?
fMD53s
5B
1p/
f
¥ ?
fMD,i¨°V¥ZE ?£2T,
(1) () sin
2
t
ft= (2) ()
2t
f te
= (3) ( )
2
f tt= (4) () sin cosf tt= t
(5) () sinhf t= kt (6) () coshf tk= t (7) ( )
2
cosf t= t; (10) ()
2
cosf tt=,
3 (1) & ()
ii
22
00
()
sin
22i
tt
st
st
tee
f t e dt dt
+∞ +∞
==
∫∫
ii
() ()
22
0
1
2i
st st
eedt
+∞+
=?
∫
ii
() ()
22
00
1
ii
2i
22
||
st st
ee
ss
++∞+∞
=?
+
ii
11 1 1
22
ii
ii2i 2i
22
22
ss
ss
ss
+?+
=?=
+
+
()
2
2
1
2
2
Re 0
1
41
4
s
s
s
== >
+
+
(2) & ()
2(2)
00
tst st
f teede
+∞ +∞
+
==
∫∫
d ()
(2)
0
1
Re 2
(2) 2
|
st
e
s
ss
+∞
+
= =>
+ +
(3) & ()
22
0
1
2
|
st
st st
e
f ttedtt tedt
ss
+∞ +∞+∞
==+
22
0 0
22
|
st st
te e dt
ss
+∞+∞
=? +
∫
()
32
0
22
Re 0
|
st
t
es
ss
+∞
=
=? = >
(4) &
()
00
1
sin cos sin 2
2
st st
f t t te dt te dt
+∞ +∞
==
∫∫
(2i) (2i)
0
1
4i
st st
ee dt
+∞
+
=?
∫
()()
+?
=
+∞
+?
+∞
i2i2i4
1
||
0
i)2(
0
i)2(
s
e
s
e
tsts
()0Re
4
1
i2
1
i2
1
i4
1
2
>
+
=?
+
= s
sss
(5) &
()
00
sinh
2
kt kt
st st
ee
f tktedt edt
+∞ +∞
==
∫∫ ( )
() ()
00
1
2
skt skt
ed ed
+∞ +∞
+
=?
∫∫
() ()
00
1
2( ) ( )
||
skt skt
ee
sk sk
+∞ +∞
+
=?
+
()
22
11 1
Re max{,}
2
k
sk
sk sk s k
=?= >?
+?
k
- 1 -
(6) & ()
00
cosh
2
kt kt
st st
ee
f tktedt edt
+∞ +∞
+
==
∫∫ ( )
() ()
00
1
2
skt skt
ed ed
+∞ +∞
+
=+
∫∫
() ()
00
1
2( ) ( )
||
skt skt
ee
sk sk
+∞ +∞
+
=+
+
()
22
11 1
Re max{,}
2
s
sk
sk sk s k
=+= >?
+?
k
(7)& () ()
2
00
1
cos 1 cos 2
2
st st
f t tedt tedt
+∞ +∞
=?=+
∫∫
+=
∫∫
+∞
+∞
dtetdte
stst
00
2cos
2
1
()0Re
)4(
2
4
1
2
1
2
2
2
>
+
+
=?
+
+= s
ss
s
s
s
s
(8)& () ()
2
00
1
sin 1 cos 2
2
st st
f ttedt t
+∞ +∞
=?=
∫∫
edt
( )
00
1
cos 2
2
st st
edt tedt
+∞ +∞
=
∫∫
()
22
11 2
Re 0
24(4)
s
s
ss ss
=?= >
++
2p/
f
¥ ?
fMD,
(1) ; (2) ()()
.4
42
20
,0
,1
,3
≥
<≤
<≤
=
t
t
t
tf
.
2
2
,cos
,3
π
π
>
<
=
t
t
t
tf
(3) ; (4) () ().5
2
tetf
t
δ+= ( ) ( ) ( ),sincos ttutttf?=δ
3
1 & ()[] ()
∫∫∫
+∞
==
4
20
2
0
3 dtedtedtetftf
ststst
)43(
1
33
42
4
2
2
0
||
ss
stst
ee
ss
e
s
e
+?=+
=
2 & ()[] ()
∫∫∫
∞+
∞+
+==
2
2
00
cos3
π
st
π
stst
dtetdtedtetftf
∫
∞+
=
+
+
=
2
ii
2
0
2
3
| π
π
dte
ee
e
s
st
tt
t
st
∫
∞+
+
++?=
2
i)(i)(
2
)(
2
133
π
π
dteee
ss
tsts
s
+?
+
+?=
+∞
=
+?
+∞
=
i)(i)(2
133
||
2
i)(
2
i)(
2
s
e
s
e
e
ss
t
ts
t
ts
s
πππ
+
+?=
+
ii2
133
2
i)(
2
i)(
2
s
e
s
e
e
ss
ss
s
ππ
π
2
2
2
1
133
ss
e
s
e
ss
ππ
+
=
3 & ()[] [] () dtetdteedtetetf
ststtstt?
+∞+∞
+∞
∫∫∫
+=+=
00
2
0
2
5)(5 δδ
()
2
95
5
2
1
5
2
1
|
0
=+
=+
=
=
+∞
∞?
∫
s
s
e
s
dtet
s
t
stst
δ
4 &
() ()
0
cos sin
st st
f t t t e dt te dtδ
+∞ +∞
∞
=
∫∫
11
1
1
1
1
cos
2
2
22
0
|
+
=
+
=
+
=
=
s
s
ss
et
t
st
3
!
^[()tf π2 1 ?
ù¥f
,O B??
ù
= ¥Vr
T 1
()
<<
≤<
=
ππ
π
2
0
,0
,sin
t
tt
tf p & ( )[ ].tf
- 2 -
3 ?
ù1 T¥f
¥ ?
fMD1 ()tf
& ()[] () ( )0Re,
1
1
.
0
>
=
∫
sdtetf
e
tf
T
st
sT
yNμ
& ()[] () dtet
e
dtetf
e
tf
st
s
st
s
=
=
∫∫
π
π
π
π
0
2
2
0
2
sin
1
1
1
1
∫
=
π
π
0
ii
2
i21
1
dte
ee
e
st
tt
s
() ()
+?
=
=
+?
=
iii2
1
1
1
||
0
i)(
0
i)(
2
s
e
s
e
e
t
ts
t
ts
s
ππ
π
+
=
+
i
1
i
1
i2
1
1
1
i)(i)(
2
s
e
s
e
e
ss
s
ππ
π
()()11
1
1
1
1
1
222
+?
=
+
+
=
ses
e
e
s
s
s π
π
π
fMD53s
5B
1p/
f
¥ ?
fMD,i¨°V¥ZE ?£2T,
(1) () sin
2
t
ft= (2) ()
2t
f te
= (3) ( )
2
f tt= (4) () sin cosf tt= t
(5) () sinhf t= kt (6) () coshf tk= t (7) ( )
2
cosf t= t; (10) ()
2
cosf tt=,
3 (1) & ()
ii
22
00
()
sin
22i
tt
st
st
tee
f t e dt dt
+∞ +∞
==
∫∫
ii
() ()
22
0
1
2i
st st
eedt
+∞+
=?
∫
ii
() ()
22
00
1
ii
2i
22
||
st st
ee
ss
++∞+∞
=?
+
ii
11 1 1
22
ii
ii2i 2i
22
22
ss
ss
ss
+?+
=?=
+
+
()
2
2
1
2
2
Re 0
1
41
4
s
s
s
== >
+
+
(2) & ()
2(2)
00
tst st
f teede
+∞ +∞
+
==
∫∫
d ()
(2)
0
1
Re 2
(2) 2
|
st
e
s
ss
+∞
+
= =>
+ +
(3) & ()
22
0
1
2
|
st
st st
e
f ttedtt tedt
ss
+∞ +∞+∞
==+
22
0 0
22
|
st st
te e dt
ss
+∞+∞
=? +
∫
()
32
0
22
Re 0
|
st
t
es
ss
+∞
=
=? = >
(4) &
()
00
1
sin cos sin 2
2
st st
f t t te dt te dt
+∞ +∞
==
∫∫
(2i) (2i)
0
1
4i
st st
ee dt
+∞
+
=?
∫
()()
+?
=
+∞
+?
+∞
i2i2i4
1
||
0
i)2(
0
i)2(
s
e
s
e
tsts
()0Re
4
1
i2
1
i2
1
i4
1
2
>
+
=?
+
= s
sss
(5) &
()
00
sinh
2
kt kt
st st
ee
f tktedt edt
+∞ +∞
==
∫∫ ( )
() ()
00
1
2
skt skt
ed ed
+∞ +∞
+
=?
∫∫
() ()
00
1
2( ) ( )
||
skt skt
ee
sk sk
+∞ +∞
+
=?
+
()
22
11 1
Re max{,}
2
k
sk
sk sk s k
=?= >?
+?
k
- 1 -
(6) & ()
00
cosh
2
kt kt
st st
ee
f tktedt edt
+∞ +∞
+
==
∫∫ ( )
() ()
00
1
2
skt skt
ed ed
+∞ +∞
+
=+
∫∫
() ()
00
1
2( ) ( )
||
skt skt
ee
sk sk
+∞ +∞
+
=+
+
()
22
11 1
Re max{,}
2
s
sk
sk sk s k
=+= >?
+?
k
(7)& () ()
2
00
1
cos 1 cos 2
2
st st
f t tedt tedt
+∞ +∞
=?=+
∫∫
+=
∫∫
+∞
+∞
dtetdte
stst
00
2cos
2
1
()0Re
)4(
2
4
1
2
1
2
2
2
>
+
+
=?
+
+= s
ss
s
s
s
s
(8)& () ()
2
00
1
sin 1 cos 2
2
st st
f ttedt t
+∞ +∞
=?=
∫∫
edt
( )
00
1
cos 2
2
st st
edt tedt
+∞ +∞
=
∫∫
()
22
11 2
Re 0
24(4)
s
s
ss ss
=?= >
++
2p/
f
¥ ?
fMD,
(1) ; (2) ()()
.4
42
20
,0
,1
,3
≥
<≤
<≤
=
t
t
t
tf
.
2
2
,cos
,3
π
π
>
<
=
t
t
t
tf
(3) ; (4) () ().5
2
tetf
t
δ+= ( ) ( ) ( ),sincos ttutttf?=δ
3
1 & ()[] ()
∫∫∫
+∞
==
4
20
2
0
3 dtedtedtetftf
ststst
)43(
1
33
42
4
2
2
0
||
ss
stst
ee
ss
e
s
e
+?=+
=
2 & ()[] ()
∫∫∫
∞+
∞+
+==
2
2
00
cos3
π
st
π
stst
dtetdtedtetftf
∫
∞+
=
+
+
=
2
ii
2
0
2
3
| π
π
dte
ee
e
s
st
tt
t
st
∫
∞+
+
++?=
2
i)(i)(
2
)(
2
133
π
π
dteee
ss
tsts
s
+?
+
+?=
+∞
=
+?
+∞
=
i)(i)(2
133
||
2
i)(
2
i)(
2
s
e
s
e
e
ss
t
ts
t
ts
s
πππ
+
+?=
+
ii2
133
2
i)(
2
i)(
2
s
e
s
e
e
ss
ss
s
ππ
π
2
2
2
1
133
ss
e
s
e
ss
ππ
+
=
3 & ()[] [] () dtetdteedtetetf
ststtstt?
+∞+∞
+∞
∫∫∫
+=+=
00
2
0
2
5)(5 δδ
()
2
95
5
2
1
5
2
1
|
0
=+
=+
=
=
+∞
∞?
∫
s
s
e
s
dtet
s
t
stst
δ
4 &
() ()
0
cos sin
st st
f t t t e dt te dtδ
+∞ +∞
∞
=
∫∫
11
1
1
1
1
cos
2
2
22
0
|
+
=
+
=
+
=
=
s
s
ss
et
t
st
3
!
^[()tf π2 1 ?
ù¥f
,O B??
ù
= ¥Vr
T 1
()
<<
≤<
=
ππ
π
2
0
,0
,sin
t
tt
tf p & ( )[ ].tf
- 2 -
3 ?
ù1 T¥f
¥ ?
fMD1 ()tf
& ()[] () ( )0Re,
1
1
.
0
>
=
∫
sdtetf
e
tf
T
st
sT
yNμ
& ()[] () dtet
e
dtetf
e
tf
st
s
st
s
=
=
∫∫
π
π
π
π
0
2
2
0
2
sin
1
1
1
1
∫
=
π
π
0
ii
2
i21
1
dte
ee
e
st
tt
s
() ()
+?
=
=
+?
=
iii2
1
1
1
||
0
i)(
0
i)(
2
s
e
s
e
e
t
ts
t
ts
s
ππ
π
+
=
+
i
1
i
1
i2
1
1
1
i)(i)(
2
s
e
s
e
e
ss
s
ππ
π
()()11
1
1
1
1
1
222
+?
=
+
+
=
ses
e
e
s
s
s π
π
π