fMD53s
5B
1
k£ ?
@°
fs? ?¥Hq5μ ()tf
00
() ( )cos ( )sinf ta td b tdω ωω ω ωω
+∞ +∞
=+
∫∫
?
1
() ()cos,
1
() ()sin
af
bf
d
d
ω τωτ
π
τ
ω τωττ
π
+∞

+∞

=
=


£ () () ()
jj
11
(cos jsin )cos
22
t
f tfeded f
ωτ ω
tdτ τω τ ωτ ωτωτ
ππ
+∞ +∞ +∞ +∞
∞?∞?∞?∞
==?
∫∫ ∫∫
ω
() ()
()
0
00
11
+ cos cos(cos jsin )jsin
2
1
+ ( )cos ( )sinsin sin
f dtdftd
atdbtdfddt
τ ωτ τ ω ωτωτ ωτωτω
ππ
ωωω ωωωτωττ ωω
π
+∞ +∞+∞ +∞
∞?∞?∞
+∞ +∞+∞ +∞
∞?∞
=
=+
∫∫∫∫
∫∫∫∫
y  b
()
sin cosftdτωτωτωω
+∞


1 ¥ f
()
cos cosftdτωτωτωω
+∞


1 ¥
}f
2
k£ ?
@°
fs? ?¥Hq?()tf ( )tf 1 f
H5μ
() ( ) ( )ωωω dtbtf

+∞
=
0
sin
?
() () ( )
0
2
sinbfdω τωτ
π
+∞
=

τ
? 1
}f
H5μ ()tf
() ( ) ( )ωωω dtatf cos
0

+∞
=
?
() () ( )
0
2
cosaf dω τωτ
π
+∞
=

τ
£
!
^ f
()tf
() ()
jj
1
2
t
f tfeded
ωτ ω
τ τω
π
+∞ +∞
∞?∞
=
∫∫
()( )
j
1
cos jsin
2
t
f de d
ω
τ ωτ ωτ τ ω
π
+∞ +∞
∞?∞
=?
∫∫
()
j
0
1
sin
j
t
f de d
ω
τ ωτ τ ω
π
+∞ +∞

=
∫∫
()
j
1
2j
t
bed
ω
ω ω
+∞

=

b
()ωb
^ ω¥ f

()( ) ()
0
1
cos jsin sin
2j
bttdbtdω ωωω ωω
+∞ +∞

=+=ω
!
^
}f
()tf
() ()
jj
1
2
t
f tfeded
ωτ ω
τ τω
π
+∞ +∞
∞?∞
=
∫∫
()( )
j
1
cos jsin
2
t
f de d
ω
τ ωτ ωτ τ ω
π
+∞ +∞
∞?∞
=?
∫∫
() ()
j
0
1
cos
2
t
aed a td
ω
ω ωωω
+∞ +∞

==
∫∫
ω
()ωa
^ ω¥
}f
b 
?9 V? 15w£ 25
35 2?
! 
k
()
1,| | 1
0,| | 1
t
ft
t

=
>
( )ωa iw£
0
,||1
2
sin cos
,||1
4
0,||1
t
t
dt
t
π
ωω π
ω
ω
+∞
<
= =
>?

£
^
}f
()tf
() ()

==
∞+
=
ω
ω
πω
ω
π
ω
π
ω
sin2
0
1
sin2
cos
0
2 t
tdttfa
() ( )
∫∫
+∞
=
+∞
= ω
ω
ωω
π
ωωω d
t
tdat
cossin
0
2
cos
0
f
[
()
0
||1
2
sin cos 0 1
||1
2224
0||
t
t
dft t
t
π
ωω π π π
ω
ω
+∞
1
<
+?
== =
>?

=b
5=
1 p ?

f
,0
()
0,
At
ft
τ≤≤
=

e
¥°
fMDb
3 ()=ωF?
() ()
jj
0
tt
f t f t e dt Ae dt
ωω
τ

+∞
==


∫∫
j
ij
0
11
jjj
t
e
ee
AA A
τ
ω
ωτωτ
ω ωω


== =

2 p/
f
¥°
fs

1 
2 
3 ()
22
2
1,
0,1
tt
ft
t
<
=
>
1
()

<
=
0,2sin
0,0
tte
t
tf
t
()
0,1
1,1 0
1,0 1
0,1
t
t
ft
t
t
∞< <?
<<
=
<<
<<+∞
3 
1f
@°
fs? ?¥Hq°
fs
T1 ()
>
<?
=
1||,0
1||,1
2
t
tt
tf
() ()
ii
1
2
tt
f tftedte
ωω
ω
π
+∞ +∞
∞?∞
=
∫∫
()
1
2i i
1
1
1
2
tt
tedted
ωω
ω
π
+∞
∞?
=?
∫∫
()
1
2i
0
1
1cos
t
ttdted
1
2
i
23
0
1 sin 2 cos 2sin sin
t
tt t tt t
ed
ω
ωωωω
ω
πω ω ω ω
+∞


=+




]
ω
ω ω
π
+∞

=?
∫∫
()
i
3
2sin cos
1
t
ed
ω
ωω ω
ω
πω
+∞

=
∫ 3
0
4sin cos
cos td
ω ωω
ω ω
πω
+∞
=


2
@°
fs? ?¥Hq °
fs
T1 ()

<
=
0,2sin
0,0
tte
t
tf
t
() ()
ii ii
0
11
sin 2
22
tt t tt
f tftedte eed
ωω ωω
eω ω
ππ
+∞ +∞ +∞ +∞

∞?∞?∞
==
∫∫ ∫∫
i2 i2
ii
0
1
22i
tt
t
ed
ee
d
ωω
ω
π
+∞ +∞


=
∫∫
() ()
( )
i2 i2 i
0
1
4i
tttt t
eede
ωωω

π
+∞ +∞
+ +

=?
∫∫
()
()
()
()
1i2 1i2
i
0
1
4i 1i2 1i2
tt
t
ee
ed
ωω
ω
ω
πωω
+∞
+ +

+∞

=?

+ +

() ()
i
11 1
4i 1i2 1i2
t
ed
ω
ω
πω
+∞



=?

+ +


()
()
2
24
52i
1
cos isin
25 6
tt
ωω
dω ωω
πωω
+∞


=+
+

() ( )
22
24 24
5 cos 2 sin 5 sin 2 cos
1i
25 6 25 6
tt tt
dd
ωωωω ωωωω
ω ω
πω π
+∞ +∞
∞?∞
+
+?+
∫∫
()
2
24
0
5cos2sin
2
25 6
tt
d
ωωωω
ω
πω
+∞
+
=
+


3f

@°
fs? ?¥Hq °
fs
T1 ()
<<
<<
=
^ f

e,0
10,1
01,1
t
t
tf
() () ()
ii i
0
11
sin
2i
tt t
f tftedte fttd
ωω ω
eω ωω
ππ
+∞ +∞ +∞ +∞
∞?∞?∞
==
∫∫ ∫∫
1
0
1
1sin
ii
tdte d e d
cosω
ω ωω
+∞ +∞
∞?∞
=? =
∫∫ ∫
ωω
ω
ω
π
tdsin
cos12
0

+∞
=
 ¥W? )[()tf 1,0,1
0
=t
()( )
2
00
00
++ tftf
}9b
3 p/
f
¥°
fMDiw£/
s2Tb

1
||
()
t
f te
β?
= 
0β > £
ü
||
22
0
cos
2
t
t
de
β
ω π
ω
βω β
+∞
=
+


2 £
ü() tetf
t
cos
||?
= ()

+∞
=
+
+
0
||
4
2
cos
2
cos
4
2
tedt
t
π
ωω
ω
ω

3 £
ü()
>

=
,||,0
,||,sin
π
π
t
tt
tf
2
0
sin,| |sin sin
2
1
0,| |
ttt
d
t
π
πωπ ω
ω
ω
π
+∞

=
>

3 
1?()=tF
()
|| itt
f teed
βω
+∞


=

=
ii
00
2cos2
2
tt
tt
ee
etdte dt
ωω
ββ
ω
+∞ +∞

+
=
∫∫
() ()
()
()
()
()
ii
ii
00
0
ii
tt
tt
ee
eedt
βω βω
βω βω
β ωβω
+∞+

+∞
+

=+=

+


22
112
ii
β
β ωβωβω
=+=
+ +
()tf ¥sVr
T1
() ()

+∞
∞?
= ωω
π
ω
deFtf
ti
2
1
()
22
12
cos isin
2
ttd
β
ω ωω
πβω
+∞

=+
+
∫ 22
0
2
cos td
β
ω ω
πβω
+∞
=
+

'
||
22
0
cos
2
t
t
de
β
ω π
ω
βω β
+∞
=
+


2 ()=ωF? ()[]
∫∫
+∞
∞?
+∞
∞?

+
== dte
ee
edtteetf
t
tt
ttt ωω i
ii
||i||
2
cos
() () () ()
{ }
00
1i1 1i1 1i1 1i1
00
1
2
tt t
e dt e dt e dt e dt
ωω ω t
+∞ +∞
++?++

∞?∞
=+++
∫∫∫∫
ω
=
()
()
()
()
()
()
()
()
00
1i1 1i11i1 1i1
00
2 1 i1 1 i1 1 i1 1 i1
tttt
eeee
ωωωω
ω ωω
+∞ +∞
+ +++

∞?∞

1
++ +

++?++


ω
() () () ()
11 1 1 1
21i1 1i1 1i1 1i1ω ωωω
=+++

++ ++

2
4
24
4
ω
ω
+
=
+
()tf ¥sVr
T1
() () ω
ω
ω
π
ωω
π
ωω
dedeFtf
tt i
4
2
i
4
42
2
1
2
1
∫∫
+∞
∞?
+∞
∞?
+
+
==

+∞
+
+
=
0
4
2
cos
4
421
ωω
ω
ω
π
td
yNμ ()

+∞
==
+
+
0
||
4
2
cos
22
cos
4
2
tetftd
t
ππ
ωω
ω
ω

3 ()=ωF?
() ()
ii
sin
tt
f t f t e dt te dt
π
ωω
π
+∞

∞?
==
∫∫
()
∫∫
=?=
ππ
π
ωωω
0
sinsini2sinicossin tdttdtttt
= () ()[]

+
π
ωω
0
1cos1cosi dttt
() ()
+
+
=
ω
ω
ω
ω
ππ
1
1sin
1
1sin
i
00
tt
() () () ( )
2
1
1sin1sin1sin1sin
i
ω
πωωπωπωωπω
+?+
=
2
1
sin
i2
ω
ωπ
=
()tf ¥sVr
T1
() ()
∫∫
+∞
∞?
+∞
∞?
== ω
ω
ωπ
π
ωω
π
ωω
dedeFtf
tt i
2
i
1
sin
i2
2
1
2
1
()
∫∫
+∞+∞
∞?
=+
=
0
22
1
sinsin2
sinicos
1
sini
ω
ω
ωωπ
π
ωωω
ω
ωπ
π
d
t
dtt
yNμ ()

∞+
>

==
0
2
||,0
||,sin
2
21
sinsin
π
π
π
π
ω
ω
ωωπ
t
tt
tfd
t
4X?
f
¥°
fMD1()tf ()=ωF
sinω
ω
 p?f
( )tf b
3 () () ()
∫∫
+∞
∞?
+∞
∞?
+== ωωω
ω
ω
π
ωω
π
ω
dttdeFtf
t
sinicos
sin
2
1
2
1
i
( )
0
sin(1 ) sin 1
1sin 1
cos
22
tt
td d
ωω
ω
ω ωω
πω π ω
+∞ +∞

++?
==
∫∫
() ( )
∫∫
+∞ +∞
+
+
=
00
1sin
2
11sin
2
1
ω
ω
ω
π
ω
ω
ω
π
d
t
d
t

*
7?

+∞
=
0
2
sin π
dx
x
x

?
H0>u
∫∫ ∫
+∞ +∞ +∞
===
00 0
2
sinsinsin π
ω
ω
ω
ω
ω
ω
dx
x
x
du
u
u
d
u
?
H0<u
( )
∫∫
+∞ +∞
=
=
00
2
sinsin π
ω
ω
ω
ω
ω
ω
d
u
d
u
?
H0=u
0
sin
0,
u
d
ω
ω
ω
+∞
=

(*)
[?
Tμ
()
>
=
<
=
1||,0
1||,
4
1
1||,
2
1
t
t
t
tf
5X?
f
¥°
fMD1
0
() [( ) ( )]F
0
ω πδω ω δω ω=++? p?f
b ()tf
3 () ()
ii
00
11
[( ) ( )]
22
tt
f t F ed ed
ωω
ω ωπδωωδωω
ππ
+∞ +∞
∞?∞
==
∫∫
ω
00
-i i
0
cos
2
tt
ee
t
ωω
ω
+
==
6 p?|f

???μ|f

1,0
sgn
1,0||
t
t
t
tt
<
==
>
¥°
fMDb
3 ?|f
?
@°
f s? ?¥ HqA ? ?
l ?b? v ?/Z
T w<°
f
MD¥? l b
n5? i ? V |  O
|sgn |tdt
+∞

→+∞

/
/
,0
() 0 0
0
tn
n
tn
et
ft t
et
>
==
<
sgn lim ( )
n
n
tft
→∞
=  7[sgn ] lim [ ( )]
df
n
n
Ft Fft
→∞
=
()
n
f t
@°
fs? ?¥Hq O
[]
n
F ω =?
() ()
0
i/i/
0
ttnttn
n
it
f t f t e dt e e dt e e dt
ωω
+∞ +∞

∞?∞
==
∫∫∫
ω?
=
11
11
ii
nn
ω ω
+?
=
2
2
2i
1
n
ω
ω

+


# []F ω =?
()
2
2
2
,02i
lim [ ]
i
1
0,0
n
n
ft F
n
ωω
ω
ω
ω
ω
→∞
≠?
== =


=
+?


? B?1  ? lim ( ) ( )
n
n
f xfx
→+∞
=  O ()
n
f x?il/¥°
fMD []
n
F ω =? ( )
n
f t

 (1 ?
i O? f
B {[
,2,n = null )
n →+∞ ]}F ω
l ?5??K1 ()f x Kil/¥°
fMD'
[]F ω =?[()] lim []
n
n
fx Fω
→+∞
=
7 pf
1
() [( )( )( )( )
22
aa
ft t a t a t tδδδδ= ++?+++?]
2
¥°
fMDb
3 ()=ωF? ()[]tf
() ()
ii
1
2
tt
tae dt tae dt
ωω
δδ
+∞ +∞

∞?∞
=++?
∫∫
ii
22
tt
aa
t e dt t e dt
ωω
δδ
+∞ +∞

∞?∞

++ +?


∫∫
ii
ii
22
1
2
aa
aa
eeee
ωω
ωω

=+++


cos cos
2
a
a
ω
ω=+
8 pf
() cos sinf tt= t¥°
fMDb
3 ()=ωF?
()
i
cos sin
t
f ttted
ω
+∞

=
∫ ∫∫
+∞
∞?
+∞
∞?
== dte
ee
dtte
t
tt
t ωω i
2i2i
i
i22
1
2sin
2
1
() ()
=
∫∫
+∞
∞?
+?
+∞
∞?

dtedte
tt 2i2i
i4
1
ωω
() ([]2222
i4
1
+?= ωπδωπδ )
()([]22
2
i
+= ωδωδ
π
)
9 pf
3
() sinf t= t¥°
fMDb
3 ()=ωF?
()
3i
sin
t
f tted
ω
+∞

=

=
i
1
(3sin sin 3 )
4
t
tted
ω
+∞


i
[3 ( 1) 3 ( 1) ( 3) ( 3)]
4
π
δω δω δω δω=+++?b
10 pf
() sin(5 )
3
ft t
π
=+¥°
fMDb
3 () ()
ii
1
sin(5 ) (sin 5 3 cos5 )
32
tt
F f t e dt t e dt t t e dt
ωω iω
π
ω
+∞ +∞ +∞

∞?∞?∞
==+=+
∫∫ ∫
13
i[(5)(5)] [(5)(5)] [(3i)(5)(3i)(5)
222
π
πδω δω πδω δω δω δω=++++?=+++?]?
11£
ü δ?f
^
}f
' () ( )ttδ δ=?b
£
! ()f x 1 ?iB? (,)?∞+∞í kQ V±¥f
5
()() ()( ) (0)tftdt uf udu fδδ
+∞ +∞
∞?∞
=?=
∫∫
?? δ?f
¥ ?ê ?é ? ?
#
() () (0)tftdt fδ
+∞

=

( ) () () ()tftdt tftdtδδ
+∞ +∞
∞?∞
=
∫∫
δ?f
^
}f
b
12£
ü []
j()
()
t
eF
ω=  ? ()t? 1B
Lf
5
1
[cos ( )] [ ( ) ( )],
2
tFF? ωω=+
1
[sin ( )] [ ( ) ( )],
2j
tFF? ωω=
? ()F ω? 1 (F )ω? ¥
af
b
£ y1
( )
( )()t
j
cos jsin
t
et
=+
( )
( ) ( )
j
cos jsin
t
tt

=?e
[ ()
( ) ( )
2
cos 
*
ii tt
ee
t

+
=
()
( ) ( )
i2
sin
ii tt
ee
t

= 
**
[]
() () () ( )
∫∫
+∞
∞?

+∞
∞?

== dteedteee
ttttt ω?ω iiiii
( )ω?= F
?'5 ( a
T¤ )* ()**
[()]
2
1
cos =t? {?
( )
[ ]+
t
e
i
( )
[ ]
t
e
i?
} () ( )[ ]ωω?+= FF
2
1
]{?
( )
[ ]?
t
e
i
( )
[ ]
t
e
i?
} () ( )[ ]ωω= FF
i2
1
[()
i2
1
sin =t?
13£
ü?
ù 1 T¥d? ?f
()f t ¥
f
1
0
() 2 ( )
n
n
Fcω πδωω
+∞
=?∞
=

  ? 1
n
c ()f t ¥°
f)
Z
T?¥"
b
£ 
!
T
π
ω
2
0
=
5?
ù 1 5¥d ??f
( )f t ¥°
f)
¥ˉ·
?
T1 ()
0
int
n
f tce
ω
+∞

=


()=ωF?
() ()
i t
f tfted
()
00
ii i ntnt t
nn
ce e dt c e dt
ωωω ω
+∞ +∞
+∞ +∞

∞?∞
∞?∞
==
∑∑
∫∫
ω
+∞

=


() ()
00
22
nn
n
cn cn
ω
ω
πδω ω π δω ω
++∞
=?
=?=?
∑∑

14 p ?m
U¥ ???

¥
f
b
Ot
()ft
2
τ
2
τ
A
3
0,| | / 2
2
(),0 /2
2
,/2
t
A
ft t A t
A
tA t
τ
τ
τ
τ
τ
>
=? + ≤≤
+?≤≤
0
5 ()f t ¥
f
1
()ωF =? ()
0/2
ii
/2 0
22
() ( )
tt
AA
f ttAedttAe
τ
ωω
τ
ττ

=++?+
∫∫
dt
ii
22
2
222 i 22 i 4
1cos
Ae e A
ωτ ωτ
2
ωτωτ
τω ω τω
+?++


=?=?



ωτ
15 pT ? m
U¥ ?o¥
mb
h
( )tf
t
O T 2T 3T -T -3T -2T
-3T
() ()Ttt
T
h
tf <≤= 03  ?m V ?
B??
ù 5
=¥V r
T1
¥ °
f)
¥ˉ·
?
T1
Vn ¥°
f"
1
()

+∞
∞=
=
n
tn
n
eCtf
ωi

()tf
()
22
11
0
00
2
2
0
ht
T
h
tdt
T
h
T
dttf
T
C
T
TT
====
∫∫

() dtetf
T
C
T
tn
n

=
0
i
1
ω

=
T
tn
dtte
T
h
T
0
i
1
ω

=
T
tin
dtte
T
h
0
2
ω

+
=

dte
nn
e
t
T
h
T
tn
T
tn
0
i
0
i
2
i
1
i
ω
ω
ωω

+
=

22
ii
2
1
i ωω
ωω
n
e
n
Te
T
h
TnTn

()null,2,1
i
±±== n
Tn
h
ω

¥
1
hCA == ||2
00

πω n
h
Tn
h
CA
n
===
2
||2
0


?
()…===,2,1
2
n
T
n
n
n
π
ωω 
?"??]¥
q¤òQ
o¥??
yN
m ?m
U
A
h
O
ω
ω
ω43ω2ω
16 pú

Gausss?f
2
2
2
1
()
2
t
ft e
σ
πσ
= ¥
f
3 ? S
? P10 è 2 X 3¤ò?

f
¥°
fMD1
2
t
Ae
β?
2
/4
Ae
ωβ
π
β
'5?
1
2
A
πσ
= 
2
2
1
σ
β = 
[
()ωF =? ()
2 22
2
i
2 2
1
2
t
t
ft e e dt e
σ ω
ω
σ
πσ
+∞?

==

5 ?
1 ?
1
()F ω =? ()
1
f t


2
()F ω =? ( )
2
f t

,α β
^è
£
ü
L??é 
() ( )
12 1 2
() ()ft ft F Fα βαωβ+=+

ω
[ ] () ()
1
12 12
() ()FF ftfαωβω α β
+=+tb
it
£?
() () () () () ()
ii
12 12 1 2
tt
f tft ftftedt ftedt fte
ωω
αβ αβ α β
+∞ +∞ +∞

∞?∞?∞
+= + = +
∫∫∫
d
ω?
12
() ()FFα ωβω=+
2 ? ()=ωF? £
ü
??é ()[tf ]
j
1
() ()
2
t
f Fte dt
ω
ω
π
+∞

±=

'?[( )] 2 ( )Ft fπ ω=±? b
£ y
i
1
() ( )
2
t
f tFe
ω
dω ω
π
+∞

=


7 x t=? 
-i
1
() ()
2
t
f tFe
ω
dω ω
π
+∞

=


*
7 t ω= 5
-i
11
() ()
22
t
fFed
ω
ω
π π
+∞

= =

)]Ft?[( '?[()] 2 ( )Ft fπ ω=  

*
T?
7 t ω= 5
-i -i
11
() () ()
22
tt
fFtedtFted
ωω
ω
1
2
t
π ππ
+∞ +∞
∞?∞
==
∫∫

 "? '
[(
[()]Ft
)] 2 ()Ft fπ ω= b
3 ? ()=ωF?  a1d
,è
£
ü
M
?é?
[]
()[]tf
1
()
||
fat F
aa
ω

=


b
£
! μ?0a >
-i -i
-i
11 1
[()] () () () () ()
at u
t
f at f at e dt f at e d at f u e du F
aa a
ωω
ω
a
ω
+∞ +∞ +∞
∞?∞?∞
== = =
∫∫ ∫

] ?
H?0a >
-i -i
-i
11 1
[()] () () () () ()
at u
t
aa
f at f at e dt f at e d at f u e du F
a
ωω
ω
a
ω
+∞ +∞ +∞
∞?∞?∞
= = =? =?
∫∫ ∫

8
?
[]
1
()
||
fat F
aa
ω

=


b
4 ? ()=ωF? £
ü
`f
¥êM?é  ()[tf ]
[ ] ()
0
1
j
0
()
t
Fef
ω
ωω
±
=?
0
()F'?
( )
0
j
[]
t
eft
ω±
b ω ω =?
£?
() () ()
00
jj j()j
0
[] (
tt tt
eft eftedt fte dtF
ωωω
)ω ω
+∞ +∞
±±
∞?∞
==
∫∫
b
5 ? ()=ωF? £
ü
`f
¥±s?é ()[tf ] ()
d
F
d
ω
ω
=?
( )[j ]tf t?
b
£ ()
d
F
d
ω
ω
=
() () ()
jjj
j
tt
dd
f tedt ft edt tftedt
ωω
ωω
+∞ +∞ +∞

∞?∞?∞
=
∫∫ ∫
()]tf t?
ω?
"?[j b
6 ? ()=ωF? £
ü
J?é ()[tf ]
( )=?ωF?
( )[]f t?
£
() ()
()
()
()()
()
iitt
F fte dt f te d t
ωω
ω
+∞ +∞

∞?∞
= =
∫∫
=
()
i t
f te dt
ω
+∞

=

()
f t

b
7 ? ()=ωF? £
ü?()[tf ]
00
1
[()cos ] [( ) ( )]
2
ft t F F
0
ω ωω ωω=?++
00
1
[()sin ] [( ) ( )]
2j
ft t F F
0
ω ωω ωω=+b
£?
() () ()
00
00
jj
j( ) j( )j
0
1
[()cos ]
22
tt
ttt
ee
f ttft ed ftedtfted
ωω
ωω ωωω
ω
+∞ +∞ +∞
+?
∞?∞?∞
+
t

==


∫∫∫
00
1
[( ) ( )]
2
FFω ωωω=?++
() () ()
00
00
jj
j( ) j( )j
0
1
[()sin ]
2j 2j
tt
ttt
ee
f t t ft e dt fte dt fte dt
ωω
ωω ωωω
ω
+∞ +∞ +∞
+?
∞?∞?∞

==?


∫∫∫
00
1
[( ) ( )]
2j
FFω ωωω=+b
8 ?¨
 s
2
1
[()] | ()|
2
2
f tdt F dω ω
π
+∞ +∞
∞?∞
=
∫∫
 p/
s¥′

1
2
1cosx
dx
x
+∞


 
2
4
2
sin x
dx
x
+∞


 
3
22
1
(1 )
dx
x
+∞

+

 
4
()
2
2
2
1
x
dx
x
+∞

+

3 
1
2
1cosx
dx
x
+∞


=2
2
2
2
sin
sin
2
x
x
dx dx
xx
+∞ +∞
∞?∞

=


∫∫ ∫
+∞
∞?
=
π2
1
ωd
x
x
2
sin

*
dx
x
xx
dxe
x
x
x
x
x
∫∫
+∞
∞?
+∞
==
0
i
cossin
2
sinsin ω
ω
( ) ( )
dx
x
xx

+∞
++
=
0
1sin1sin ωω

**
?
2
sin
0
π
=

+∞
dx
x
x

()
>
=
<?
=
+

∞+
1,
2
1,0
1,
2
1sin
0
ω
π
ω
ω
π
ω
dx
x
x

()
<
=
>?
=

∞+
1,
2
1,0
1,
2
1sin
0
ω
π
ω
ω
π
ω
dx
x
x
[?
**
T¤
<<?
=

e,0
11,
sin
ωπ
x
x
yN?
*
T ¤
1
2
2
1
1cos 1
2
x
dx d
x
π ωπ
π
+∞ +
∞?
= =
∫∫

2
22
4
22
1
sin sin 2
sin
4
x x
x
dx dx
xx
+∞ +∞
∞?∞
=
∫∫
22
sin 1 sin
2
xx
dx dx
+∞ +∞
∞?∞

=?


∫∫
2
1sin 11
222
x
dx
x π
+∞ +∞
∞?∞

==?


∫∫
2
sin x
d
x
ω




==
1
1
2
24
1 π
ωπ
π
d

3?n' 5? 4l5 b

4
() ()
22
11
11
xx
dx dx
+∞ +∞
∞?∞
+?
=
++
∫∫
()
22
2
11
1
1
dx dx
x
x
+∞ +∞
∞?∞
=?
+
+
∫∫
2
1
arctan |
12
dt x
x
ππ
2
π
+∞
+∞



= = =

+


()
2
2
11
2
1
dx
x
π
+∞ +∞
∞?∞
=
+
∫∫
2
2
1
1
d
x
ω


+

i
22
11 cos
1
x
2
x
edx d
xx
ω
ω
+∞ +∞
∞?∞

==

++ +

∫∫
x
?¨
=
?
9

+
=
+

∞+
∞?
i,
1
iRes2Re
1
Re
2
||i
2
||i
z
e
dt
t
e
zt ωω
π
(){}
||||
||
iRe
i1
i2Re
ωω
ω
ππππ

=+=
+
ee
e
#
()
∫∫∫
+∞
∞?
+∞
∞?
+∞

==
+
0
2||22
2
2
2
1
1
1
ωπωπ
π
ωω
dededt
t
22
|
0
2
π
π
ω
=
=
+∞?
e
?
^
()
22
1
2
2
2
ππ
π =?=
+

+∞
∞?
dt
t
t
b
5
1
1a£
ü/
 ò
T

1
() () () ()
12 21
f tft ftft?=?

2
() () () () ( ) ( )
123 123
[][]f t ftft ftft ft=

3
() () () () ( ) ( )
12 1 2 1 2
[][] [af t f t af t f t f t af t?=?=?]
1è
 ; a

4 () ()[]()[]( )[ ]tfetfetftfe
ttt
2121
ααα
=? 
1è
 ; a

5
() () () () ( ) ( ) ( ) ( ) ( )()()( )
12 1 2 11211222
[][ ]f tft gtgt ftgtftgtftgtftgt+? + =?+?+?+?

6 () ()
()
() ()
( )
12
12 2 1
df t df t
d
ft ft ft ft
dt dt dt

=?=



,
£ 
1
() ()
12 12
() ( )f tft f ft dτ ττ
+∞

=?

() ()
12 21
()()f tufudu ft ft
+∞

=? =?



2,
23
() ()* ()gx f t f t=
() () ()
12 3 12 3
[] ()()()f tft ft f f d ft dζ τ ζζ ττ
+∞ +∞
∞?∞

=


∫∫
123 1
() ( ) ( ) ()( )f fftddfgtdζ τ ζ ττζζζζ
+∞ +∞ +∞
∞?∞?∞
==
∫∫ ∫
() ( ) ( )
112
()* () [ ]
3
f tgt ft ft ft==

3
() ()
12 12 12 12
[ ] ()() [()]() ()[()]af t f t a f f t d af f t d f af t dτ ττ τ ττ τ τ τ
+∞ +∞ +∞
∞?∞?∞
=?=?=?
∫∫ ∫
() () ( ) ( )
121 2
[] [af t f t f t af t=?=?]

4
() ()
()
12 12
() ( )
tt t
eft eft ef e ft d
αα ατατ
τ ττ
+∞

=?

() ()
12 1 2
() ( )
tt
efftdeftft
αα
τττ
+∞

=?=



5
() () () () () () ( ) ( )
12 1 2 1 2 1 2
[][ ][ ][ ]f tft gtgt f f gt gt dτ τττ
+∞

+?+= ++?

τ
() ( ) () ( ) () ( ) () ( )
11 12 21 2 2
f gtdfgtdfgtdfgtdτ ττ τ ττ τ ττ τ ττ
+∞ +∞ +∞ +∞
∞?∞?∞?∞
=+++
∫∫∫∫
() () () ( )()( ) ( ) ( )
11 21 12 2 2
f tgt ftgt ftgt ftgt=?+?+?+?

6 () () () ( )
12 12
dd
f tft f ft d
dt dt
τ ττ
+∞

=

() ()
12
d
f ft d
dt
τ ττ
+∞


=?



() ()
12
d
f tft
dt

=?


() () () () () ()
12 21 2 1
dd d
f tft ftft ft ft
dt dt dt

=?=


() ()
12
d
f tft
dt

=?


yNμ () ()
()
() ()
( )
12
12 2 1
df t df t
d
ft ft ft ft
dt dt dt

=?=



b
3 ? ()
1
0,0
,0
t
t
ft
et
<
=

D
()
2
sin,0,
2
0,
tt
ft
π
≤≤
=

e
p
( ) ( )
12
f tft? b
3
() () () ( )
12 12
f tft f ft dτ ττ
+∞

=?

()
2
0
eft d
τ
τ τ
+∞
=?


*
? 0
2
t
π
<≤
H 
*
T 1
() () ( )
( ) ( )ii
12
00
sin
2i
tt
tt
ee
f tft e t d e d
ττ
ττ
τ ττ


=?=
∫∫
() ()1i 1iii
00
1
2i
tt
ee de e d
ττ
τ τ
+

=?

∫∫
()
()
()
()

+?
=

+?
i1i1i2
1
0
i1
0
i1
i
t
it
t
t
e
e
e
e
ττ
( )
()
( )
()

+?
=
+?
i1
1
i1
1
i2
1
i1
i
i1
i
t
t
t
t
e
e
e
e =
+
+

i1i1i2
1
ii tttt
eeee
2
iiii
i2
1
iiii tttttttt
eeeeeeee

+?++
=
( )
+
+
=

i2
i2
i2
i
i22
1
iiii ttttt
eeeee
= ()
t
ett
+?cossin
2
1
?
2
π
>t
H 
*
T 1
() () ( )
12
2
sin
t
t
f tft e t d
τ
π
τ τ
=?

()
()
()
()

+?
=

+?
i1i1i2
1
2
i1
i2
i1
i
t
t
t
t
t
t
e
e
e
e
π
τ
π
τ
()
() ()
()
+
+
=


+?
+?
i1i1i2
1
2
i1
i1i12
i1
i
ππ
tt
t
it
t
t
t
ee
e
ee
e
+
+
+
=
i1
i1
i1
1i
i2
1
22
ππ
ee
e
t
2
ii1i1i
i2
2222
ππππ
eeeee
t
+++++?
=
+=
2
1
2
π
e
e
t
?
H 
*
T 1 0,0<t
#μ
() () ()
12
2
0,0
1
sin cos,0
22
1,
t
t
t
ft ft t te t
e
et
π
π
π

=?+ <≤

+>


?
H
?
H
?
H
3 ?
1
()F ω =? ()
1
f t


2
()F ω =? ( )
2
f t

£
ü?
12 1 2
1
[() ()] () ()
2
ft ft F Fω ω
π
=?b
£?
1 i
12 12
1
[()* ()] [ ()( ) ]
2
t
FF FF ded
ω
ω ωτωτ
π
+∞ +∞
∞?∞
=?
∫∫
i( ) i
21
1
() ()()2()(
2
tt
FedeFdftf
ωτ τ
ωτ ωτ ττ π
π
+∞ +∞
∞?∞
==
∫∫
`2
)t?
4a p/
f
¥°
fMD,

1
() ( ) ()
0
sinf ttω= ut 
2 ( ) ( )
0
sin
t
f te tut
β
ω
=? 
3 () ( )
0
cos
t
f te tut
β
ω
=?

4
() ()
0
j t
f teut
ω
=  
5 ( ) ( )
0
j
0
t
f teutt
ω
=?  
6 () ()
0
j t
f te ut
ω
=?
3 
1 ()=ωF? ()[] () ( )

+∞
∞?
= dtettutf

ω
i
0
sin ()

+∞
∞?
= dte
ee
tu
t
tt
ω
ωω
i
ii
i2
00
()
()
()
()
=
∫∫
+∞
∞?
+∞
∞?
+
dtetudtetu
tt
00
ii
i2
1
ωωωω
i2
1
=
()
()
()
()
+?
+
+
0
0
0
0
i
1
i
1
ωωπδ
ωω
ωωπδ
ωω
()()[]
00
2
0
2
0
2
i
ωωδωωδ
π
ωω
ω
+
= ()([]
00
22
0
0
2
i
ωωδωωδ
π
ωω
ω
++
= )

2 ()=ωF?
() ()
i
0
sin
tt
f teuttedt
βω
ω
+∞


=

=
00
ii
i
0
2i
tt
ee
dt
ωω
βω
+∞


() ()
00
ii
0
1
2i
tt
eedt
βωω βωω
+∞
+++

=?

()
()
()
()
00
ii
1
2i
tt
ee
βωω βωω
βωω βωω
+∞ +∞
+++



=?
++ +


()()
00
11 1
2i i iβωωβωω

=?

+? ++

()
()
00
22
2
0
0
2i1
2i i
i
ω ω
βωω
β ωω
==
++
++

3 ()=ωF?
() ()
i
0
cos
tt
f teuttedt
βω
ω
+∞


=

00
ii
i
0
2
tt
ee
ωω
βω
+∞

+
=

dt
() ()
00
ii
0
1
2
tt
eedt
βωω βωω
+∞
+++

=+

() ()
00
11 1
2i iβωωβωω

=+

+? ++

=
()
2
2
0
i
i
β ω
β ωω
+
++

4?^f
¥êM?é#? ()[] ()ωπδ
ω
+=
i
1
tu ¤
()
()
()
0
i
0
0
1
i
t
eut
ω
πδω ω
ωω
=+?


5? ê M?é
()[]
0
i
0
ωt-
ettu =? ()[] ()
+= ωπδ
ωi
1
0
iωt-
etu
? ^f
¥êM?é
()
( )
000
ii
0
-tω t
eutt e
ωω?
=

()
()
0
0
1
i
πδ ω ω
ωω

+?


( )
()
()
00
i
0
0
i
t
e
ωω
πδωω
ωω

=+?

?±s ?é? ¤ ()()
()
()ω
nn
Ftfit =? ][
()[]
ωd
d
ttu i=? ()[] ()′?
+= ωπδ
ωi
1
itu ()ωδπ
ω
'i
1
2
+?= 
?`f
¥êM?é¤
()[]
()
()
02
0
i
i
1
0
ωωδπ
ωω
ω
′+
=ttue
t
£
üoM1f
o

á¥/
?é
21 12 21 12
() ( ),S ( ) ( )RR Sτ τω=? =ωb
£
21 1 2 1 2 12
() ( ) () () ( ) ( )RftftdfufuduRτ ττ
+∞ +∞
∞?∞
=+ =?=
∫∫
τ? 
iii-i
21 21 12 12 12 12
S() () ( ) () () ()Red R ed Red RedS
ωτ ωτ ωτ ωτ
ω ττ ττ ττ ττ
+∞ +∞ +∞ +∞

∞?∞?∞?∞
==?==
∫∫ ∫∫
ω=b
X?
?|¥M1f
2||
1
()
4
a
Re
τ
τ
=  p
¥

á()S ω b
£
0
i 2 | | i i( 2 i) i( 2 i)
0
11
() ()
44
a
SRedeed ede
ωτ τ ωτ ω τ ω τa
dω ττ
+∞ +∞ +∞
+
∞?∞?∞

== = +


∫∫ ∫∫

2
11 1
4 i( 2 i) i( 2 i) 4
a
aa
2
ω ωω

=?=

+

+
b
X?
o ?¥M1f
() ()τωτ
0
cos
2
1
=R ( )1è
0
ω
p??o ?¥

á
3 o?¥

á
() ()
∫∫
+∞
∞?
+∞
∞?
== ττωττω
ωτωτ
dedeRS
i
0
i
cos
2
1

2
1
=?[]()([]
000
2
cos ωωδωωδ
π
ω?++=t )
8 ?f
1
,0
()
0,
b
tt
ft
a
≤≤
=

e
a
D
2
1,0
()
0,
ta
ft
≤ ≤
=

e
 p
1
()f t
2
()f t ¥o M1f
12
()R τ b
£ ? ||aτ >
H ;
12 1 2
() () ( ) 0Rftftdττ
+∞

=+

t=
? 0 aτ<≤
H
2
12 1 2
0
() () ( ) ( )
2
a
bb
Rftftdttda
aa
τ
τ ττ
+∞?

=+==
∫∫;
? 0a τ?≤≤
H
22
12 1 2
() () ( ) ( )
2
a
bb
Rftftdttda
aa
τ
τ
+∞
∞?
=+==
∫∫
,