprime)?f(xprimeprime)|<ε.
y2μf(x)3x0:?Y§Ké?ε> 0,?δ> 0§|x?x0|<δ?§k|f(x)?f(x0)|< ε2
|xprime? x0| < δ,|xprimeprime? x0| < δ?§k|f(xprime)? f(x0)| < ε2,|f(xprimeprime)? f(x0)| < ε2§K|f(xprime)? f(xprimeprime)| =
|f(xprime)?f(x0)? (f(xprimeprime)?f(x0))| lessorequalslant |f(xprime)?f(x0)| + |f(xprimeprime)?f(x0)| < ε§l
éε > 0§
3δ> 0§|xprime?x0|<δ,|xprimeprime?x0|<δ?§ek|f(xprime)?f(xprimeprime)|<ε.
xprime = x0,xprimeprime = x§Kd?§é?ε> 0,?δ> 0§|x?x0|<δ?§òk|f(x)?f(x0)|<ε.
l
f(x)3x0:?Y.
47
§2,4?mt?Y?ê5?y2
1,y2μeüNk.?êf(x)?f(a),f(b)?m§Kf(x)3[a,b]?Y.
y2μf(x)?üNO\k.?ê.
dù§1,14K£1¤§f(x)3[a,b]à:a(b)?m£?¤4?3§d?f(a) = f(a+ 0)(f(b) = f(b?
0))§
e?,§7kf(a) <f(a+ 0) = inf
a<x<b
f(x)(f(b) >f(b?0) = sup
a<x<b
f(x))§u′df(x)?f(a)?f(b)?
m§éf(a) < y < f(a + 0)(f(b? 0) < y < f(b))§7kx ∈ (a,b)§|f(x) = y§d
f(a+ 0) = inf
a<x<b
f(x)(f(b?0) = sup
a<x<b
f(x))g?.
dd?f(x)3a(b)m£?¤?Y.
ekx0 ∈ (a,b)§|f(x)3x0:Y"d§1,14(2)(?§x07?1?am?:§=f(x0 + 0)úf(x0?
0)3§f(x0 + 0) negationslash= f(x0?0).
q?f(x)?üNO?ê§f(x0?0) lessorequalslantf(x0) <f(x0 + 0)?f(x0?0) <f(x0) lessorequalslantf(x0 + 0)§ù?f(x)?
(f(x0?0),f(x0 + 0))?méuf(x0)?§ùg?§b?¤á.
u′f(x)3[a,b]?Y.
ón§f(x)?üN~k.?ê?§f(x)3[a,b]?Y.
l
f(x)3[a,b]?Y.
2,y2μ?êf(x)3(a,b)?Y§f(a+ 0),f(b?0)3§Kf(x)?f(a+ 0)úf(b?0)?m(?U?
uf(a+ 0),f(b?0)).
y2μduf(a+ 0),f(b?0)3§Kf(a) = f(a+ 0),f(b) = f(b?0).
qf(x)3(a,b)?Y§Kf(x)3[a,b]?Y§?
f(x)3[a,b]t7kMú??m.
2d0n§f(x)?±Múmm.
eM = f(a+ 0)(?f(b?0))§m = f(b?0)(?f(b?0))§ù?f(x)?(f(a+ 0),f(b?0))¥(
U?uf(a+ 0),f(b?0)).
eM >f(a+ 0)(?f(b?0))§m<f(b?0)(?f(b?0))§ù?f(x)?(f(a+ 0),f(b?0))¥(?
Uuf(a+ 0),f(b?0)),f(x)?f(a+ 0)úf(b?0)?m(?U?uf(a+ 0),f(b?0)).
3,y2(a,b)t?Y?êY7?^?′μf(a+ 0),f(b?0)3.
y2μ?f(x)?(a,b)t?Y?ê
f(a+ 0),f(b?0)3§Kf(a) = f(a+ 0),f(b) = f(b?0)§u′f(x)3[a,b]?Y§Kdx÷?
n§f(x)3[a,b]tY§l
f(x)3(a,b)tY.
f(x)3(a,b)tY§Kd§é?ε > 0,?δ(ε) > 0§x1,x2 ∈ (a,b)?|x1?x2| < δ(ε)?§
k|f(x1)?f(x2)|<ε.
éa§0 <x1?a< δ(ε)2,0 <x2?a< δ(ε)2?§|x1?x2| = |(x1?a)?(x2?a)|lessorequalslant|x1?a|+|x2?a|<δ(ε)§
Kk|f(x1)?f(x2)|<ε.
d?ün§ lim
x→a+0
f(x)3§=f(a+ 0)3?k?.
ón§f(b?0)3?k?.
4,e?êf(x)3(?∞,+∞)tk?4?mt?Y§K§3(?∞,+∞)tk?m?mtY.
y2μ(a,b)?(?∞,+∞)tk?m?m§K[a,b]?(?∞,+∞)tk?4?m.
f(x)3[a,b]t?Y§Kdx÷?n§f(x)3[a,b]tY§?
f(x)3(a,b)tY.
d(a,b)5§f(x)3(?∞,+∞)tk?m?mtY.
5,?êf(x) = x23(?∞,+∞)9(?l,l)t(l> 0)′Yo
)μ
(1) f(x) = x23(?∞,+∞)tY.
x1 >x2 > 0§?x1,x2 ∈ (?∞,+∞),|f(x1)?f(x2)| = |x21?x22| = |x1+x2||x1?x2| = (x1+x2)(x1?
x2) > 2x2(x1?x2)§3ε0 > 0§é?η> 0§x2 = 2ε0η,x1 = x2 + η2§
w,kx1 >x2 > 0?|x1?x2| = η2 <η§|f(x1)?f(x2)|> 2x2(x1?x2) = 2· 2ε0η · η2 = 2ε0 >ε0§
l
f(x) = x23(?∞,+∞)tY.
(2) f(x) = x23(?l,l)(l> 0)tY.
f(x)3[?l,l](l> 0)t′?Y§Kdx÷?n§f(x)3[?l,l]tY§l
f(x) = x23(?l,l)t
Y.
6,ef(x)3(a,b)Sk§é(a,b)Sx§3x,??Ox§|f(x)3OxSk..ˉμf(x)3(a,b)S
′?k.oqeò(a,b)U?[a,b]§X?o
y2μ
48
(1) f(x)3(a,b)k..
~μ?.μf(x) = 1x3(0,1)Sk§?é?x∈ (a,b)?Y§7?ük.§=3x?Ox(O(x,δx))§
|§3Ox(O(x,δx))Sk.§§3(0,1)S?..
k.μf(x) = sinx3
parenleftBig
0,pi2
parenrightBig
k§é
parenleftBig
0,pi2
parenrightBig
Sx§3x,??Ox§|f(x)3OxSk
.?f(x)3
parenleftBig
0,pi2
parenrightBig
tk.§?0 <f(x) < 1.
(2) f(x)3[a,b]k..
f(x)3[a,b]Sk§Kμf(x)3(a?δ,a)f(a)§f(x)3(b,b+δ)f(b).
d?é[a,b]Sx§3x,??Ox§|f(x)3OxSk.§=?M > 0§||f(x)| lessorequalslant M§?
d3[a,b]tz?:?ù?£?=m?m¤§ù
m?mN¤m?m8§§CX
[a,b].
dk?CX?n§3ù
m?m8¥7kkm?mCX
[a,b]§Pùkm?m?(x1?
δ1,x1 +δ1),(x2?δ2,x2 +δ2),···,(xk?δk,xk +δk)§?AM?OP?M1,M2,···,Mk§X8
M? = max{M1,M?2,···,Mk}.
é[a,b]t:x§d?mCXVg§3ùk?m?mO(xi,δi)(i = 1,2,···,k)¥?k1x§
P§?O(xi,δi)§?3ù?m?mt§k|f(x)|lessorequalslantMi§|f(x)|lessorequalslantMi lessorequalslantM?.
dux?[a,b]t:§K3[a,b]to¤á|f(x)|lessorequalslantM?§l
y2
f(x)3[a,b]tk..
7,y2(a,b)tY?ê7k..
y2:?f(x)?(a,b)tY?ê§KdSK3§f(x)3(a,b)t?Y?f(a+0),f(b?0)3§u′
μf(a) = f(a+ 0),f(b) = f(b?0)§Kf(x)3[a,b]t?Y§u′f(x)3[a,b]tk.§l
f(x)3(a,b)t
k..
8,Uy2§üY?êúEY.kˉμüY?êèX?o
y2μ
(1) f(x)?g(x)3mXtY.
f(x)3?mXtY§Kdé?ε> 0,?δ1 > 0§é?mXSü:xprime,xprimeprime§|xprime?xprimeprime|<
δ1§òk|f(xprime)?f(xprimeprime)|< ε2.
q?g(x)3?mXtY§Kdét?ε > 0,?δ2 > 0§é?mXSü:xprime,xprimeprime§|xprime?
xprimeprime|<δ2§òk|g(xprime)?g(xprimeprime)|< ε2.
δ = min{δ1,δ2}§K|xprime?xprimeprime|<δ?§k|f(xprime)+g(xprime)?(f(xprimeprime)+g(xprimeprime))| = |f(xprime)?f(xprimeprime)+(g(xprime)?
g(xprimeprime))|lessorequalslant|f(xprime)?f(xprimeprime)|+|g(xprime)?g(xprimeprime)|< ε2 + ε2 = ε.
l
f(x)3?mXtY.
(2) (i) e?mX?km§K(?¤á.
f(x),g(x)3?mXtY§KdtK(?§3~êL> 0,M > 0§||f(x)|<L,g(x) <
M(x∈X).
qd§?ε > 0,?δ1 > 0§é?mXSü:xprime,xprimeprime§|xprime?xprimeprime| < δ1§ò
k|f(xprime)?f(xprimeprime)|< ε2M.
ó§ét?ε > 0,?δ2 > 0§é?mXSü:xprime,xprimeprime§|xprime? xprimeprime| < δ2§òk|g(xprime)?
g(xprimeprime)|< ε2L.
δ = min{δ1,δ2}§K|xprime?xprimeprime|<δ?§òk|f(xprime)?f(xprimeprime)|< ε2M,|g(xprime)?g(xprimeprime)|< ε2Ló?¤
á.
dd?§|f(xprime)g(xprime)?f(xprimeprime)g(xprimeprime)| =
|[f(xprime)?f(xprimeprime)]g(xprime) +f(xprimeprime)[g(xprime)?g(xprimeprime)]| lessorequalslant |f(xprime)?f(xprimeprime)||g(xprime)| + |f(xprimeprime)||g(xprime)?g(xprimeprime)| <ε
2M ·M +L·
ε
2L =
ε
2 +
ε
2 = ε.
l
f(x)g(x)3?mXtY.
(ii) f(x),g(x)3(?∞,+∞)Y?§f(x)g(x)3(?∞,+∞)tY.
~μ
(a)Y.
f(x) = g(x) = x§?é?ε > 0§9x1,x2 ∈ (?∞,+∞)§δ = ε§|x1? x2| < δ?§
k|x1?x2|<ε§f(x) = g(x) = x3(?∞,+∞)tY.
f(x)g(x) = x2§d15K?f(x)g(x)3(?∞,+∞)tY.
(b)Y.
f(x) = 1§?é?ε> 0§éx1,x2 ∈ (?∞,+∞)§δ = ε§|x1?x2|<δ?§k|f(x1)?
f(x2)|<ε§f(x) = 13(?∞,+∞)tY.
49
g(x) = x§Kd?g(x) = x3(?∞,+∞)tY§?f(x)g(x) = x3(?∞,+∞)t
Y.
50
1? üCt?è
1?ü? üCt
1où ê
§1,êú
1,L-?y = x2tü:A(2,4)úB(2+?x,2+?y)??§?O|??x = 19?x = 0.1???§?|
-?3A:?.
)μkAB = (2 +?x)
2?22
x = 4 +?x
?x = 1?§kAB = 5??x = 0.1?§kAB = 4.1
-?3A:k = lim
x→0
kAB = lim
x→0
(4 +?x) = 4.
2,|y = x23A(1,1):ú3B(?2,4):§ú{§.
)μ?yprime = 2x§3:A(1,1)μk1 = 2§§?μy? 1 = 2(x? 1)=2x?y? 1 = 0?{§
y?1 =?12(x?1)=x+ 2y?3 = 0
3:B(?2,4)μk2 =?4§§?μy? 4 =?4(x + 2)=4x + y + 4 = 0?{§?y? 4 = 14(x +
2)=x?4y+ 18 = 0
3,ey = f(x) = x3§|
(1) L-?t:x0,x0 +?x???£x0 = 2,?x?O?0.1§0.01§0.001¤?
(2) 3x = x0?-?.
)μ
(1)?k = f(x0 +?x)?f(x0)?x = (x0 +?x)
3?x3
x = 3x
2
0 + 3x0?x+ (?x)
2§
μ?x = 0.1?§k = 12.61??x = 0.01?§k = 12.0601??x = 0.001?§k = 12.006001.
(2) fprime(x) = lim
x→0
f(x0 +?x)?f(x0)
x = 3x
2§
u′fprime(x0) = 3x20
4,es = vt? 12gt2§|
(1) 3t = 1,t = 1 +?t?m2t?Y£?t = 1,0.1,0.01¤?
(2) 3t = 1]Y.
)μ
(1)?ˉv =
v(1 +?t)? 12g(1 +?t)2?
parenleftbigg
vt? 12gt2
parenrightbigg
t = v?g?
1
2g?t
2§
μ?t = 1?§ˉv = v? 32g??t = 0.1?§ˉv = v? 2120g??t = 0.01?§ˉv = v? 201200g.
(2) 3t = 1]Yv = lim
t→0
ˉv = v?g.
5,y = x23=?:21uy = 4x?5o3=?:R?u2x?6y+ 5 = 0o
)μy = 4x? 5k = 4§Kdfprime(x) = 2x = k§x = 2§=(2,4):21uy =
4x?5?
2x?6y + 5 = 0k = 13§Kdfprime(x) = 2x =?1k =?3§x =?32§=(?32,94):R?
u2x?6y+ 5 = 0.
6,|e?ê3¤?:?y?xμ
(1) y = √x(x = 2,?x = 0.01)
(2) y = 1x(x = 4,?x = 0.04)
51
)μ
(1)?y?x =
√x+?x?√x
x =
√2.01?√2
0.01 = 100
parenleftBig√
2.01?√2
parenrightBig
= 1√2.01 +√2
(2)?y?x =
1
x+?x?
1
x
x =?
1
x(x+?x) =?
1
4(4 + 0.04) =?
25
404
7,y2μ
(1)?(f(x)±g(x)) =?f(x)±?g(x)
(2)?[f(x)·g(x)] = g(x+?x)·?f(x) +f(x)·?g(x)
y2μ
(1)?(f(x)±g(x)) = [f(x+?x)±g(x+?)]?[f(x)±g(x)] = [f(x+?x)?f(x)]±[g(x+?x)?g(x)] =
f(x)±?g(x)
(2)?[f(x)·g(x)] = f(x+?x)·g(x+?x)?f(x)·g(x) = f(x+?x)·g(x+?x)?f(x)·g(x+?x)+f(x)·g(x+
x)?f(x)·g(x) = [f(x+?x)?f(x)]·g(x+?x)+f(x)[g(x+?x)?g(x)] = g(x+?x)·?f(x)+f(x)·?g(x)
52
§2,{ü?êê
1,dê|y = cosxê.
)μyprime = lim
x→0
cos(x+?x)?cosx
x = lim?x→0
2sin 2x+?x2 sin?x2
x =? lim?x→0sin
parenleftbigg
x+?x2
parenrightbiggsin?x
2
x
2
=
sinx§=(cosx)prime =?sinx.
2,dê|y = 3√xê.
)μyprime = lim
x→0
3√x+?x? 3√x
x = lim?x→0
x13
bracketleftBiggparenleftbigg
1 +?xx
parenrightbigg1
3?1
bracketrightBigg
x = lim?x→0
x?23
bracketleftBiggparenleftbigg
1 +?xx
parenrightbigg1
3?1
bracketrightBigg
x
x
= x
23
3 =
1
3 3√x2§=(
3√x)prime = 1
3 3√x2
3,Uy2μ?ó?êù?ê′ê§?êù?ê′ó?ê.
y2μf(x)ó?ê§Kf(?x) = f(x)?g(x)ê§Kg(?x) =?g(x)
u′fprime(?x) = lim
x→0
f(?x+?x)?f(?x)
x = lim?x→0
f(xx)?f(x)
x = limx→0
[f(xx)?f(x)]
x =
fprime(x)=?ó?êù?ê′ê?
gprime(?x) = lim
x→0
g(?x+?x)?g(?x)
x = lim?x→0
g(xx) +g(x)
x = limx→0
g(xx)?g(x)]
x = g
prime(x)=?
êù?ê′ó?ê.
4,Uy2μ?±ê§ù?êE?±ù?ê.
y2μf(x)±T?ê§Kf(x+T) = f(x)§
u′fprime(x+T) = lim
x→0
f(x+T +?x)?f(x+T)
x = lim?x→0
f(x+?x)?f(x)
x = f
prime(x)=?±ê§
ù?êE?±ù?ê.
53
§3,|{K
1,|^?2êúa§|e?êêμ
(1) y = x5
(2) y = x11
(3) y = x6
(4) y = 2x
(5) y = log10x
(6) y = 10x
)μ
(1) yprime = (x5)prime = 5x4
(2) yprime = (x11)prime = 11x10
(3) yprime = (x6)prime = 6x5
(4) yprime = (2x)prime = 2x ln2
(5) yprime = (log10x)prime = 1xln10
(6) yprime = (10x)prime = 10x ln10
2,|e?êêμ
(1) f(x) = 2x2?3x+ 1§?|fprime(0),fprime(1)
(2) f(x) = x5 + 3sinx§?|fprime(0),fprime
parenleftBigpi
2
parenrightBig
(3) f(x) = ex + 2cosx?7x§?|fprime(0),fprime(pi)
(4) f(x) = 4sinx?lnx+x2
(5) f(x) = anxn +an?1xn?1 +···+a1x+a0§?|fprime(0),fprime(1)
)μ
(1) fprime(x) = 4x?3§fprime(0) =?3,fprime(1) = 1
(2) fprime(x) = 5x4 + 3cosx§?|fprime(0) = 3,fprime
parenleftBigpi
2
parenrightBig
= 5pi
4
16
(3) fprime(x) = ex?2sinx?7§?|fprime(0) =?6,fprime(pi) = epi?7
(4) fprime(x) = 4cosx? 1x + 2x
(5) f(x) = nanxn?1 + (n1)an?1xn?2 +···+a1§?|fprime(0) = a1,fprime(1) =
nsummationtext
i=1
iai
3,|e?êêμ
(1) y = x2 sinx§?|fprime(0),fprime
parenleftBigpi
2
parenrightBig
(2) y = xcosx+ 3x2§?|fprime(?pi)úfprime(pi)
(3) y = xtanx+ 7x?6
(4) y = ex sinx?7cosx+ 5x2
(5) y = 4√x+ 1x?2x3
(6) y = (3x2 + 2x?1)sinx
)μ
(1) yprime = 2xsinx+x2 cosx§fprime(0) = 0,fprime
parenleftBigpi
2
parenrightBig
= pi
(2) yprime = cosx?xsinx+ 6x§fprime(?pi) =?1?6pi,fprime(pi) =?1 + 6pi
(3) yprime = tanx+xsec2x+ 7
(4) yprime = ex sinx+ex cosx+ 7sinx+ 10x = ex(sinx+ cosx) + 7sinx+ 10x
54
(5) yprime = 2√x? 1x2?6x2
(6) yprime = (3x2 + 2x?1)cosx+ (6x+ 2)sinx
4,|e?êêμ
(1) y = 2 + sinxx
(2) y = cotx
(3) y = 3x
2 + 7x?1
√x
(4) y = (1 +x
2)sinx
2x
(5) y = xlnx1 +x
(6) y = xe
x?1
sinx
)μ
(1) yprime = x(2 + sinx)
prime?(x+ sinx)
x2 =
xcosx?sinx?2
x2
(2) yprime =
parenleftBigcosx
sinx
parenrightBigprime
= sinx(cosx)
prime?cosx(sinx)prime
sin2x =?
1
sin2x =?csc
2x
(3) yprime =
√x(3x2 + 7x?1)prime?(√x)prime(3x2 + 7x?1)
x =
√x(6x+ 7)? 3x2 + 7x?1
2√x
x =
9x2 + 7x+ 1
2x√x =
9
2x
1
2 + 72x?
1
2 + 12x?
3
2
(4) yprime = 2x[(1 +x
2)sinx]prime?2(1 +x2)sinx
4x2 =
2x[2xsinx+ (1 +x2)cosx]?2(1 +x2)sinx
4x2 =
(x2?1)sinx+x(1 +x2)cosx
2x2
(5) yprime = (1 +x)(xlnx)
prime?xlnx
(1 +x)2 =
(1 +x)(lnx+ 1)?xlnx
(1 +x)2 =
x+ lnx+ 1
(1 +x)2
(6) yprime = sinx(xe
x?1)prime?(sinx)prime(xex?1)
sin2x =
ex sinx(x+ 1)?cosx(xex?1)
sin2x
5,|e?êêμ
(1) y =
√x+ cosx
x?1?7x
2
(2) y = xsinx+ cosxxsinx?cosx
(3) y = x2ex sinx+ 3 +x
2
√x?xlnx+ 8x2
(4) y = sinx1 + tanx
(5) y = xcosx?lnxx+ 1
(6) y = 1x+ cosx
)μ
(1) yprime =
(x?1)( 12√x?sinx)?(√x+ cosx)
(x?1)2? 14x =
(x?1)(1?2√xsinx)?(2x+ 2√xcosx)
2√x(x?1)2? 14x
(2) yprime = (xsinx?cosx)(sinx+xcosx?sinx)?(xsinx+ cosx)(sinx+xcosx+ sinx(xsinx?cosx)2 =?2(sinxcosx+x)(xsinx?cosx)2 =
2x+ sin2x(xsinx?cosx)2
55
(3) yprime = 2xex sinx+x2ex sinx+x2ex cosx+
2x√x? 3 +x
2
2√x
x? lnx? 1 + 16x = xe
x(2sinx+xsinx+
xcosx) + 3x
2?1
2x√x?lnx?1 + 16x
(4) yprime = cosx(1 + tanx)?sinx·sec
2x
(1 + tanx)2
(5) yprime =
(x+ 1)(cosx?xsinx? 1x)?(xcosx?lnx)
(x+ 1)2 =
xcosx?(x2 sinx+ 1)(x+ 1) +xlnx
x(x+ 1)2
(6) yprime =? 1?sinx(x+ cosx)2 = sinx?1(x+ cosx)2
6,|-?y+ 1 = (x?2)33:A(3,0)?§9{§.
)μ?y+ 1 = (x?2)3§Ky = (x?2)3?1§u′yprime = 3(x?2)2§K¤|k = y prime|x=3 = 3§
l
¤|§?μy = 3(x?3)=3x?y?9 = 0?¤|{§?μy =?13(x?3)=x+ 3y?3 = 0.
7,|-?y = lnx3:(1,0)?§ú{§.
)μ?y = lnx§Kyprime = 1x§u′¤|k = y prime|x=1 = 1§
l
¤|§?μy = x?1=x?y?1 = 0?¤|{§?μy =?(x?1)=x+y?1 = 0.
8,y = x2?2x+ 43=?:21ux?o3=?:x??45oo
)μ?y = x2?2x+ 4§yprime = 2x?2.
q21ux?k = 0§K2x?2 = 0§u′x = 1§=¤|:?(1,3)?
q?x??45ok = 1§K2x?2 = 1§u′x = 32§=¤|:?
parenleftbigg3
2,
13
4
parenrightbigg
.
9,÷$??N§ù$§?s = 3t4? 20t3 + 36t2§|ù?Y§?ˉ?Nc$?o $
o
)μ?s = 3t4?20t3 + 36t2§v = sprime = 12t3?60t2 + 72t.
v> 0=0 <t< 2?t> 3?§?N?c$v< 0=2 <t< 3?§?N? $?.
10,du ^§?¥÷XtE§D?Y?5§$§?s = 5t?t2§áˉd¥meEo
)μ?s = 5t?t2§v = sprime = 5?2t§v = 0=t = 52?§¥meE.
11,3x = 2?§?-?y = 0.1x3§áˉ: §d-3o
)μ?y = 0.1x3§yprime = 0.3x2§u′3x = 2?§k = y |x = 2 = 1.2§l
d-?3?
:(2,0.8)?§?y?0.8 = 1.2(x?2)§=6x?5y?8 = 0?d
braceleftbigg y = 0.1x3
6x?5y?8 = 0 §x
3?12x+16 =
0§K(x?2)2(x+ 4) = 0§)x1 = x2 = 2,x3 =?4§Kd-3:(?4,?6.4).
12,-?y = xn£n?ê¤t:(1,1)?x?u:(ξn,0)§| lim
n→∞
y(ξn).
)μ?y = xn§Kyprime = nxn?1§Kd-?3x = 1?k = y prime|x=1 = n§u′d-?3:(1,1)?
§?y?1 = n(x?1)=y = nx?n+ 1.
y = 0?§x = n?1n =ξn = n?1n §K lim
n→∞
y(ξn) = lim
n→∞
parenleftbiggn?1
n
parenrightbiggn
= lim
n→∞
parenleftbigg
1? 1n
parenrightbiggn
= 1e.
13,§?y = x2 +ax+b§áˉ:(x0,y0)?u§?±l:(x0,y0)édü^
^§o
)μ(x0,y0)?2?t:§(x,y)?L(x0,y0):.
d?§?k = yprime = 2x+a§K¤|y?y0 = (2x+a)(x?x0)=y0?y =
(2x?a)(x0?x)§
qy = x2+ax+b§Ky0?(x2+ax+b) = (2x+a)(x0?x)§x2?2x0x+y0?ax0§K? = 4x20?4(y0?b?ax0)
? > 0=y0 < x20 + ax0 + b?§ü^? = 0=y0 = x20 + ax0 + b?§^
? < 0=y0 >x20 +ax0 +b?§.
14,ˉ.êao§y = xaU?éê-?y = logaxo3o
)μdK?§xprime = (logax)prime§=1 = 1xlna§Kx = 1lna§u′y = 1lna.
qdu3?:§ùp?I7L?§K logax = 1lna§u′x = e§K?lna = 1e§=a = e1e=.
êa = e1e?§y = xaU?éê-?y = logax§3:(e,e).
56
§4,Eü?ê|{
1,|e?êêμ
(1) y = 2sin3x
(2) y = 4cos(3t?1)
(3) y = 3e2x + 5cos2x
(4) y = (x+ 1)2
(5) y = (1?x+x2)3
(6) y = 3e?2t + 1
(7) y = ln(x+ 1)
(8) y = (3x+ 1)4
(9) y = √1 +x2
(10) y =
parenleftbigg
1? 1x
parenrightbigg2
(11) y = tan x2 + sin3x
(12) y = lnsinx
(13) y = x√1 +x2
(14) y = 1√2pie?3t2
)μ
(1) yprime = 6cos3x
(2) yprime =?12sin(3t?1)
(3) yprime = 6e2x?10sin2x
(4) yprime = 2(x+ 1)
(5) yprime = 3(1?x+x2)2(2x?1)
(6) yprime =?6e?2t
(7) yprime = 1x+ 1
(8) yprime = 12(3x+ 1)3
(9) yprime = x√1 +x2
(10) yprime = 2
parenleftbigg
1? 1x
parenrightbigg
·
parenleftbigg
1x2
parenrightbigg
= 2(x?1)x3
(11) yprime = 12 sec2 x2 + 3cos3x
(12) yprime = cosxsinx = cotx
(13) yprime =
√1 +x2? x2√
1 +x2
1 +x2 =
1
(1 +x2)32
(14) yprime =?3
√2t
√pi e?3t2
2,|e?êêμ
(1) y = sin3 2x
(2) y = (at+b)e?2t(a,b?~ê)
(3) y = e2t sin3t+ t
2
2
57
(4) y = ln 1?x
2
1 +x2
(5) y = e
kt sinωt
1 +t (k,ω?~ê)
(6) y = 4(x+ cos2x)2
(7) y = e?t(cost+ sint)
(8) y = x√1 + cos2x
(9) y = (x?1)√x2 + 1
(10) y = (2 + 3t)sin2t+ 7t2?7
)μ
(1) yprime = 6sin2 2xcosx = 3sin4xsin2x
(2) yprime = ae?2t?2(at+b)e?2t =?(2at+ 2b?a)e?2t
(3) yprime = 2e2t sin3t+ 3e2t cos3t+t = e2t(2sin3t+ 3cos3t) +t
(4) yprime = 1 +x
2
1?x2 ·
2x(1 +x2)?2x(1?x2)
(1 +x2)2 =
4x
x4?1
(5) yprime = (1 +t)e
kt(?ksinωt+ωcosωt)?(e?kt sinωt
(1 +t)2 =
(kt+k+ 1)e?kt sinωt+ω(1 +t)e?kt cosωt
(1 +t)2
(6) yprime =?4[(x+ cos2x)
2]prime
(x+ cos2x)4 =?
8(1?2sin2x)
(x+ cos2x)2
(7) yprime =?e?t(cost+ sint) +e?t(?sint+ cost) =?2e?t sint
(8) yprime =
√1 + cos2x?x?2sinxcosx
2√1 + cos2x
1 + cos2x =
1 + cos2x+xsinxcosx
(1 + cos2x)32
(9) yprime = √x2 + 1 + (x?1) 2x2√x2 + 1 = 2x
2?x+ 1
√x2 + 1
(10) yprime = 3sin2t+ 2(2 + 3t)cos2t+ 14t
3,|e?êêμ
(1) y = e?kt(3cosωt+ 4sinωt)(k,ω?~ê)
(2) y = xarctanx
(3) y = (2x2 + 1)2e?x sin3x
(4) y = e
t sin3t
√1 +t2
(5) y = (3t+ 1)et(cos3t?7sin3t)
(6) y = tarcsin3t+ 7e?2t lnt+ 8t
(7) y = x√a2?x2 + x√a2?x2 (a?~ê)
)μ
(1) yprime =?ke?kt(3cosωt+4sinωt)+e?kt(?3ωsinωt+4ωcosωt) = e?kt[(4ω?3k)cosωt?(3ω+4k)sinωt]
(2) yprime = arctanx+ x1 +x2
(3) yprime = 4x(2x2 + 1)e?x sin3x? (2x2 + 1)2e?xsin3x+ 3(2x2 + 1)2e?xcos3x = e?x(2x2 + 1)[(?2x2 +
8x?1)sin3x+ 3(2x2 + 1)cos3x]
(4) yprime =
e?t(?sin3t+ 3cos3t)√1 +t2?e?t sin3t t√1 +t2
1 +t2 =
e?t[3(1 +t2)cos3t?(t2 +t+ 1)sin3t]
(1 +t2)32
58
(5) yprime = 3et(cos3t?7sin3t) + (3t+ 1)et(cos3t?7sin3t) + (3t+ 1)et(?3sin3t?21cos3t) =?et[(60t+
17)cos3t+ (30t+ 31)sin3t]
(6) yprime = arcsin3t+ 3t√1?9t2?14e?2t lnt+ 7e
2t
t + 8
(7) yprime = √a2?x2? x
2
√a2?x2 +
√a2?x2 + x2√
a2?x2
a2?x2 =
(a2?2x2)(a2?x2) +a2
(a2?x2)32
4,|e?êêμ
(1) y = sinnxcosnx
(2) y = sinhnxcoshnx
(3) y = e?x2+2x
(4) y = (sinx+ cosx)n
(5) y = arcsin(sinx·cosx)
(6) y = ln
radicalbigg(x+ 2)(x+ 3)
x+ 1
(7) y = arctan 2x1?x2
(8) y = xa2√a2 +x2
)μ
(1) yprime = nsinn?1xcosxcosnx?nsinnxsinnx =
nsinn?1xcos(n+ 1)x
(2) yprime = nsinhn?1xcoshxcoshnx+nsinhnxsinhnx =
nsinhnxcosh(n+ 1)x
(3) yprime =?2(x?1)e?x2+2x
(4) yprime = n(sinx+ cosx)n?1(cosx?sinx) = n(sinx+ cosx)n?2 cos2x
(5) yprime = cos2xradicalbig1?(sinx·cosx)2 = 2cos2x√4?sin22x
(6)?y = ln
radicalbigg(x+ 2)(x+ 3)
x+ 1 =
1
2[ln(x+2)+ln(x+3)?ln(x+1)]§y
prime = 1
2
bracketleftbigg 1
x+ 2 +
1
x+ 3?
1
x+ 1
bracketrightbigg
=
x2 + 2x?1
2(x+ 1)(x+ 2)(x+ 3).
(7) yprime = 1
1 +
parenleftbigg 2x
1?x2
parenrightbigg2 · 2(1?x
2) + 4x2
(1?x2)2 =
2
1 +x2
(8) yprime =
√a2 +x2? x2√
a2 +x2
a2(a2 +x2) =
1
(a2 +x2)32
5,|^éê2|?{§|e?êêμ
(1) y = x
radicalbigg1?x
1 +x
(2) y = x
2
1?x
radicalbigg x+ 1
1 +x+x2
(3) y = (x?α1)α1(x?α2)α2 ···(x?αn)αn
(4) y = (x+√1 +x2)n
(5) y = xmmx
)μ
59
(1)?y = x
radicalbigg1?x
1 +x§K lny = lnx+
1
2 ln(1?x)?
1
2 ln(1 +x)§ü>éx|§
1
yy
prime = 1
x +
1
2(1?x)?
1
2(1 +x)§
Kyprime = 1?x?x
2
(1 +x)√1?x2 (0 <|x|< 1)
(2)?y = x
2
1?x
radicalbigg x+ 1
1 +x+x2§K lny = 2lnx? ln(1?x) +
1
2 ln(x+ 1)?
1
2 ln(1 +x+x
2)§ü>éx|
§1yyprime = 2x + + 11?x + 12(1 +x)? 1 + 2x2(1 +x+x2)§
Kyprime = x
2
1?x
radicalbigg x+ 1
1 +x+x2
parenleftbigg2
x + 11?x+ 12(x+ 1)?
2x+ 1
2(1 +x+x2)
parenrightbigg
(3)?y = (x?α1)α1(x?α2)α2 ···(x?αn)αn =
nproducttext
i=1
(x?αi)αi9y3éê?òS§Aproducttext nlim
i=1
(x?αi)αi >
0§Klny =
nsummationtext
i=1
αi ln|x?αi|§ü>éx|ê§1yyprime =
nsummationdisplay
i=1
αi
x?αi§
Kyprime =
nsummationtext
i=1
αi
x?αi
nproductdisplay
i=1
(x?αi)αi(x∈D)ù¥D =
braceleftbigg nproducttext
i=1
(x?αi)αi > 0
bracerightbigg
(4)?y = (x + √1 +x2)n§K lny = nln(x + √1 +x2)§ü>éx|§1yyprime = n
1 + x√1 +x2
x+√1 +x2 =n
√1 +x2§Kyprime = n√1 +x2 (x+
radicalbig
1 +x2)n
(5)?y = xmmx§Klny = mln|x| +xlnm§ü>éx|§1yyprime = mx + lnm§Kyprime = xm?1mx+1 +
xmmx lnm
6,f(x)′éx?|?ê§|dydx.
(1) y = f(x2)
(2) y = f(ex)·ef(x)
(3) y = f(f(f(x)))
)μ
(1) dydx = 2xfprime(x2)
(2) dydx = exfprime(ex)·ef(x) +fprime(x)f(ex)ef(x) = ef(x)(exfprime(ex) +f(ex)fprime(x))
(3) dydx = fprime(f(f(x)))fprime(f(x))fprime(x)
7,?(x),ψ(x)?éx?|?ê§|dydx.
(1) y =radicalbig?2(x) +ψ2(x)
(2) y = arctan?(x)ψ(x)(ψ(x) negationslash= 0)
(3) y =?(x)radicalbigψ(x)(?(x) negationslash= 0,ψ(x) > 0)
(4) y = log?(x)ψ(x)(?(x) > 0,ψ(x) negationslash= 0)
)μ
(1) dydx =?(x)?
prime(x) +ψ(x)ψprime(x)
radicalbig?2(x) +ψ2(x)
(2) dydx =?
prime(x)ψ(x)?ψprime(x)?(x)
2(x) +ψ2(x)
(3) dydx =?(x)
radicalbig
ψ(x)
parenleftbigg ψprime(x)
(x)ψ(x)?
prime(x)lnψ(x)
2(x)
parenrightbigg
60
(4) dydx =
ψprime(x)
ψ(x) ln?(x)?
prime(x)
(x) lnψ(x)
(ln?(x))2 =
ψprime(x)
ψ(x)ln?(x)?
prime(x)lnψ(x)
(x)(ln?(x))2 =
log?(x)ψ(x)
bracketleftbigg ψprime(x)
ψ(x)lnψ(x)?
prime(x)
(x)ln?(x)
bracketrightbigg
8,|?4-7¤?-Y?\?w?$??Y.
)μ?s =
radicalbig
l2?r2 sin2ωt?rcosωt§v = sprime = rωsinωt? r
2ωsin2ωt
2
radicalbig
l2?r2 sin2ωt
.
9,|-?y = √1?x23x = 12?§ú{§.
)μ?yprime =? x√1?x2§K3x = 12?k =?
√3
3 §
u′¤|§?μy?
√3
2 =?
√3
3
parenleftbigg
x? 12
parenrightbigg
=x+√3y?2 = 0?
¤|{§?μy?
√3
2 =
√3parenleftbiggx? 1
2
parenrightbigg
=√3x?y = 0.
10,|-?y = e?xt?:§|LT:y =?ex21§??T:{§.
)μ?k = yprime =?e?x =?e§Kx =?1§KL(?1,e):y =?ex21§LT:{§
y?e = 1e(x+ 1)=x?ey+e2 + 1 = 0.
11,|-?y = √1?x2tY2.
)μ?k = yprime =? x√1?x2 = 0§Kx = 0§u′d-?3(0,1)?Y2§§?y = 1.
12,|-?y = 12(1 + 2x2 ±
radicalbig
1 + 4x2)tIx = U:?§.ù-?uo
)μ?yprime = 2x ± 2x√1 + 4x2§K-?3x = U?k = 2U ± 2U√1 + 4U2§u′d-?3?
:(U,12(1 + 2U2 ±
radicalbig
1 + 4U2))?§?y? 12(1 + 2U2 ±
radicalbig
1 + 4U2)) = (2U ± 2U√1 + 4U2 )(x?U)§
=2U(√1 + 4U2 ±1)x?√1 + 4U2y± 12 + 12(1?2U2)
radicalbig
1 + 4U2 = 0§d-?u?
U(
√1 + 4U2 ±1)
√1 + 4U2,12
1 + 2U2(
√1 + 4U2 ±1)2
1 + 4U2 ±
radicalBigg
1 + 4U
2(√1 + 4U2 ±1)2
1 + 4U2
.
13,y = f(x)3x0?§P?(t) = f(x0 +at)§a?~ê§|?prime(0).
)μea = 0§K?(t) = f(x0)§K?prime(0) = 0
eanegationslash= 0§K?prime(x) = lim
t→0
(x)(0)
t = limt→0
f(x0 +at)?f(x0)
t = alimt→0
f(x0 +at)?f(x0)
at = af
prime(x
0).
61
§5,9ù$?
1,|e?ê3:μ
(1) y = anxn +an?1xn?1 +···+a0§|dy(0),dy(1)
(2) y = secx+ tanx§|dy(0),dy
parenleftBigpi
4
parenrightBig
,dy(pi)
(3) y = 1a arctan xa§|dy(0),dy(a)
(4) y = 1x + 1x2§|dy(0.1),dy(0.01)
)μ
(1)?dy = [nanxn?1 + (n?1)an?1xn?2 +···+a1]dx§Kdy(0) = a1dx,dy(1) =
nsummationtext
i=1
iaidx
(2)?dy = (tanxsecx+ sec2x)dx§Kdy(0) = dx,dy
parenleftBigpi
4
parenrightBig
= (√2 + 2)dx,dy(pi) = dx
(3)?dy = dxa2 +x2dx§Kdy(0) = dxa2dx,dy(a) = dx2a2dx
(4)?y =?x+ 2x3 dx§Kdy(0.1) =?2100dx,dy(0.01) =?2010000dx
2,|e?êy = y(x)μ
(1) y = x? 12x2 + 13x3? 14x4
(2) y = x2 sinx
(3) y = x1?x2
(4) y = xlnx?x
(5) y = (1?x2)n
(6) y = √x+ lnx? 1√x
(7) y = lntanx
(8) y = sinaxcosbx
(9) y = eax cosbx
(10) y = arcsin√1?x2
)μ
(1) dy = (1?x+x2?x3)dx
(2) dy = (2xsinx+x2 cosx)dx
(3) dy = 1 +x
2
(1?x2)2dx
(4) dy = lnxdx
(5) dy =?2nx(1?x2)n?1dx
(6) dy = x+ 2
√x+ 1
x32
dx
(7) dy = 2sin2xdx
(8) dy = (acosaxcosbx?bsinaxsinbx)dx
(9) dy = eax(acosbx?bsinbx)dx
(10) dy =? x|x|√1?x2dx
3,|e?êyμ
(1) y = sin2t,t = ln(3x+ 1)
62
(2) y = ln(3t+ 1),t = sin2x
(3) y = e3u,u = 12 lnt,t = x2?2x+ 5
(4) y = arctanu,u = (lnt)2,t = 1 +x2?cotx
)μ
(1) dy = 3sin(2ln(3x+ 1))3x+ 1 dx
(2) y = 3sin2x3sin2x+ 1dx
(3) y = 3(3x
2?2)
2(x3?2x+ 5)e
3
2 ln(x
2?2x+5)dx
(4) y = 2ln(1 +x
2?cotx)(2x+ csc2x)
[1 + (ln(1 +x2?cotx))4](1 +x2?cotx)dx
4,eu,v,w?xê§|?êydyμ
(1) y = u·v·w
(2) y = u·wv2
(3) y = 1√u2 +v2
(4) y = ln√u2 +v2
(5) y = arctan uv
)μ
(1) dy = (uprime ·v·w+u·vprime ·w+u·v·wprime)dx
(2) dy = v
2(uprimew+uwprime)?2uvvprimew
v4 dx
(3) dy =? uu
prime +vvprime
(u2 +v2)32
dx(u2 +v2 > 0)
(4) dy = uu
prime +vvprime
u2 +v2 dx
(5) dy = u
primev?uvprime
u2 +v2 dx(v negationslash= 0)
63
§6,ê9?ê?§¤Lê|{
1,|eêêdydxμ
(1) x
2
a2 +
y2
b2 = 1§ù¥a,b?~ê
(2) y2 = 2px§ù¥p?~ê
(3) x2 +xy+y2 = a2§ù¥a?~ê
(4) x3 +y3?xy = 0
(5) y = x+ 12 siny
(6) x23 +y23 = a23§ù¥a?~ê
(7) y?cos(x+y) = 0
(8) y = x+ arctany
(9) y = 1?ln(x+y) +ey
(10) arctan yx = ln
radicalbig
x2 +y2
)μ
(1) 3?§üàéx|ê§?5?y′x?ê§òk2xa2 + 2yy
prime
b2 = 0§Ky
prime =?b
2x
a2y(y negationslash= 0).
(2) 3?§üàéx|ê§?5?y′x?ê§òk2yyprime = 2p§Kyprime = py(y negationslash= 0).
(3) 3?§üàéx|ê§?5?y′x?ê§òk2x+xyprime +y+ 2yyprime = 0§Kyprime =?2x+yx+ 2y.
(4) 3?§üàéx|ê§?5?y′x?ê§òk3x2 + 3y2yprime?xyprime?y = 0§Kyprime = 3x
2?y
x?3y2,
(5) 3?§üàéx|ê§?5?y′x?ê§òkyprime = 1 + y
prime
2 cosy§Ky
prime = 2
2?cosy.
(6) 3?§üàéx|ê§?5?y′x?ê§òk23x?13 + 23y?13yprime = 0§Kyprime =? 3
radicalbiggx
y.
(7) 3?§üàéx|ê§?5?y′x?ê§òkyprime+(1+yprime)sin(x+y) = 0§Kyprime =? sin(x+y)1 + sin(x+y).
(8) 3?§üàéx|ê§?5?y′x?ê§òkyprime = 1 + y
prime
1 +y2§Ky
prime = 1 +y
2
y2,
(9) 3?§üàéx|ê§?5?y′x?ê§òkyprime =?1 +y
prime
x+y +y
primeey§Kyprime = 1
(x+y)ey?x?y?1.
(10) 3?§üàéx|ê§?5?y′x?ê§òkxy
prime?y
x2 +y2 =
x+yyprime
x2 +y2§Ky
prime = x+y
x?y.
2,|eê3:êdydxμ
(1) y = cosx+ 12 siny§:
parenleftBigpi
2,0
parenrightBig
(2) yex + lny = 1§:(0,1)
)μ
(1) 3?§üàéx|ê§?5?y′x?ê§òkyprime =?sinx+ y
prime
2 cosy§Ky
prime = 2sinx
cosy?2§u′3
:
parenleftBigpi
2,0
parenrightBig
§yprime =?2.
(2) 3?§üàéx|ê§?5?y′x?ê§òkex(y +yprime) + y
prime
y = 0§Ky
prime =? y
2ex
yex + 1§u′3
:(0,1)?§yprime =?12.
64
3,|-?x32 +y32 = 163:(4,4)§ú{§.
)μ3?§üàéx|ê§?5?y′x?ê§òk32x12 + 32y12yprime = 0§Kyprime =?
radicalbiggx
y§u′y
prime|x=4
y=4
=
1§l
§?y?4 =?(x?4)§=x+y?8 = 0
{§?y?4 = x?4§=x = y.
4,|e?ê?§3¤?:êμ
(1)
braceleftbigg x = acost
y = bsint 3t =
pi
3ú
pi
4?
(2)
braceleftbigg x = t?sint
y = 1?cost §3t =
pi
2,pi?
(3)
braceleftbigg x = 1?t2
y = t?t3 §3t =
√2
2,
√3
3?
(4)
braceleftbigg x = a(t?sint)
y = a(1?cost) (a′~ê)§3t = 0,
pi
2?
)μ
(1)?xprime(t) =?asint,yprime(t) = bcost§Kdydx = y
prime(t)
xprime(t) =?
b
a cott§u′§t =
pi
3?§y
prime =?
√3b
3a?
t = pi4?§yprime =?ba
(2)?xprime(t) = 1? cost,yprime(t) = sint§Kdydx = y
prime(t)
xprime(t) =
sint
1?cost§u′§t =
pi
2?§y
prime = 1?t =
pi?§yprime = 0
(3)?xprime(t) =?2t,yprime(t) = 1? 3t2§Kdydx = y
prime(t)
xprime(t) =
3t2?1
2t §u′§t =
√2
2?§y
prime =
√2
4?t =√
3
3?§y
prime = 0
(4)?xprime(t) = a(1? cost),yprime(t) = asint§Kdydx = y
prime(t)
xprime(t) = cot
t
2§u′§t = 0?§y
primet =
pi
2?§y = 1
5,|e?ê?§êμ
(1)
braceleftbigg x = acosht
y = bsinht
(2)
braceleftbigg x = sin2t
y = cos2t
(3)
braceleftbigg x = acos3t
y = asin3t
(4)
braceleftbigg x = e2t cos2t
y = e2t sin2t
)μ
(1) dydx = y
prime(t)
xprime(t) =
asinht
bcosht =
a
b cotht
(2) dydx = y
prime(t)
xprime(t) =
2costsint
2sintcost =?1
(3) dydx = y
prime(t)
xprime(t) =
3sin2tcost
3cos2tsint =?!tant
(4) dydx = y
prime(t)
xprime(t) =
e2t(2sin2t+ 2sintcost)
e2t(2cos2t?2costsint) = tant·
sint+ cost
cost?sint
6,?
I/Nì§10o§to
4o£?4-11¤μ
(1) /\Y?§|YNèVéY?pYhCz
(2) |NèVéNì?
RCz?.
65
)μ?NèV?Nì?
R§Y?pYh'X?V = 13piR2h§?d?§R4 = h10=h = 52R§u
′
(1) V = 13pi
parenleftbigg2
5h
parenrightbigg2
h = 475pih3§l
dVdh = 425pih2?
(2) V = 13piR2 · 52R = 56piR3§l
dVdR = 52piR2.
7,?
I/Nì.t?X§§o?2arctan 34§8?p??,N§
(1) ?Nr?3§O\?Ydrdt?14?§NèO\?YdVdt′?o
(2) ?N6§NèO\?Y?24?§O\?Y′?o
)μ?NèVNr'X?V = 49pir3§V,r?′?mt?ê§ü>ét|§dVdt = 49pi(3r2)drdt=dVdt =
4
3pir
2dr
dt§K
(1) r = 3,drdt = 14?§dVdt = 3pi?
(2) ddrdt = 34pir2 dVdt§r = 6,dVdt = 24?§drdt = 12pi.
8,Ylp?18f?!.6f?
I/|ì6\5f?
/ùS.?|ì¥Y?12f§
|ì¥Y?eü?Y?1f?/?§|d?
ù¥Y?t,?Y.
)μlm?|Y?2t?¨