第四章 串
4.10
void String_Reverse(Stringtype s,Stringtype &r)//求s的逆串r
{
StrAssign(r,''); //初始化r为空串
for(i=Strlen(s);i;i--)
{
StrAssign(c,SubString(s,i,1));
StrAssign(r,Concat(r,c)); //把s的字符从后往前添加到r中
}
}//String_Reverse
4.11
void String_Subtract(Stringtype s,Stringtype t,Stringtype &r)//求所有包含在串s中而t中没有的字符构成的新串r
{
StrAssign(r,'');
for(i=1;i<=Strlen(s);i++)
{
StrAssign(c,SubString(s,i,1));
for(j=1;j<i&&StrCompare(c,SubString(s,j,1));j++); //判断s的当前字符c是否第一次出现
if(i==j)
{
for(k=1;k<=Strlen(t)&&StrCompare(c,SubString(t,k,1));k++); //判断当前字符是否包含在t中
if(k>Strlen(t)) StrAssign(r,Concat(r,c));
}
}//for
}//String_Subtract
4.12
int Replace(Stringtype &S,Stringtype T,Stringtype V);//将串S中所有子串T替换为V,并返回置换次数
{
for(n=0,i=1;i<=Strlen(S)-Strlen(T)+1;i++) //注意i的取值范围
if(!StrCompare(SubString(S,i,Strlen(T)),T)) //找到了与T匹配的子串
{ //分别把T的前面和后面部分保存为head和tail
StrAssign(head,SubString(S,1,i-1));
StrAssign(tail,SubString(S,i+Strlen(T),Strlen(S)-i-Strlen(T)+1));
StrAssign(S,Concat(head,V));
StrAssign(S,Concat(S,tail)); //把head,V,tail连接为新串
i+=Strlen(V); //当前指针跳到插入串以后
n++;
}//if
return n;
}//Replace
分析:i+=Strlen(V);这一句是必需的,也是容易忽略的.如省掉这一句,则在某些情况下,会引起不希望的后果,虽然在大多数情况下没有影响.请思考:设S='place',T='ace',V='face',则省掉i+=Strlen(V);运行时会出现什么结果?
4.13
int Delete_SubString(Stringtype &s,Stringtype t)//从串s中删除所有与t相同的子串,并返回删除次数
{
for(n=0,i=1;i<=Strlen(s)-Strlen(t)+1;i++)
if(!StrCompare(SubString(s,i,Strlen(t)),t))
{
StrAssign(head,SubString(S,1,i-1));
StrAssign(tail,SubString(S,i+Strlen(t),Strlen(s)-i-Strlen(t)+1));
StrAssign(S,Concat(head,tail)); //把head,tail连接为新串
n++;
}//if
return n,
}//Delete_SubString
4.14
Status NiBoLan_to_BoLan(Stringtype str,Stringtype &new)//把前缀表达式str转换为后缀式new
{
Initstack(s); //s的元素为Stringtype类型
for(i=1;i<=Strlen(str);i++)
{
r=SubString(str,i,1);
if(r为字母) push(s,r);
else
{
if(StackEmpty(s)) return ERROR;
pop(s,a);
if(StackEmpty(s)) return ERROR;
pop(s,b);
StrAssign(t,Concat(r,b));
StrAssign(c,Concat(t,a)); //把算符r,子前缀表达式a,b连接为新子前缀表达式c
push(s,c);
}
}//for
pop(s,new);
if(!StackEmpty(s)) return ERROR;
return OK;
}//NiBoLan_to_BoLan
分析:基本思想见书后注释3.23.请读者用此程序取代作者早些时候对3.23题给出的程序,
4.15
void StrAssign(Stringtype &T,char chars&#;)//用字符数组chars给串T赋值,Stringtype的定义见课本
{
for(i=0,T[0]=0;chars[i];T[0]++,i++) T[i+1]=chars[i];
}//StrAssign
4.16
char StrCompare(Stringtype s,Stringtype t)//串的比较,s>t时返回正数,s=t时返回0,s<t时返回负数
{
for(i=1;i<=s[0]&&i<=t[0]&&s[i]==t[i];i++);
if(i>s[0]&&i>t[0]) return 0;
else if(i>s[0]) return -t[i];
else if(i>t[0]) return s[i];
else return s[i]-t[i];
}//StrCompare
4.17
int String_Replace(Stringtype &S,Stringtype T,Stringtype V);//将串S中所有子串T替换为V,并返回置换次数
{
for(n=0,i=1;i<=S[0]-T[0]+1;i++)
{
for(j=i,k=1;T[k]&&S[j]==T[k];j++,k++);
if(k>T[0]) //找到了与T匹配的子串:分三种情况处理
{
if(T[0]==V[0])
for(l=1;l<=T[0];l++) //新子串长度与原子串相同时:直接替换
S[i+l-1]=V[l];
else if(T[0]<V[0]) //新子串长度大于原子串时:先将后部右移
{
for(l=S[0];l>=i+T[0];l--)
S[l+V[0]-T[0]]=S[l];
for(l=1;l<=V[0];l++)
S[i+l-1]=V[l];
}
else //新子串长度小于原子串时:先将后部左移
{
for(l=i+V[0];l<=S[0]+V[0]-T[0];l++)
S[l]=S[l-V[0]+T[0]];
for(l=1;l<=V[0];l++)
S[i+l-1]=V[l];
}
S[0]=S[0]-T[0]+V[0];
i+=V[0];n++;
}//if
}//for
return n;
}//String_Replace
4.18
typedef struct {
char ch;
int num;
} mytype;
void StrAnalyze(Stringtype S)//统计串S中字符的种类和个数
{
mytype T[MAXSIZE]; //用结构数组T存储统计结果
for(i=1;i<=S[0];i++)
{
c=S[i];j=0;
while(T[j].ch&&T[j].ch!=c) j++; //查找当前字符c是否已记录过
if(T[j].ch) T[j].num++;
else T[j]={c,1};
}//for
for(j=0;T[j].ch;j++)
printf("%c:%d\n",T[j].ch,T[j].num);
}//StrAnalyze
4.19
void Subtract_String(Stringtype s,Stringtype t,Stringtype &r)//求所有包含在串s中而t中没有的字符构成的新串r
{
r[0]=0;
for(i=1;i<=s[0];i++)
{
c=s[i];
for(j=1;j<i&&s[j]!=c;j++); //判断s的当前字符c是否第一次出现
if(i==j)
{
for(k=1;k<=t[0]&&t[k]!=c;k++); //判断当前字符是否包含在t中
if(k>t[0]) r[++r[0]]=c;
}
}//for
}//Subtract_String
4.20
int SubString_Delete(Stringtype &s,Stringtype t)//从串s中删除所有与t相同的子串,并返回删除次数
{
for(n=0,i=1;i<=s[0]-t[0]+1;i++)
{
for(j=1;j<=t[0]&&s[i+j-1]==t[i];j++);
if(j>m) //找到了与t匹配的子串
{
for(k=i;k<=s[0]-t[0];k++) s[k]=s[k+t[0]]; //左移删除
s[0]-=t[0];n++;
}
}//for
return n;
}//Delete_SubString
4.21
typedef struct{
char ch;
LStrNode *next;
} LStrNode,*LString; //链串结构
void StringAssign(LString &s,LString t)//把串t赋值给串s
{
s=malloc(sizeof(LStrNode));
for(q=s,p=t->next;p;p=p->next)
{
r=(LStrNode*)malloc(sizeof(LStrNode));
r->ch=p->ch;
q->next=r;q=r;
}
q->next=NULL;
}//StringAssign
void StringCopy(LString &s,LString t)//把串t复制为串s.与前一个程序的区别在于,串s业已存在.
{
for(p=s->next,q=t->next;p&&q;p=p->next,q=q->next)
{
p->ch=q->ch;pre=p;
}
while(q)
{
p=(LStrNode*)malloc(sizeof(LStrNode));
p->ch=q->ch;
pre->next=p;pre=p;
}
p->next=NULL;
}//StringCopy
char StringCompare(LString s,LString t)//串的比较,s>t时返回正数,s=t时返回0,s<t时返回负数
{
for(p=s->next,q=t->next;p&&q&&p->ch==q->ch;p=p->next,q=q->next);
if(!p&&!q) return 0;
else if(!p) return -(q->ch);
else if(!q) return p->ch;
else return p->ch-q->ch;
}//StringCompare
int StringLen(LString s)//求串s的长度(元素个数)
{
for(i=0,p=s->next;p;p=p->next,i++);
return i;
}//StringLen
LString * Concat(LString s,LString t)//连接串s和串t形成新串,并返回指针
{
p=malloc(sizeof(LStrNode));
for(q=p,r=s->next;r;r=r->next)
{
q->next=(LStrNode*)malloc(sizeof(LStrNode));
q=q->next;
q->ch=r->ch;
}//for //复制串s
for(r=t->next;r;r=r->next)
{
q->next=(LStrNode*)malloc(sizeof(LStrNode));
q=q->next;
q->ch=r->ch;
}//for //复制串t
q->next=NULL;
return p;
}//Concat
LString * Sub_String(LString s,int start,int len)//返回一个串,其值等于串s从start位置起长为len的子串
{
p=malloc(sizeof(LStrNode));q=p;
for(r=s;start;start--,r=r->next); //找到start所对应的结点指针r
for(i=1;i<=len;i++,r=r->next)
{
q->next=(LStrNode*)malloc(sizeof(LStrNode));
q=q->next;
q->ch=r->ch;
} //复制串t
q->next=NULL;
return p;
}//Sub_String
4.22
void LString_Concat(LString &t,LString &s,char c)//用块链存储结构,把串s插入到串t的字符c之后
{
p=t.head;
while(p&&!(i=Find_Char(p,c))) p=p->next; //查找字符c
if(!p) //没找到
{
t.tail->next=s.head;
t.tail=s.tail; //把s连接在t的后面
}
else
{
q=p->next;
r=(Chunk*)malloc(sizeof(Chunk)); //将包含字符c的节点p分裂为两个
for(j=0;j<i;j++) r->ch[j]='#'; //原结点p包含c及其以前的部分
for(j=i;j<CHUNKSIZE;j++) //新结点r包含c以后的部分
{
r->ch[j]=p->ch[j];
p->ch[j]='#'; //p的后半部分和r的前半部分的字符改为无效字符'#'
}
p->next=s.head;
s.tail->next=r;
r->next=q; //把串s插入到结点p和r之间
}//else
t.curlen+=s.curlen; //修改串长
s.curlen=0;
}//LString_Concat
int Find_Char(Chunk *p,char c)//在某个块中查找字符c,如找到则返回位置是第几个字符,如没找到则返回0
{
for(i=0;i<CHUNKSIZE&&p->ch[i]!=c;i++);
if(i==CHUNKSIZE) return 0;
else return i+1;
}//Find_Char
4.23
int LString_Palindrome(LString L)//判断以块链结构存储的串L是否为回文序列,是则返回1,否则返回0
{
InitStack(S);
p=S.head;i=0;k=1; //i指示元素在块中的下标,k指示元素在整个序列中的序号(从1开始)
for(k=1;k<=S.curlen;k++)
{
if(k<=S.curlen/2) Push(S,p->ch[i]); //将前半段的字符入串
else if(k>(S.curlen+1)/2)
{
Pop(S,c); //将后半段的字符与栈中的元素相匹配
if(p->ch[i]!=c) return 0; //失配
}
if(++i==CHUNKSIZE) //转到下一个元素,当为块中最后一个元素时,转到下一块
{
p=p->next;
i=0;
}
}//for
return 1; //成功匹配
}//LString_Palindrome
4.24
void HString_Concat(HString s1,HString s2,HString &t)//将堆结构表示的串s1和s2连接为新串t
{
if(t.ch) free(t.ch);
t.ch=malloc((s1.length+s2.length)*sizeof(char));
for(i=1;i<=s1.length;i++) t.ch[i-1]=s1.ch[i-1];
for(j=1;j<=s2.length;j++,i++) t.ch[i-1]=s2.ch[j-1];
t.length=s1.length+s2.length;
}//HString_Concat
4.25
int HString_Replace(HString &S,HString T,HString V)//堆结构串上的置换操作,返回置换次数
{
for(n=0,i=0;i<=S.length-T.length;i++)
{
for(j=i,k=0;k<T.length&&S.ch[j]==T.ch[k];j++,k++);
if(k==T.length) //找到了与T匹配的子串:分三种情况处理
{
if(T.length==V.length)
for(l=1;l<=T.length;l++) //新子串长度与原子串相同时:直接替换
S.ch[i+l-1]=V.ch[l-1];
else if(T.length<V.length) //新子串长度大于原子串时:先将后部右移
{
for(l=S.length-1;l>=i+T.length;l--)
S.ch[l+V.length-T.length]=S.ch[l];
for(l=0;l<V.length;l++)
S[i+l]=V[l];
}
else //新子串长度小于原子串时:先将后部左移
{
for(l=i+V.length;l<S.length+V.length-T.length;l++)
S.ch[l]=S.ch[l-V.length+T.length];
for(l=0;l<V.length;l++)
S[i+l]=V[l];
}
S.length+=V.length-T.length;
i+=V.length;n++;
}//if
}//for
return n;
}//HString_Replace
4.26
Status HString_Insert(HString &S,int pos,HString T)//把T插入堆结构表示的串S的第pos个字符之前
{
if(pos<1) return ERROR;
if(pos>S.length) pos=S.length+1;//当插入位置大于串长时,看作添加在串尾
S.ch=realloc(S.ch,(S.length+T.length)*sizeof(char));
for(i=S.length-1;i>=pos-1;i--)
S.ch[i+T.length]=S.ch[i]; //后移为插入字符串让出位置
for(i=0;i<T.length;i++)
S.ch[pos+i-1]=T.ch[pos]; //插入串T
S.length+=T.length;
return OK;
}//HString_Insert
4.27
int Index_New(Stringtype s,Stringtype t)//改进的定位算法
{
i=1;j=1;
while(i<=s[0]&&j<=t[0])
{
if((j!=1&&s[i]==t[j])||(j==1&&s[i]==t[j]&&s[i+t[0]-1]==t[t[0]]))
{ //当j==1即匹配模式串的第一个字符时,需同时匹配其最后一个
i=i+j-2;
j=1;
}
else
{
i++;j++;
}
}//while
if(j>t[0]) return i-t[0];
}//Index_New
4.28
void LGet_next(LString &T)//链串上的get_next算法
{
p=T->succ;p->next=T;q=T;
while(p->succ)
{
if(q==T||p->data==q->data)
{
p=p->succ;q=q->succ;
p->next=q;
}
else q=q->next;
}//while
}//LGet_next
4.29
LStrNode * LIndex_KMP(LString S,LString T,LStrNode *pos)//链串上的KMP匹配算法,返回值为匹配的子串首指针
{
p=pos;q=T->succ;
while(p&&q)
{
if(q==T||p->chdata==q->chdata)
{
p=p->succ;
q=q->succ;
}
else q=q->next;
}//while
if(!q)
{
for(i=1;i<=Strlen(T);i++)
p=p->next;
return p;
} //发现匹配后,要往回找子串的头
return NULL;
}//LIndex_KMP
4.30
void Get_LRepSub(Stringtype S)//求S的最长重复子串的位置和长度
{
for(maxlen=0,i=1;i<S[0];i++)//串S2向右移i格
{
for(k=0,j=1;j<=S[0]-i;j++)//j为串S2的当前指针,此时串S1的当前指针为i+j,两指针同步移动
{
if(S[j]==S[j+i]) k++; //用k记录连续相同的字符数
else k=0; //失配时k归零
if(k>maxlen) //发现了比以前发现的更长的重复子串
{
lrs1=j-k+1;lrs2=mrs1+i;maxlen=k; //作记录
}
}//for
}//for
if(maxlen)
{
printf("Longest Repeating Substring length:%d\n",maxlen);
printf("Position1:%dPosition 2:%d\n",lrs1,lrs2);
}
else printf("No Repeating Substring found!\n");
}//Get_LRepSub
分析:i代表"错位值".本算法的思想是,依次把串S的一个副本S2向右错位平移1格,2格,3格,...与自身S1相匹配,如果存在最长重复子串,则必然能在此过程中被发现.用变量lrs1,lrs2,maxlen来记录已发现的最长重复子串第一次出现位置,第二次出现位置和长度.题目中未说明"重复子串"是否允许有重叠部分,本算法假定允许.如不允许,只需在第二个for语句的循环条件中加上k<=i即可.本算法时间复杂度为O(Strlen(S)^2),
4.31
void Get_LPubSub(Stringtype S,Stringtype T)//求串S和串T的最长公共子串位置和长度
{
if(S[0]>=T[0])
{
StrAssign(A,S);StrAssign(B,T);
}
else
{
StrAssign(A,T);StrAssign(B,S);
} //为简化设计,令S和T中较长的那个为A,较短的那个为B
for(maxlen=0,i=1-B[0];i<A[0];i++)
{
if(i<0) //i为B相对于A的错位值,向左为负,左端对齐为0,向右为正
{
jmin=1;jmax=i+B[0];
}//B有一部分在A左端的左边
else if(i>A[0]-B[0])
{
jmin=i;jmax=A[0];
}//B有一部分在A右端的右边
else
{
jmin=i;jmax=i+B[0];
}//B在A左右两端之间.
//以上是根据A和B不同的相对位置确定A上需要匹配的区间(与B重合的区间)的端点:jmin,jmax.
for(k=0,j=jmin;j<=jmax;j++)
{
if(A[j]==B[j-i]) k++;
else k=0;
if(k>maxlen)
{
lps1=j-k+1;lps2=j-i-k+1;maxlen=k;
}
}//for
}//for
if(maxlen)
{
if(S[0]>=T[0])
{
lpsS=lps1;lpsT=lps2;
}
else
{
lpsS=lps2;lpsT=lps1;
} //将A,B上的位置映射回S,T上的位置
printf("Longest Public Substring length:%d\n",maxlen);
printf("Position in S:%dPosition in T:%d\n",lpsS,lpsT);
}//if
else printf("No Repeating Substring found!\n");
}//Get_LPubSub
分析:本题基本思路与上题同.唯一的区别是,由于A,B互不相同,因此B不仅要向右错位,而且还要向左错位,以保证不漏掉一些情况.当B相对于A的位置不同时,需要匹配的区间的计算公式也各不相同,请读者自己画图以帮助理解.本算法的时间复杂度是o(strlrn(s)*strlen(t))。