~ ?yvD ?Dy
?
1?


T# ?¨=
~ ?yvD ?Dy
G
y
x
o

+
1
L
QdyPdx
5? wLs

+
L
QdyPdx 
 G
= D
^?í1

Ba wLsD
^?í1¥?l

+
2
L
QdyPdx
1
L
2
L
B
A
?T u× G
=μ
=
?5D
^?μ1
¥ ?i
H wL?
=V
^a ? BAGLL
21
?
?
.s1
,
= ?iB> wL¥Hq
^ u×
D
^?í1¥ 1
= wLs u×
D
QdyPdxD
L

+
~ ?yvD ?Dy
=a wLsD
^?í1¥Hq

! 7 u× G
^B?? ?Y×
f
),(),,( yxQyxP  G
= μB¨ ??
ê?
5 wLs

+
L
QdyPdx  G
=D
^?í1

 G
= ?i> wL¥ wLs1
, ¥
1Hq
^
x
Q
y
P
=
 G
=? ? 
? ?
~ ?yvD ?Dy
£
ü s?
^?? wL
= ? |BHμ_;á> GLG,
,,
= ??
??¥ u×
[> wL? ?Y¥ GDL

+
L
QdyPdxQ
dxdy
y
P
x
Q
D
)(
±=
∫∫
,
? ?? G
y
P
x
Q
=
0=+∴

L
QdyPdx
.
=D
^?í1' wLs GQdyPdx
L

+
A1?
,
=D
^?í1X? wLs GQdyPdx
L

+
5?s G
= ?i> wL¥ wLs1
,,
~ ?yvD ?Dy
¨Q£E
0
,MGG
y
P
x
Q
=à
μB?5
=?? ?
!
=
,0|)(
0

M
y
P
x
Q
P
.0|)(
0
>=
η
M
y
P
x
Q
?^
!
1??yNA Vs?B?[
= ????
0
,,MG
y
P
x
Q
:,
μ
P¤??@l¥??× KK
,
2
η

y
P
x
Q
,,¥

^¥?_H? wL
^
! KKL σ
=+∴

L
QdyPdx
dxdy
y
P
x
Q
K
)(
∫∫
σ
η
2
≥,0>
±
~ ?yvD ?Dy
(1) 7 u× G
^B?? ?Y×,
(2)f
),(),,( yxQyxP  G
= μB¨ ?
?
ê?
,
Hq ?B? V
μ1? ?¥
a
ü
x
y
o
)4,2(
A
B
∫ ∫
+=
oA AB

++
)4,2(
)0,0(
2
)()( dyyxedxxe
yy
~ ?yvD ?Dy
?a=íf
¥ ?±s p

! 7 u× G
^B?? ?Y×
f
),(),,( yxQyxP  G
= μB¨ ??
ê?

5 dyyxQdxyxP ),(),( +  G
=1
B
f
),( yxu ¥ ?±s¥ 1Hq
^?
T
x
Q
y
P
=

 G
=? ?
? ?
~ ?yvD ?Dy
£
ü
A1?
P¤L
!i"
Bf
),,( yxu
,),(),( dyyxQdxyxPdu +=
),( ),,( yxQ
y
u
yxP
x
u
=
=
5Aμ
x
Q
xy
u
y
P
yx
u
=

=

22
,V7
y1 PaQ μB¨ ??
ê?

,),( OM?¥=¨
ê?
??5 yxu
.:
x
Q
y
P
=
#μ
~ ?yvD ?Dy
 s?
|G
x
Q
y
P
=? ? ?T
=
=D
^?í15 GQdyPdx
L

+

+=
),(
),(
00
),(
yx
yx
QdyPdxyxu
!
x
y
o
),( yxB
A
),(
00
yx
.
.
),( yxxB?+

G
x
yxuyxxu
x
u
x
+
=
→?
),(),(
lim
0
),(),( yxuyxxu?+?
∫∫
+
=
),(
),(
),(
),(
0000
yxx
yx
yx
yx
∫∫
+
+=
),(
),(
),(
),(
00
yx
yx
yxx
yx

),(
),(
00
yx
yx

+
=
),(
),(
yxx
yx


+=
BB
QdyPdx
.

+
=
xx
x
dxyxP
),(
~ ?yvD ?Dy
),(),( yxuyxxu+

+
=
xx
x
dxyxP ),(
xyxxP+= ),( θ 10 ≤≤θ
x
yxuyxxu
x
u
x
+
=
→?
),(),(
lim
0
x
xyxxP
x
+
=
→?
),(
lim
0
θ
),(lim
0
yxxP
x
+=
→?
θ
).,( yxP=
)),(( ??y1 yxP
)),(( ??y1 yxP
).,(,yxQ
y
u
=
] ? V£
,),(),( ??y1 yxz2yxP ¥B¨
ê? ??
[ ),( yxu
|yxu V±5f
),(
.),(),(,dyyxQdxyxPdu += O
~ ?yvD ?Dy
x
Q
y
P

?

+
),(
),(
11
00
yxB
yxA
QdyPdx5
dyyxQdxyxP
y
y
x
x
),(),(
1
0
1
0
10
∫∫
+=
),(
01
yxC?
),(
11
yxB?
x
y
o
),(
00
yxA?
dxyxPdyyxQ
x
x
y
y
),(),(
1
0
1
0
10
∫∫
+=
~ ?yvD ?Dy
è 9

+++
L
dyyxdxxyx )()2(
422
, ?
L1?? )0,0(O ?? )1,1(B ¥ wL
2
sin
x
y
π
=,
xxyx
yy
P
2)2(
2
=+
=
xyx
xx
Q
2)(
42
=+
=
3
x
Q
y
P
=

esD
^?í1
.
15
23
=
x
y
o
)1,1(
A
B
e
T
∫ ∫
+
OA AB
∫ ∫
++=
1
0
1
0
42
)1( dyydxx
~ ?yvD ?Dy
è
! wLs

+
L
dyxydxxy )(
2
D
^?í
1,  μ ??¥?
, O 0)0( =?,
9

+
)1,1(
)0,0(
2
)( dyxydxxy,
sD
^?í1
x
Q
y
P
=

3
,2)(
2
xyxy
yy
P
=
=
),()]([ xyxy
xx
Q

=?
=
,),(
2
xyyxP =
),(),( xyyxQ?=
~ ?yvD ?Dy
? 0)0( =? ? 0=c
2
)( xx =,
#

+
)1,1(
)0,0(
2
)( dyxydxxy
? xyxy 2)( =?

cxx +=
2
)(
∫∫
+=
1
0
1
0
0 ydydx
.
2
1
=
x
y
o
)1,1(B
A
~ ?yvD ?Dy
è
).,(
)2()2(
yxu|
xoydyyxdxyx
pB??"¥f
Bf
¥ ?±s
ü
=
^£ +++
3 yxQyxP +=+= 2,2
2,2 =
=
y
P
x
Q
{xoy
y
P
x
Q
=? ?
=

.
)2()2(
Bf
¥ ?±s
ü
=
^ xoydyyxdxyx +++∴

+=
),(
)0,0(
),(
yx
QdyPdxyxu
!
x
y
o
),( yxB
A
∫∫
+=
oA AB

=
x
xdx
0

++
y
dyyx
0
)2(
.
2
1
2
2
1
22
yxyx ++=
~ ?yvD ?Dy
è
).,(,
)2()2(
2222
yxu
xoydyyxyxdxyxyx
pB??"¥f
±s
ü
=
^
Bf
¥ ?
£+?+
3
2222
2,2 yxyxQyxyxP=?+=
y
P
yx
x
Q
=?=
22 {xoy
y
P
x
Q
=? ?
=

.
)2()2(
2222
Bf
¥ ?±s
ü
=
^ xoydyyxyxdxyxyx+?+∴

+=
),(
)0,0(
),(
yx
QdyPdxyxu
!
x
y
o
),( yxB
A
∫∫
+=
oA AB

=
x
dxx
0
2

+
y
dyyxyx
0
22
)2(
.
3
1
3
1
3223
yxyyxx+=
~ ?yvD ?Dy
è
dyeyfdxyeyf
x
L
x
]3)([]3)([?

+?

9
.5
)1,4()3,2()(
??¥
1 OD°L
?i
^?
¥??1V? ?? ?
AB|
BA|-yf

3
x
y
o
B
A
.
.
L
3)(,3)(?

=?=
xx
eyfQyeyfP
3)(,)(?

=

=
xx
eyf
y
P
eyf
x
Q
=+

+
QdydxP
BAL
∫∫
D
dxdy
y
P
x
Q
)(
D
∫∫
=
D
dxdy3
.15?=
14:,5,→+?= xxyBA
L+BA1
¨
HòZ_
~ ?yvD ?Dy
14:,5,→+?= xxyBA
QdydxP
BA
+


+?

++?=
1
4
)]3)5((153)5([( dxexfxexf
xx

++?

+?=
1
4
]123)5()5([ dxxexfexf
xx
1
4
2
|]12
2
3
)5([ xxexf
x
++?=,
2
33
)1()4(
4
+?= efef
=+

QdydxP
L
∫∫
+
BALBA
.
2
63
)1()4(
4
+?= efef
=+

+
QdydxP
BAL
.15?
L+BA1
I
HòZ_
=+

QdydxP
L
∫∫
+
BALBA
=+

+
QdydxP
BAL
.15
.
2
3
)1()4(
4
+?= efef
~ ?yvD ?Dy
1al2
D
^?í1¥
1??N
5
H
q
? ?Y 7 u× D
 ),(),,( yxQyxP μ
??¥B¨
ê?

5[/
1?
5?N

+
L
QdyPdxD D
^?í1
=)1(

=+
C
DCQdyPdx > wL,0)2(
QdyPdxduyxUD +=
P
=i ),()3(
x
Q
y
P
D
=
,)4(
=
?
N

5
~ ?yvD ?Dy
°z A b5
a
!> u× D?s
;ᥠwL L??
f
),(,),( yxQyxP  D
 μB¨ ??
ê?

5μ
=
∫∫
D
dxdy
y
P
x
Q
)( @@@@@@@@@@@@@@@@ 
a
! D 1
ü
¥B?? ?Y×
f
),(,),( yxQyxP  D
=μB¨ ??
ê?

5

+
L
QdyPdx  D
=D
^?í1¥ 1Hq
^
@@@@@@@@@@@@@@@ D
=))? ? 
a
! D1?s
;ᥠwL L
??¥> u×

1 
? ),( yxP # ),( yxQ  D
μB¨ ??
ê
?

O 1=
x
Q

1?=
y
P

5 =+

L
QdyPdx @@@
5
~ ?yvD ?Dy
?z 9

++?
L
dyyxdxxxy )()2(
22
? L
^?
t
L
2
xy = xy =
2
??¥ u×¥?_H? wL
i£ì

T¥? ??
~z  ?¨ wLs
p??L taytax
33
sin,cos ==
??¥m?¥

1a£
ü wLs

+?
)4,3(
)2,1(
2232
)36()6( dyxyyxdxyxy ?? xoy
=D
^?í1
i9
s′
?a ?¨ì

T
9
/
 wLs
a

+
L
dyyxdxyx )sin()(
22
? L
^??

2
2 xxy?=
?? 

?? 

¥B
 
~ ?yvD ?Dy
a p wLs

+=
AMB
dyyxdxyxI
22
1
)()(

+=
ANB
dyyxdxyxI
22
2
)()( ¥μ ? AMB
^Ve? )1,1(A
)6,2(B O ?à<°? x
à¥
tL
¥

 AMB
^ ?¤ BA,¥L

Ba9

+
L
yx
ydxxdy
22

? L1?üVe?¥;á> w
L |
I
H?Z_

ta£ yxxdxxyyx
2322
8()83( +++ dyye
y
)12+ ?
? xoy
ü
=
^
Bf
),( yxu ¥ ?±s
i p?
"B? ),( yxu 
~ ?yvD ?Dy
?a
k ?? λ
P¤ dyr
y
x
dxr
y
x
λλ
2
2
^
?f

),( yxu ¥ ?±s
?
22
yxr +=
i p
),( yxu 
?a
!?
ü
0>x
=μ ? )(
3
jyix
r
k
F +?=? ?
?
? k1è


22
yxr += £
üN ???
? ?
T¥?D
|¥
^?í1
~ ?yvD ?Dy
5s?
Baa

+
L
dyQPdx  a
x
Q
y
p
=
 a
=a
30
1
 ?a
2
8
3
aπ 
1a
?aa 2sin
4
1
6
7
+?  a
Baa?
?L ¥ D u× ?ce?
H
 
a?
?L ¥ D u× ce?
? ? O L e? 
B ?
H
π2  
a?
?L ¥ D u× ce?
 ? O Lne?
 ?
H
πn2 
~ ?yvD ?Dy
ta )(124),(
223 yy
eyeyxyxyxu?++= 
?a
y
r
yxu =?= ),(,1λ