~ ?yvD ?Dy
? ??


T# ?¨B
~ ?yvD ?Dy
Ba u× ?Y?¥s ?
! D1
ü
u×
 ?T D
= ?B> wL
??¥?s?
? D
5? D1
ü
? ?Y u

?5?1ˉ ?Y u×
ˉ ?Y u×? ?Y u×
D
D
~ ?yvD ?Dy
! bW u× G
 ?T G
= ?B> w
??
¥ u× ?
? G
5? G
^ bW=?? ?Y×
?T G
= ?B> wL9 V[fB
? ?
?
G¥ w

5? G1 bWB?? ?Y u×
G
G
G
B?? ?Y
=?? ?Y
B?? ?Y
=?? ?Y
B?? ?Y
=?? ?Y
~ ?yvD ?Dy

!> u× D?s
;ᥠwL L?
?
f
),(),( yxQyxP #  D
 μB¨ ?
?
ê?

5μ
∫∫∫
+=
L
D
QdyPdxdxdy
y
P
x
Q
)(  

? L
^ D¥ |?_¥H? wL


T 
?S ì

T 
=aì

T
? ?
~ ?yvD ?Dy
??D?
21
LLL F?D?
21
LLL
H? wL L¥?_,?43?H??<
H, u
× D9
e¥ PH,
2
L
D
1
L
2
L
1
L
D
~ ?yvD ?Dy
}),()(),{(
21
bxaxyxyxD ≤≤≤≤=
£
ü 
? u× D;
^?X ?
?
^?Y ?,'
ü??
US॰L Là
??
?,
}),()(),{(
21
dycyxyyxD ≤≤≤≤= ψψ
y
x
o a
b
D
c
d
)(
1
xy?=
)(
2
xy?=
A
B
C
E
)(
2
yx ψ=
)(
1
yx ψ=
~ ?yvD ?Dy
dx
x
Q
dydxdy
x
Q
y
y
d
c
D
∫∫∫∫
=
)(
)(
2
1
ψ
ψ
∫∫
=
d
c
d
c
dyyyQdyyyQ )),(()),((
12
ψψ
∫∫
=
CAECBE
dyyxQdyyxQ ),(),(
∫∫
+=
EACCBE
dyyxQdyyxQ ),(),(

=
L
dyyxQ ),(
] ? V£
∫∫∫
=
L
D
dxyxPdxdy
y
P
),(
y
x
o
d
)(
2
yx ψ=
D
c
C
E
)(
1
yx ψ=
~ ?yvD ?Dy
 ? u× D??
;
á¥> wL?? ?m

£
ü 
L
1
L
2
L3
L
D
1
D
2
D3
D

TMF¤
∫∫∫
+=
L
D
QdyPdxdxdy
y
P
x
Q
)(
| Ds? ??;
^?X ??
^
Y ?¥ u×
1
D
2
D
3
D 
∫∫∫∫
++
=
321
)()(
DDDD
dxdy
y
P
x
Q
dxdy
y
P
x
Q
~ ?yvD ?Dy
∫∫∫∫∫∫
+
+
321
)()()(
DDD
dxdy
y
P
x
Q
dxdy
y
P
x
Q
dxdy
y
P
x
Q
∫∫∫
+++++=
321
LLL
QdyPdxQdyPdxQdyPdx

+=
L
QdyPdx
1
D
2
D
3
D
L
1
L
2
L3
L
),(
32,1
?
a1?Z_ DLLL
~ ?yvD ?Dy
G
D
3
L
2
L
F
C
E
1
L
A
B
£
ü 
 ? u×???BH> w
L
??@F°L
"#
$&
5 D¥H? wL? "#
2
L
#"
"'$
$&

3
L
&$# $("?
? (2)?
∫∫
D
dxdy
y
P
x
Q
)(
∫∫∫∫∫
++++=
CEAFCBALAB
2
{
∫∫∫
+?+++
CGAECL
QdyPdx )(}
3
~ ?yvD ?Dy

+=
L
QdyPdx
∫∫∫
+++=
231
))((
LLL
QdyPdx
),(
32,1
?
a1?Z_ DLLL


T¥
Lé
y ?

ü
> wL¥ wLsD=×
s-W¥ ó",
,)(
∫∫∫
=+
D
L
dxdy
y
P
x
Q
QdyPdx
1a ? L
^ D¥?_H? wL
2aPaQ D
B¨
ê?
??
?i
,3
?¨ì

Ta
∫ ∫
LL
QdyPdx
~ ?yvD ?Dy
¥?_H? wL

ü
> u×1 DxoyL
{DA ¥
1 u×
=?

ydxxdy
L
∫∫
=
D
dxdy2
dxdy
y
P
x
Q
D
)(
∫∫
A2=
=A ydxxdy
L

2
1

=
L
xdy
.

=
L
ydx

+=
L
xdyydx 43

+=
L
xdyydx 32
~ ?yvD ?Dy
?ae??¨
e wLs
è 9
dyxydxyx
L
)635()42(

+++?
{L H?1??¥ ???¥?_[ )2,3(),0,3(),0,0(:
3
x
y
o
)2,3(
635,42?+=+?= xyQyxP
,3=
x
Q
,1?=
y
P
D
dyxydxyx
L
)635()42(

+++?
dxdy
y
P
x
Q
D
)(
=
∫∫
dxdy
D
∫∫
= 4
.12=
~ ?yvD ?Dy
x
y
o
L
è9

AB
xdy, ? w
L AB
^??1 r¥?
?B`K?s,
3 ? ?£ù wL L,
A
B
D
BOABOAL ++=
(
?¨ì

T,xQP ==,0 μ
∫∫∫
=?
L
D
xdydxdy,
∫∫∫
++=
BOABOA
xdyxdyxdy
,0,0 ==
∫∫
BOOA
xdyxdy??
.
4
1
2
rdxdyxdy
D
AB
π?=?=∴
∫∫∫
~ ?yvD ?Dy
è 9

+
L
dyyxdxyx )sin()(
22
.)1,1()0,0(2:
2
¥B
??
?xxyL?=
3
x
y
o
)1,1(A
D
#
BOABLl ++=
yxQyxP
22
sin,=?=
1,1?=
=
y
P
x
Q

+
l
dyyxdxyx )sin()(
22
dxdy
y
P
x
Q
D
)(
=
∫∫
,0=
=+

AB
dyyxdxyx )sin()(
22
dyy)sin1(
0
1
2

+?
4
2sin
2
3
=
=+

BO
dyyxdxyx )sin()(
22

0
1
2
dxx
3
1
=
e
T
∫∫∫

BOABl
)
3
1
()
4
2sin
2
3
(0=
.
6
7
4
2sin
=
~ ?yvD ?Dy
è9
∫∫
D
y
dxdye
2
, ? D
^
[ )1,0(),1,1(),0,0( BAO 1??
¥ ???> u×,
3
7
2
,0
y
xeQP
==,
e=×s
x
y
o
A
B
1
1
D
5
2
y
e
y
P
x
Q
=
,
~ ?yvD ?Dy
?¨ì

T

∫∫∫
++

=
BOABOA
y
D
y
dyxedxdye
22
∫∫

==
1
0
22
dxxedyxe
x
OA
y
).1(
2
1
1?
= e
~ ?yvD ?Dy
è9

+
L
yx
ydxxdy
22

? L1BHí×?
s
;á O?üVe?¥ ??> wL
L¥Z
_1
I
H?Z_
5? 0
22
≠+ yx
H
μ
y
P
yx
xy
x
Q
=
+
=
222
22
)(
.
,L
??¥> u×1 D,3
7
2222
,
yx
x
Q
yx
y
P
+
=
+
=,
~ ?yvD ?Dy
L

? D?)0,0(
H
(2) ? D∈)0,0(
H,
1
D
r
l
x
y
o
L
D
?ì

T?

=
+
L
yx
ydxxdy
0
22
Tê? D
=??
222
,ryxl =+,
:
1
D? L l
??,
?¨ì

T,¤
y
x
o
~ ?yvD ?Dy
∫∫
+
=
+
lL
yx
ydxxdy
yx
ydxxdy
2222
x
y
o
r
1
D
l
L
0
2222
=
+
+
∫∫
lL
yx
ydxxdy
yx
ydxxdy
( ? l¥Z_
|
I
H?Z_ )
.2π=
(?iì

T¥Hq )
θ
θθ
d
r
rr
2
2222
sincos +

π
=
2
0
~ ?yvD ?Dy


T,
∫∫∫
+=
L
D
QdyPdxdxdy
y
P
x
Q
)(
|,,xQyP =?= ¤
∫∫∫
=
L
D
ydxxdydxdy2
> u× D¥


=
L
ydxxdyA
2
1
.
|,,0 xQP == ¤

=
L
xdyA
|,0,=?= QyP ¤

=
L
ydxA
9
ü

~ ?yvD ?Dy
wL AMO?f
],0[,axxaxy ∈?= V
U,
è9
tL )0()(
2
>=+ aaxyx D xà
??¥
 
3
ONA1°L 0=y,

=∴
L
ydxxdyA
2
1
∫∫
+?=
AMOONA
ydxxdyydxxdy
2
1
2
1
)0,(aA
N
M
~ ?yvD ?Dy

=
AMO
ydxxdy
2
1
dxxaxdx
ax
a
x
a
)()1
2
(
2
1
0
=

.
6
1
4
2
0
adxx
a
a
==

)0,(aA
N
M
~ ?yvD ?Dy
1al2
 ?Y u×¥à
Q ;
=×sD wLs¥1"
ì

T¥?¨
——ì

T
∫∫∫
+=
L
D
QdyPdxdxdy
y
P
x
Q
)(
~ ?yvD ?Dy
? u× ?m1
ˉ ?Y×
k
í


T? wLs? L
¥Z_b
∫∫∫
+=
LD
QdyPdxdxdy
y
P
x
Q
o
x
y
A
B
C
D
E F
G
± I5
~ ?yvD ?Dy
± I53s
o
x
y
A
B
C
D
E F
G
?
?sF?
L
? H?
= H?
BCDAB
EGFE