Asymmetric Organocatalysis
Sarah Maifeld
September 19,2002
Approaches to Asymmetric Catalysis
Organometallic catalysis
– Broad scope
– Ligand control
– Inert conditions
– Cost and toxicity
Bioorganic catalysis
– Highly selective
– High rate of reaction
– Limited scope
Organocatalysis
Similar modes of action
– Lewis acidic/Lewis basic functionality
– Enzyme mimetics
Advantages
– Preparative
– Inexpensive
– Amenable to combinatorial approaches
History and Development
Early example
Bredig,G.; Fiske,P,S,Biochem,Z,1912,46,7,
Prelog,V.; Wilhelm,M,Helv,Chim,Acta 1954,37,1634,
H
O
H C N C N
O H
+
1 0 % e e
c a t a l y t i c
q u i n i n e
Applications
–Kinetic resolutions
–Phase transfer
catalysis
–Asymmetric synthesis
Outline
Cinchona Alkaloids
Proline
Amino Acid Derivatives
Peptide-like Catalysts
Heteroazolium Species
Cinchona Alkaloids
Enantiomeric b-hydroxyamine
functionality
Nucleophilic catalysts
Wynberg,H,Top,Stereochem,1986,16,87,
S
NH
N
O M e
O H
H
N
H
O HH
N
O M e
R
8 S,9 R - q u i n i n e 8 R,9 S - q u i n i d i n e
Asymmetric b-Lactones
Staring,E,G,J.; Wynberg,H,J,Am,Chem,Soc,1982,104,166.
Staring,E,G,J.; Wynberg,H,J,Org,Chem,1985,50,1977.
O
C l 3 C
H
O
H
H O
O
C l 3 C
+
1 - 2 m o l % q u i n i d i n e
t o l u e n e,- 2 5 ° C
8 9 % y i e l d
( S ) 9 8 % e e
Requires electron deficient aldehydes and aromatic ketones
68 – 98% yield
89 – 98% ee
Alkyl aryl ketones react in trace amounts
Aldol - Lactonization Mechanism
Dijkstra,G,D,H.; Kellog,R,M.; Wynberg,H.; Svendsen,J,S.; Marko,I.; Sharpless,K,B,
J,Am,Chem,Soc,1989,111,8069,
Cortez,G,S.; Tennyson,R,L.; Romo,D,J,Am,Chem,Soc,2001,123,7945.
N R
3
O
H H
O
N R
3
H
H
O
C C l
3
H
O
H
N R
3
O
C l
3
C
N R
3 O
O
C l
3
C
O
O
N R
3
C l
3
C
H
N
H
O A c
H
HN
O C H
3
O
+
*
*
*
*
A l d e h y d e a p p r o a c h e s t h e S i f a c e o f e n o l a t e
*
R e f a c e o f e n o l a t e b l o c k e d
Methyl Ketene Dimerization
Calter,M,A,J,Org,Chem,1996,61,8006.
O
B r
M e
B r
Z n
O
M e H
O
O
M e
M e
L i A l H
4
( S ) 9 3 % e e
( R ) 9 8 % e e
O
M e
M e
O H
O
R
3
N
M e
O
M e
1 m o l % a m i n e
T H F,- 7 8 ° C
*
*
q u i n i d i n e
( t r i m e t h y l s i l y l ) q u i n i n e
2 0 % y i e l d
*
*
Polypropionate Synthesis
Guo,X.; Liao,W.; Calter,M,A,Org,Lett,2001,3,1499.
O
M e
O
M e
N
M e O L i
O
M e H
M e
N
O
M e O
M e
O L i
M e
O
H
M e M e
O
O
M e
M e
M e M e M e M e
N
O
M e O
M e
O O H
M e
O H C
M e M e M e M e
s i p h o n a r i e n a l5 5 % y i e l d
T H F,- 7 8 ° C
T H F,- 7 8 ° C
T H F,- 7 8 ° C
0,3 m o l %
q u i n i d i n e
2
5 0 0 ° C
Asymmetric b-Lactams
O
C l
R
N M e
2
N M e
2
N
T s
C O
2
E tH
N
OT s
E t O
2
H
2
C R
O
R H
4 5 - 6 5 % y i e l d
9 9 / 1 c i s / t r a n s
9 6 - 9 9 % e e
R = a l k y l,a r y l,a l k o x y
1 0 m o l %
b e n z o y l q u i n i n e
( N R
3
* )
N R
3
*
O
* R
3
N
R
N R
3
* +
Taggi,A.E.; Hafez,A,M.; Wack,H.; Young,B.; Drury,W,J,III,Leckta,T,
J,Am,Chem,Soc,2000,122,7831.
Asymmetric Baylis-Hillman
Iwabuchi,Y.; Nakatani,M.; Yokoyama,N.; Hatakeyama,S,J,Am,Chem,Soc,1999,121,10219.
( R ) - 9 1 % e e
( R ) - 1 0 % e e
7 4 % y i e l d
5 8 % y i e l d
N
O
N
O M e
N
O
N
O H
H
O
O 2 N
O
O
C F 3
C F 3
O
O
C F 3
C F 3O H
O 2 N
+
1 h
D M F,- 5 0 ° C
1 0 m o l % c a t,
High enantioselectivities (91 – 99% ee)
Modest yields (31 – 58%)
Proline
Robinson Annulation
Intermolecular Aldol
Mannich Reaction
Michael Addition
Asymmetric Robinson Annulation
Eder,U.; Sauer,G.; Wiechert,R,Angew,Chem.,Int,Ed,1971,10,496,
Hajos,Z,G.; Parrish,D,R,J,Org,Chem,1974,39,1615,
O
O
M e
O
M e
P h H
M e
O
O
D M F
M e
O
O
O H
2 0 ° C,2 0 h
1 0 0 % y i e l d,9 3 % e e
p - T s O H
r e f l u x
3 m o l % L - P r o l i n e
L - P r o l i n e
N
H
C O
2
H
m e s o - t r i o n e
Proposed Mechanism
N
C O 2 -
O
O
H
N H
C O 2 -
N
3
H
R '
R
R ' '
O
H
( a l d o l a s e ) L y s
Enamine intermediate
Secondary amine and carboxylate essential
Second order in L-Proline Type I Aldolase
Puchot,C.; Sevestre,H.; Agami,C,Tetrahedron Lett,1986,27,1501.
Synthetic Applications
Mickus,D,E.; Rychnovsky,S,D,J,Org,Chem,1992,57,2732,
Danishefsky,S,et al,J,Am,Chem,Soc,1996,118,2843.
O
O
H O
Baccatin III
O
O
H O
A c O O O H
O
O A c
H
O B zH O
ent-Cholesterol
Direct Intermolecular Aldol
List,B.; Pojarliev,P.; Castello,C,J,Am,Chem,Soc,2001,3,573,
Notz,W.; List,B,J,Am,Chem,Soc,2000,122,7386,
List,B.; Lerner,R,A.; Barbas III,C,F,J,Am,Chem,Soc,2000,122,2395.
M e M e
O O
H
H
O
M e
O
O H
D M S O
D M S O
M e
O O H
M e
M e
M e
O O H
O H
9 7 % y i e l d
9 6 % e e
6 0 % y i e l d
> 2 0,1 d r
> 9 9 % e e
+
2 0 v o l %
2 0 v o l %
3 0 m o l % L - P r o l i n e
3 0 m o l % L - P r o l i n e+
Requires no preformed enolate
High concentration of ketone
Proline-Catalyzed Mechanism
Barbas III,C,F.;0 Lerner,R,A.; List,B,J,Am,Chem,Soc,2000,2395.
O
R
1
R
2
C H O
H
2
O
N
H
H O
O
N
O
O
O
R
2
H
H
R
1
- H
2
O
N
H
H O
O
N
-
O
O
R
1
R
2
OO H
R
1
R
2
N
O H
R
1
O
-
O
N
-
O
O
R
1
+
+
- H
+
Mannich Reaction
Pojarliev,P.; Biller,W,T.; Martin,H,J.; List,B.; J,Am,Chem,Soc,2002,124,827.
M e
O
O H
C H O
N O 2
O M e
N H 2
D M S O
M e
O
O H
H N
N O 2
O M e
9 2 % y i e l d
> 9 5 % d e
> 9 9 % e e
+
2 0 m o l % L - P r o l i n e
+
2 0 m o l %
M e M e
O O
H P h
O M e
N H 2
D M S O
M e
O H N
P h
O M e
+
2 0 m o l % L - P r o l i n e
+
8 0 % y i e l d
9 3 % e e2 0 m o l %
Good yields and high enantioselectivities with branched
and unbranched aldehydes
PMP group can be oxidatively removed
Opposite Enantiofacial Selectivity
Pojarliev,P.; Biller,W,T.; Martin,H,J.; List,B,J,Am,Chem,2002,124,827.
N
C O
2
H
X
R H
O
A r N H
2
H
N
M e O
N
X
R
O
H
O
N
X
O
O
R H
H
O
R
N H A r
X
O
R
O H
X
O
M a n n i c hA l d o l
+
) (
s y na n t i
)
(
a l d e h y d e
r e f a c e a t t a c k
i m i n e
s i f a c e a t t a c k
Michael Addition
Shiraishi,T.; Hirama,M.; Yamaguchi,M,J,Org,Chem,1996,61,3520.
O
N O 2 N H
H N
O
N O 2
+
3 - 7 m o l %
L - p r o l i n e
8 8 % y i e l d
9 3 % e e
O
C H 2 ( C O 2 i - P r ) 2
N
H
C O 2 R b O
C O 2 i - P r
C O 2 i - P r
9 1 % y i e l d
( R ) 5 9 % e e
5 m o l %
+
Pham,V.; Hanessian,S,Org,Lett,2000,2,2975.
Possible multicomponent catalyst
Amino Acid Derivatives
Diels-Alder Reaction
Strecker Reaction
Diels-Alder Reaction
o
N
O
O
M e+
1 0 m o l % c a t a l y s t
C H C l 3,- 2 5 ° C
N M e
O
O
H O-O
N
O
O
M e
H
N
R
R
R
O
H
*
Riant,O.; Kagan,H,B,Tetrahedron Lett,1989,52,7403.
A variety of chiral b-amino alcohols tested
High yields (85 – 95 %) but moderate ee’s (< 61%)
Diels Alder Reaction
O
H
N
N M e
M e
M eO
P h
H
H
N
N M e
M e
M eO
P h
C H O
+
8 2 % y i e l d
1,1 4 e x o,e n d o
9 4 % e e
2 0 m o l %
M e O H - H 2 O
H C l C l
-
O N
H
X Y
H C l N X
Y
Ahrendt,K,A.; Borths,C,J.; MacMillan,D,W,C,J,Am,Chem,Soc,2000,122,4243,
General Strategy,Formation of iminium ion to lower LUMO of dienophile
Highly enantioselective Diels-Alder catalyst
Stereocontrol
H
N
N M e
M e
M eO
R e f a c e b l o c k e d S i f a c e e x p o s e d
1,Formation of E-iminium isomer
2,Benzyl group hinders Re-face approach of diene
a,b-Unsaturated Ketones
M e M e
M e M e
E t
O
9 0 % y i e l d
2 0 0,1 e x o,e n d o
9 0 % e e
N
H
N
M eO
P h O
M e+
O
2 0 m o l % H C l O 4,E t O H
2 0 m o l %
Northrop,A,B.; MacMillan,D,W,C,J,Am,Chem,Soc,2002,124,2458,
General toward diene structure
Si face approach of diene
Favored cis-iminium isomer
N
N
M eO
P h O
M e
Strecker Reaction
Grogan,M,J.; Corey,E,J,Org,Lett,1999,157.
N
P h
P h
N
N N
H N
P h
P h
C N
H
1 0 m o l %
H C N,t o l u e n e
9 6 % y i e l d
( R ) 8 6 % e e
76 – 86% ee for aromatic imines
N-Benzhydryl group essential
H N
N
N H
H
NH
C
N Hydrogen bonding and van der Waals’
interactions
Peptide-based Catalysts
Hydrocyanation
Strecker Reaction
Azidation
Phosphorylation
Hydrocyanation
Oku,J.-I,J,Chem,Soc.,Chem,Commun,1981,229,
Tanaka,K.; Mori,A.; Inoue,S,J,Org,Chem,1990,55,181.
H N
N H
O
N
N
HO
c y c l o [ ( S ) - P h e n y l a l a n y l - ( S ) - h i s t i d y l ]
Designed as an oxynitrilase mimic
Acyclic structure showed no asymmetric induction
Mechanistic uncertainty
O
H
H C N
H
C NH O
2 m o l % c a t a l y s t
t o l u e n e,- 2 0 ° C
9 7 % c o n v e r s i o n
( R ) 9 7 % e e
Strecker Reaction
Iyer,M,S.; Gigstad,K,M.; Namdev,N,D.; Lipton,M,J,Am,Chem,Soc,1996,118,4910.
H
N
C H P h 2
H
P h 2 H C H N C N
2 m o l % c a t,H C N
M e O H,- 2 5 ° C
9 7 % y i e l d
( S ) > 9 9 % e e
+
( 2 e q )
H N
N H
O
R
O
N
H
N
H
N N H 2
N H
R =
R = n o a s y m m e t r i c i n d u c t i o n
m o d e s t t o h i g h s e l e c t i v i t y f o r
e l e c t r o n r i c h i m i n e s
Strecker Reaction
Sigman,M,S.; Jacobsen,E,N,J,Am,Chem,Soc,1998,120,4901,
Sigman,M,S.; Vachal,P.; Jacobsen,E,N,Angew,Chem.,Int,Ed,2000,39,1279.
H
N P h
H C N
2,T F A A
C N
N P hF 3 C
O
+
1,2 m o l % c a t,
t o l u e n e,- 7 0 ° C,2 0 h
9 6 % e e
8 8 % y i e l d
1,3 e q
O
R '
N
R
O
M
R ' '
O
N
H
N
H
N
H O
t - B u
N
O
O C O ( t - B u )
H
P h
Mechanistic Insights O
N
H
N
H
N
H O
t - B u
t - B u
N
O
O C O ( t - B u )
H
P h
Well-defined secondary structure
Z-Imine bridges both urea protons by hydrogen bonds
Vachal,P.; Jacobsen,E,N,J,Am,Chem,Soc,2002,124,10012.
Azidation
Guerin,D,J.; Miller,S,J,J,Am,Chem,Soc,2002,124,2134.
N
O
M e
O
T M S N
3
,t - B u C O
2
H
O
N
B O C N
N
N
P h
N
H
t - B u
H
N
O
M e
H
O
O
N
B O C N
N
N
P h
N
H
t - B u
H
N
O
M e
H
M e
O
N
O
M e
O N
3
2,5 m o l % c a t a l y t i c p e p t i d e
9 7 % y i e l d
6 3 % e e
9 5 % y i e l d
7 8 % e eb-turn unit
Methylation at the b-position of the histidine residue increased selectivity
Branching at g-carbon of substrate increased selectivity (up to 92% ee)
Phosphorylation
Sculimibrene,B,R.; Miller,S,J,J,Am,Chem,Soc,2001,123,10125.
OH N
H
N
N
N
P hO
H N
N H
O
P h
P h
P h
N H
O
M e
O
O M e
O
O
O
N
H
B O C
N
N
M e
O B n
O H
O HH O
B n O O B n
E t 3 N
C l - P = O ( O P h ) 2
O B n
O H
OH O
B n O O B n
P
O
O P h
O P h2 m o l % p e p t i d e
6 5 % y i e l d
> 9 8 % e e
1 0 % b i s p h o s p h o r y l a t i o n
t o l u e n e
Phosphorylation of histidine is the first step in a number
of signal transduction pathways
Heteroazolium Catalysts
Benzoin Condensation
Stetter Reaction
Thiamine Pyrophosphate
Coenzyme derived from vitamin B1
Important role in biochemical reactions
– Decarboxylation of a-keto acids
– Transfer of activated aldehyde groups
Thiazolium ring is key functionality
N
S
H 3 C
O
P
N
N
H 3 C
H 2 N O
O
O
P
O
O
O
t h i a m i n e p y r o p h o s p h a t e ( T P P )
Benzoin Condensation
Breslow,R,J,Am,Chem,Soc,1958,80,3719,
Schmuck,C.; Breslow,R,Tetrahedron Lett,1996,8241,
N
S
R
O H
P h
S
N
H
- H
+
- H
+
O
P h
P h
O H
N
S
R
N
S
R
O H
P h
O
P h H
N
S
H
R
O
P h H
H
+
N
S
R
P h
O H
H
N
S
R
P h
O H
P h
O H
- H
+
+
H
+
R
Asymmetric Attempts
Knight,R.; Leeper,F.J,Tetrahedron Lett,1997,38,3611,
Gerhard,A,U.; Leeper,F,J,Tetrahedron Lett,1997,38,3615,
Dvorak,C,A.; Rawal,V,H,Tetrahedron Lett,1998,39,2925.
B r
N
N
S
T s
N
O
O
P h
S
N
P h
O M s N
S
O
S i
t - B u
O T f
O
O H
P h
O
O H
P h
O
O H
P h
5 0 % y i e l d
2 1 % e e ( R )
1 0 0 % y i e l d
2 6 % e e ( S )
2 6 % y i e l d
2 7 % e e ( R )
2 0 m o l % c a t,
1 0 m o l % c a t,5 m o l % c a t,
Triazolium Catalysis
Breuer,K.; Enders,D,Helv,Chim,Acta,1996,79,1217.
O
H
H O
N
NN
O
O
C H 3
C H 3
P h
S i f a c e a p p r o a c h
y i e l d s r a n g e f r o m 2 2 - 7 2 %
e e ' s r a n g e f r o m 2 0 - 8 6 %
O
O
P h
N
N
N
P h
O
H
C l O 4
- O
O H
1,2 5 m o l %
K 2 C O 3,T H F 6 6 % y i e l d
7 5 % e e
Stetter Reaction
Breuer,K.; Runsink,J.; Enders,D,Helv,Chim,Acta,1996,79,1899.
C H O
O C O 2 M e O
O
P h
N
N
N
P h
C l O 4
-
O
O
C O 2 M e
K 2 C O 3,T H F
7 3 % y i e l d
( R ) 6 0 % e e
O
C O 2 M e
H O
N
NN
O
O
C H 3
C H 3
P h
Lower yields for substituted aryls
Moderate selectivity (41 – 71% ee)
Conclusion
Classic examples of asymmetric organocatalysis
– b-lactones
– Asymmetric Robinson Annulation
Direct aldol and Mannich reactions are
promising
Peptide catalysis offers unique opportunity for
further development
Complementary approach to organometallic
catalysis and bioorganic catalysis
.
Acknowledgements
Lee Group
Lisa Jungbauer
Terra Potocky
Rachel Weller
Susie Martins
Margaret Biddle
Marissa Rosen
Brian Lucas
Val Keller
Jodie Brice
Matthew Soellner
Shane Flickinger