??c ?5?
? 8.0 ?y
? 8.1 ?5 ?
(Regularization Theory)
? 8.2 Reproducing Kernel Hilbert Space
(RKHS)
? 8.3 ?5?
(Regularization Networks)
8.0 ?y
?

T
MY?¥Dù5
? T

" ( X,Y )
),,(,),,(),,(
2211 nn
yxyxyxL
},,2,1{ Ky
i
L∈
,
d
i
x?∈
¥ ?YS
M
i
x
M
 ¥?
?]s?"'b
Y
M
 ¥?
?]s?"'b
X
8.0 ?y
? Df
"
?
>f

"S bW
Τ∈f
))(,( xfyL
8.0 ?y
?
üZμ
>f

? ?
ù?
>f

2
))(())(,( xfyxfyL?=
{

e|)(|
|)(|0
|)(|))(,(
xfy
xfy
xfyxfyL
≤?
=
=
ε
ε
ε
8.0 ?y
? Soft Margin
>f

? Hard Margin
>f

? s ?
>f

{
else
xfyxfy
xfyxfyL
0
0)()(
|)(|))(,(
>
=
=
+
{
else
xfy
xfyhxfyL
0
0)(1
))(())(,(
>?
=
=
))(())(,( xyfhxfyL?=
8.0 ?y
? ü?BKl
2
1
1
(
1
)(
))(,(
1
)(

?


=
=
=
=
n
i
iiemp
n
i
iiemp
xfy
n
fR
xfyL
n
fR
8.0 ?y
?

T
MY?¥,D,¥V?Yè
^ ill-
posed ù5
? B?
àμ·B3
? 3
H
^?×?¥ (overfitting)b
8.0 ?y
? 3 %¥÷E
? Ockham’s razor 
?? ;
? ?5ZE
?

? f
"¥ˉFò@
D SVM¥
±X ?
b
8.1 ?5 ?
eo
8.1 ?5 ?
eo
? L??′ù5L
! - Wi
L??
,
? X?T

"
>f

x
0
= fy
N
R
R
ijijNnij
n
i
N
j
jiji
nn
xAAA
fAyAf
yxyxyx
,,)(
)(
),(,),,(),,(
11
2
2
2211
L
==
=?
×
==
∑∑
y
T
n
T
iNiii
yyyxxxx ),,(,),,(
2121
LL== y
8.1 ?5 ?
eo
? ? A¥ s′s3
y
y
TT
TTT
T
nn
nN
NNnN
ii
nN
iNn
NNnn
T
NNNnnnNn
AAAyAf
AAAAAA
Af
UVAA
VUVUA
1
1
1
1
)(
)(
/1
0
,
+
+
+
×
×
×
+
×
+
×
×
××××××
==
=
=
Σ=


Σ=
V
I5 ?T
¥<l
I
¥?í
í?l
¥?í
í1 s′
¥?? ?
λλ
λ
8.1 ?5 ?
eo
? Df
" V[ AT
"S bW (Target
Space)?¥?b
? 3¥×??
? ¥l ??
^?? f¥ l ??$
N
RTf =∈
yy?+=?+ )(
0
ffA
ll$
y
8.1 ?5 ?
eo
? B?¥μ
Iù5 p f
YTA
HibertYTYTfAf

∈∈=
:
,,
0
bW
^yy
8.1 ?5 ?
eo
?
Iù5 Well-posedD ill-posed
? Hadamard1? well-posedù5¥?l
? i?
? Z??μ3 fb
? ·B? £
? Z??μ·B3 fb
? ×??
^ ???
 £
3¥×??b
y¥l ??? f¥ l ??b
Yy∈
Yy∈
1?
A
?
^ well-posed ü?1 ill-posedb
Hadamard y9μμ ill-posedù5? V3b
8.1 ?5 ?
eo
? ?5 ?
(Tikhonov 1943,1963)
? μBv ?ù5 Hadamardil/
^ ill-
posedù5? V[sB?×?¥í
3b
? Tikhonov¥
±X
? ??? bW
 p3ü3 K?B?0
"
 p3 V
¤?×?3b
YyHfyAf ∈∈=,,
f
T
TH?
8.1 ?5 ?
eo
? Tikhonovil/¥ well-posedù5
? iB?"
@
?  ?i ?i
? ¥3b
? ?¥3
^·B¥b
? ?¥3
^×?¥ K?"

^ ??¥b
? D Hadamardil/ well-posed?l¥ ó"
? =??N ?T
TH?
YHAy?∈ )(
H
H
H
1?
A
YHA?)(
YHATH == )(
8.1 ?5 ?
eo
?
I
1"¥ V
@μ×?3¥Hq$
? 1 p K ?"
 ??b
? ? ?
I
0¥×??
? ?T  ?" ??5 
9 ??b
? 8"s $
? °¤s+? V
b
? ?5ZEMs 1? 5?
M9F?
Hq?1L
! bW (Hypothesis Space)b
H
1?
A
)(HA
A
XH?
1?
A
)(HA
H
H
8.1 ?5 ?
eo
? L
! bW  è
? m¨[
T
? ?° ?="
? L?f
Z 7
})(|{
10
m
m
xaxaaxffH +++==L
)}cos()sin(
)cos()sin(2/)(|{
110
mxbmxa
xbxaaxffH
mm
++
+++==L

=
==
m
i
ii
xKcxffH
1
)}()(|{
8.1 ?5 ?
eo
? L??′ù5
? ? V
I Hadamardil/
^ ill-posedù5b
? ?5ZE9F?
Hq
? Kl
A
Nn
RfRAf ∈∈=,,yy
μ≤f
2
y?Af
8.1 ?5 ?
eo
? ? Lagrangee0 ?

TT
T
AIAAA
fAfA
f
fL
fAffL
1
22
)(
02)(2
)(
))(()(
+
+=
=+?=
+?=
λ
λ
μλ
y
y
yy
TT
AIAAAf
1
)(
+
+== λ
λ
?53
8.1 ?5 ?
eo
? ?5ZED Ockham’s razor:
? Ockham’s razor:,entities should not be
multiplied beyond necessity,.
? ?5
))((min
2
fyAff
f
Φ+?= λ
λ
Φ
)(
2
f
yAf
μb
Trade off
?
Hq
8.1 ?5 ?
eo
? ? 5?
Mê4?]¥L
! bW
V[¤??]¥?53b
?  zW¥Hq/?53
^
? i¥
? ·B¥
? ??G ??
¥
}0,)(:{ >≤Φ∈= μμfTfHL
! bW
8.1 ?5 ?
eo
? á
ì?3
^,z¥a;á¥, ?



∞?

∞?


dxxff
dxxff
2''
2
2'
1
)()(
)()(
8.1 ?5 ?
eo
?
L′f
¥ FourierMD
IMD
? Parseva? ?
1
Lf ∈



∞?

∞?
=
=
ωω
π
ω
ω
ω
defxf
dxexff
xj
xj
)(
2
1
)(
)()(
∫∫

∞?

∞?
= ωω
π
dfdxxf
2
2
)(
2
1
)(
8.1 ?5 ?
eo
∫∫
∫∫
∫∫
∫∫
==
==Φ
==
==Φ

∞?

∞?
ω
ω
ω
π
ω
ω
ω
π
ωωω
π
ω
ω
ω
π
ω
ω
ω
π
ωωω
π
d
K
f
d
f
dfdxxff
d
K
f
d
f
dfdxxff
)(
)(
2
1
1
)(
2
1
)(
2
1
)()(
)(
)(
2
1
1
)(
2
1
)(
2
1
)()(
2
2
4
2
2
42''
2
1
2
2
2
2
22'
1
8.1 ?5 ?
eo
?f
??f
¥ Fourier
IM
D ?1f
b
? ?
)(ωK
∞→→≥ xxKxK,0)(,0)(
)()()()/()sin()(
1
1
)(
2
1
)(
)()(
/1)(12/)(
/1)(2/)(
2
||
2/2/
4
3
2
2222
+==
+
=?=
=?=
==
==

ωωωπ
ω
ω
ω
ωω
ωω
γ
σωσ
UUKxxxK
KexK
eKexK
KxxK
KxxK
x
x
8.1 ?5 ?
eo
? ?5ZE3 %f
/íù5
? "'
? ? pf

? ?
Hq
).,(,),,(),,(
2211 nn
yxyxyxL
0,
)(
)(
2
1
2
>≤

μμω
ω
ω
π
d
K
f

=
n
i
ii
xfyf
1
2
))((,Kl
8.1 ?5 ?
eo
? ? ? ( Duchon,1977; Meinguet,1978;
Wahba,1977; Madych and Nelson,1990;
Poggio and Girosi,1989; Girosi,1992) L
!
^f
¥ Fourier
IMDb5
Kl[/Wf¥f



=
=
=
+?
n
i
ii
n
i
ii
xxKxf
d
K
f
yxf
1
2
1
2
)()(
.
)(
)(
2
1
))((
α
ω
ω
ω
π
λ
λ

)(xf
λ
)(ωK
)(xK
8.1 ?5 ?
eo
? dL?ù5¥?5
? ?5id? K?3L?Z?
? ?5
±X V[?¨?3dL?Z?a3K
aù5??b
? ??tù5 ?
?ìs¥
4vv
9F?V?¨???5¥ZE V
[e??1?¨b
8.2 × Hilbert bW (RKHS)
8.2 × Hilbert bW (RKHS)
? Reproducing Kernel Hilbert Space (RKHS)
^B?dè×1¥
Dy Dá
ì
M1¥
5× ?losa |y
*ü?
a SVM+Y
^Kí?1 £
ê¥
Kernel machine??μM?¥?¨b
8.2 × Hilbert bW (RKHS)
? RKHS'c¥T¨?
£
U
B ?
f
V
Uù51
I
1 SVMaRBF?
??C
+M]¥f
[#
ì-W¥
= ó"b
8.2 × Hilbert bW (RKHS)
?
x
f bW?
=
·,· —— ?ó f,g,h∈Ε
α∈?μ
00),(0),(.3
),(),(),,(),(),(.2
),(),(.1
**
*****
**
==≥
=+=+
=
fiffffandff
gfgfhghfhgf
fggf
αα
8.2 × Hilbert bW (RKHS)
? B? bW
^? ?¥ ?T

l ??

?
l ?? bW?¥?b
? ?TB?
x
f bW
^? ?¥?1B?
Hilbert bWb ? ?
^ Hilbert bWb
n
RL,
2
8.2 × Hilbert bW (RKHS)
? RKHS?l
?f
bW
^ Hilbert bW

=1
?if
O
@
?S× ?1×
Hilbert bW (RKHS)b
H H
.))(),((),(
x
xgxfgf =
),,( yxK
,))(),,(()(
y
yfyxKxf =
.f?
H),( yxK
HxK ∈?),(,x?
8.2 × Hilbert bW (RKHS)
? RKHS¥ è0
? ??loMDo?¥ RKHS:
? ?MD
?
IMD
.)()()(),(
2
1

==
dx
a
bx
xfafTbaF
wav
ψ
wavelets
.)(),(
1
)(
2
1
∫∫
=
dadb
a
bx
baF
a
Cxf ψ
ψ
BBè
8.2 × Hilbert bW (RKHS)
IMD} ??MD
.)()(),(
1
),(
2
1
2
1
∫∫ ∫


′′′′

=
dx
a
bx
a
bx
abdadbaF
a
CbaF ψψ
ψ
×
.)()(),;,(
2
1



=
′′
dx
a
bx
a
bx
ababaK ψψ
RKHS¥
=
.),(),(
1
)),(),,((
2
1
,
dadbbaGbaF
a
CbaGbaF
ba
∫∫
=
ψ
.)),(),,;,((),(
,ba
baFbabaKbaF
′′
′′′′
=
×
8.2 × Hilbert bW (RKHS)
?/×f

? 1
I
1/×$
? ×f
?5?
a SVM?μ×1T¨b
?/ZE
? ¨L?í1¥f
?
?
?
/

n/B?
L),(),(
21
xx φφ
L,,
21
λλ
.)()(),(

=
n
nnn
yxyxK φφλ
×
8.2 × Hilbert bW (RKHS)
=

=
n
nn
xxf ),()( φα

=
n
nn
xxg ),()( φβ

=
n
n
nn
xgxf,))(),((
λ
βα

@
=Hq

≥=
n
n
n
xfxf,0))(),((
2
λ
α
.0>
n
λ
×
.)()(
)(
))(),,((
∑∑
===
n
nn
n
n
nnn
xfx
x
yfyxK φα
λ
αφλ
8.2 × Hilbert bW (RKHS)
? è0
?
¥ RKHS:]2,0[ π
).),2cos(),2sin(),cos(),sin(,1()}({
0
Lxxxxx
nn
=

φ
.coscossinsin),(
11
0 ∑∑
≥≥

++=
n
n
n
n
nynxnynxyxK λλλ
,0>
n
λ,0>

n
λ
@
¥ ?i
^×f
b),( yxK
8.2 × Hilbert bW (RKHS)
B?+
y f ?
,
nn
λλ

=L,2,1=n
.
)(cos
coscossinsin),(
)(
0
11
0


∑∑
∞=
∞=

≥≥
=
=

++=
n
n
yxin
n
n
n
n
n
n
n
ec
yxn
nynxnynxyxK
λ
λλλ
<

=
.0
2
.0
2
n
n
c
n
n
n
λ
λ
8.2 × Hilbert bW (RKHS)
.),(
)(

∞=
∞=
=
n
n
yxin
n
ecyxK
o
^ ¥f
,),( yxK )( yx?
.),()(
)(

∞=
∞=
==?
n
n
yxin
n
ecyxKyxK
Kè¨
7
^×
),( yxK
o3
0>
n
λ
L,2,1=n
o3
0>
n
c
¥ Fourier)
),( yxK
8.2 × Hilbert bW (RKHS)
? w<?
¥ RKHS,
K×1¥×
d
]2,0[ πRKHS RKHS
d
},:)({ Znx
n
∈φ
}:),({
d
x?∈ξξφ
,)()(),(

=
n
nnn
yxyxK φφλ,),(),()(),( ξξφξφξλ dyxyxK
d

=

=
n
nn
xxf ),()( φα
.),()(
)( ξξφξ dxfxf

=
,))(),((

=
n
n
nn
xgxf
λ
βα
.
)(
)(
)(
))(),(( ξ
ξλ
ξξ
d
gf
xgxf

=
8.2 × Hilbert bW (RKHS)
 RKHS
d
).cos(),sin(),( xxx= ξξξφ
? ? ?
1¤?
.)(),(
)(


= ξξ
ξ
decyxK
yxi
),( yxK
^×o1
^?¥b
8.2 × Hilbert bW (RKHS)
Gauss¥
^?¥ ).exp(),(
2
yxyxK= γ
),
2
exp()(
2
z
zf?=,),,,(
21
d
d
zzzz?∈=L




=
=
==
=
=
d
i
i
d
i
iii
i
T
constconst
dzzi
z
dzzi
z
f
1
2
2
1
2
2
).
2
exp()
2
exp(
)exp()
2
exp(
)exp()
2
exp()(
ξ
ξ
ξ
ξξ
Gauss
^×
8.2 × Hilbert bW (RKHS)
? ×DdL? SVM:
? dL? SVM1s V[V
U1
=¥f

? ×
@1 py1
)).(),((),( yzxzyxK =
+? bW
),)())((()()(),(
∑∑
==
n
nnnn
n
nnn
yxyxyxK φλφλφφλ
.0>
n
λ
8.2 × Hilbert bW (RKHS)
? M
?
 ?T K
^×
*
1i
B??

P¤
))(,),(),(()(
),(2),(),()()(
2211
2
LLxxxx
xxKxxKxxKxx
nn
φλφλφλ=Φ

′′
+=

Φ?Φ
8.2 × Hilbert bW (RKHS)
?¥ê4e5 V[V
bW¥?

?
Hq
Z
I
nb 8?¨
? I
n ?D
L=ù5?5?
M¥2
b No Free Lunch!
?
¥M
?

?
¥VrZ
T
? L
! bW¥ê4
8.3 ?5?
8.3 ?5?
? ?5?
,Regularization Networks (RN)
? ?5?
¥?
? V"'?D¥V? V[ ATf
/íù5
? ?
^ ill-posedù5
).,(,),,(),,(
2211 nn
yxyxyxL
.,yxf →
DB?f
8.3 ?5?
? ?5ZE3 %f
/íù5
? "'
? ? pf

? ?5
).,(,),,(),,(
2211 nn
yxyxyxL
)())(()(
1
2
fyxffL
n
i
ii
Φ+?=

=
λ

=
n
i
ii
xfyf
1
2
))((,
?5"
8.3 ?5?
?1o
L
! bW H¥ê |b
? RKHS
.))(()(
2
1
2
H
n
i
ii
fyxffL λ+?=

=
¨ RKHS?¥S

,)()(),(

=
n
nnn
xxK yy φφλ

==
n
n
n
H
fff,),(
2
2
λ
α

=
n
nn
xxf ),()( φα
8.3 ?5?
? pf
o 3 p"
' Vb
f
L,,
21
αα
.2)())((2
1
j
j
n
i
ijii
j
xyxf
L
λ
α
λφ
α
+?=

=
?5"
0=
j
L
α
.)())((
1

=
=
n
i
ijii
j
j
xyxf φ
λ
λ
α
8.3 ?5?

∑∑
∑∑

=
=
=
=
=
=
=
n
i
iii
j
n
ij
ijjii
j
j
n
i
ijii
j
j
jj
xxKxfy
xxxfy
xxyxf
xxf
1
1
1
),())((
1
)()())((
1
)()}())(({
)()(
λ
φφλ
λ
φφ
λ
λ
φα
"
×
8.3 ?5?
yy
y
1
2121
1
1
1
)(,)(
),,,(,),,,(
),(
),()(
),()(
))((
1
),()(
=
=
=
+=+=
==
=
+=+=
=
==



IKCCIK
cccCyyy
xxKK
ccxxKcxfy
xxKcxf
xfycxxKcxf
T
n
T
n
jiij
ji
n
i
jijjj
n
i
jiij
iii
n
i
ii
λλ
λλ
λ
5
7
LL
8.3 ?5?
? ?5?
(RN)
L
L
L
1
x
2
x
1
c
d
x

),( xxK
i
2
c
n
c
xInput
8.3 ?5?
? 
}V
U
T
n
n
i
ii
i
n
i
i
xxKxxKxxKxK
xKIKx
xbyxxKIK
xKIKxKCxxKcxf
)),(,),,(),,(()(
)()()(
)()()()(
)()()(),()(
21
1
1
1
1
1
L=
+=
=?=+?=
+=?==


=



=


?1?Nλ
λ
λ
b
byy
y
8.3 ?5?
? RBF?
^?5?
¥B?y1 Gauss

^×
? SVMD?5?
¥
±Xdè¤ío
^
>f
¥?
T?]b SVMoG ??|?_

??5?
àμ]"¥?éb
8.3 ?5?
? SRMaSVM RN
∑∑



+==
+?
+?
+
=
=
+
=
bxxKcxfxxKcxf
fxfy
n
RN
fxfy
n
SVMc
AfxfyL
n
SRM
iiii
K
n
i
ii
K
n
i
ii
m
K
m
n
i
ii
),()(),()(
))((
1
|)(|
1
)())(,(
1
2
1
2
2
1
2
1

λ
λ
λ
? IóD
? [1] V.A,Morozov,Methods for Solving Incorrectly Posed
Problems,Springer-Verlag,1974.
? [2] Vladimir N,Vapnik,Statistical Learning Theory,John
Wiley & Sons,Inc,1998,(?Bc¥?
cμe1o
b )
? [3] F,Girosi,An Equivalence Between Sparse
Approximation and Support Vector Machine,Neural
Computation,vol.10,1455-1480,1998,(Appendix A)
? [4] Alex J,Smola,A Tutorial on Support Vector
Regression.