1,设N为取值非负整数的随机变量,证
∑∑

=

=
>=≥=
10
)()(
nn
nNPnNPEN
设X是非负随机变量,具有分布函数F(x),证
)1( d))(1()(,d))(1(
0
1
0
≥?=?=
∫∫


nxxFnxXExxFEX
nn
证明,
(1)
011
11
10
() ()
() ()
(1)()
n
nnm
n
mnm n
nn
ENnPNn PNn
PN n PN n
PN n PN n
∞∞
===
∞∞
== =
∞∞
==
= =

=>+=>
∑∑∑
∑∑ ∑
∑∑
得证,
(2)
0
1
00
1
0
1
0
( ) ( )d ( 1)
d()d
()d d
(1 ( ))d
nn
x
n
n
y
n
EX xfx x n
ny y f x x
f xxny y
nx F x x


∞∞

=≥

=



=


=?

∫∫
∫∫

得证,
3,设
321
,,NNN独立,
i
N是参数为
i
λ的Poisson分布,.3,2,1=i
(1) 求; ),(
21
NnnNNP ∈=+
)(21
0
21
0
21
0
21
21
21
21
!
)(
)!(!
)()(
),(
)(
λλ
λλ
λλ
λλ
+?
=

=
=
+
=
=
===
===
=+



e
n
knk
e
knNPkNP
knNkNP
nNNP
n
n
k
knk
n
k
n
k
可见,
21
NN +是参数为
21
λλ +的Poisson分布,
(2) 求;0 ),(
211
nknNNkNP ≤≤=+=
112
112
12
12
12
12
12
()
(,)
()
()( )
()
!
!( )! ()
knk
n
PN kN N n
PN kN N n
PN N n
PN kPN n k
PN N n
n
kn k
λλ
λλ
=+=
=+=
=
+=
==?
=
+=
=
+
(3) 证明
21
NN +与
3
N独立,
证明,
2
1
2
1
12233
112 213 3
0
11 2 21 33
0
(,)
(,,)
()( )( )
n
n
n
n
PN N n N n
PN n N n n N n
PN nPN n nPN n
=
=
+= =
===?=
===?=


2
3121
3
1
2
3 121
31 2
1
3
121 30
3
31210
33 1 22
!( )! !
!!()!
()( )
n
nnnn
n
n
n nnn
n
eee
nnnn
ee e
nnn
PN n PN N n
λλλ
λ λλ
λλλ
λ λλ

=

=

=



=


== +=


得证,
(4) 求
11 2
()E NN N+及
121
()E NNN+,
11 2
112
0
1
11
12
12 0
111
12
1212
()
()
(1)!
!( 1)!()
()
()
k
n
knk
n
k
n
n
EN N N n
kPN kN N n
n n
knk
nn
λ
λλ
λλ
λλ
λλλλ
+∞
=

=
+=
=?=+=
+
=?+=
++


11 2
11 2
12
()
()=
NN
EN N N
λ
λλ
+
∴+
+
121
11 21
12
12
()
()()
()
EN N N
E NN ENN
NEN
N λ
+
=+
=+
=+
5,设nullnull,,,,
21 n
XXX独立同0?1分布,且有pXP
n
== )1(
10,)0(1 <<=?= pXP
n
,N是参数为λ的Poisson分布,且与
}{
n
X独立,

=
=
N
i
i
X
1
ξ,求ξ的分布,ξE及ξD,
11
00
{}{,}{,}
Nn
ii
nn
kNnXkNnXkξ
∞∞
==
==
= == === =
∑∑
∵∪ ∪
( ) ( )
[]
1
0
1
11
0
0
() (,)
() ()
!
(1 )
!!()!
(1 )
()
!!
()
!
n
i
i
n
k
nn
ii
nnk
n
knk
nk
n
k
n
k
p
Pk PNn Xk
PN nP X k PN nP X k
n
epp
nknk
p
p
e
kn
p
e
k
λ
λ
λ
ξ
λ
λ
λ
λ

=
=

==
==


=

=
∴== = =
= ==+==

=


=
=
∑∑
∑∑∑∑


可见ξ是参数为pλ的Poisson分布,所以
,.E pD pξ λξλ= =
10,设
n
XXX,,,
21
null独立,
i
X是参数为
i
λ的指数分布,
)()2()1(
,1
n
XXXni ≤≤≤≤≤ null为相应的顺序统计量,
(1) 求λλ =
i
时,),(
)()1( n
XX的联合概率密度函数,
(1) ( )
1
2
(,)
(,,1 (,]
2 (,]
1 (,] )
!
(( ) ()
0!( 2)!1!
(() ( ) (( ) ()
n
xy
n
n-
Px X x xy X y y
PX X xx x
nxxy
yy y
n
Fx x Fx
n-
F yFx x Fy yFy
<
<≤+?<≤+?
=+
+?
+?
=+
++
nullnull中恰有个在中,
恰有个在中,
恰有个在中
所以
(1) ( )
2
(,)0
0
(1)(() () ()()
n
n-
Px X x xy X y y x
yxy
nn Fy Fx pxpy
< ≤ +? < ≤ +→




=
,

2
(1),( ) { }
(,) ( 1)( () ()) () ()
n
X Xn xy
fxynFyFxfxfyI
<
=
代入
{0}
0
()
() d 1
x
x
x
tx
fx e I
F xete
λ
λ λ
λ
λ


=?
==?


22
{0 }
(,) ( 1) ( )
xynxy
x y
fxy nn e e e I
λλ λλ
λ

≤<
=
(2) 求λλ =
i
时,
)(i
X的概率密度函数)1( ni ≤≤,
同理,
1
!
() ( ()) (1 ()) ()
(1)!( )!
knk
k
n
f xFxFxfx
knk

=


1
{ 0}
!
() ( 1)
(1)!( )!
xk nx
kx
n
fx e e I
knk
λλ
λ


=

(3) 求
21
XX +的分布函数,
因为
12
XX和独立,所以
21
XX +的p.d.f.满足如下卷积关系,
12
12
12
12
12
,
()
12
0
12
12
21
2
12
()
(,)dd
() ( )d
d
(),
,
XX
xyz
XX
z
xzx
zz
z
fX X z
fxyxy
fxfzxx
ee x
ee
ez
λλ
λλ
λ
λλ
λλ
λλ
λλ
λ λλλ
+≤
+∞



+≤
=
=?
=

=
==
∫∫


()
12
12
21
12
0
12
12
0
21
2
12
0
12
12
21
12
()
()d
d,
d,
,
1,
z
XX
z
uu
z
u
zz
zz
FX X z
fuu
ee u
euu
ee
eze
λλ
λ
λλ
λλ
λλ
λ λ
λλ
λ λλλ
λλ
λλ
λλ
λλλλ
+



∴+≤
=


=
==


=?
==



14,设X,Y,Z为三维离散型r.v,∞<)(XE,证
],)([)(]),([ ZYYXEEYXEYZYXEE ==
并说明其直观意义,
证明,
对,
jk
yz?∈? ∈?,设,
jk
YyZz==,则
[(,) ]
(,)( )
(,)()
j
jk kj
k
iijk kj
ki
EEXYZ Y y
EXY y Z z PZ zY y
xP X x Y y Z z PZ z Y y
=
=====
======

∑∑
(,,)(,)
(,) ()
(,)
()
()
ijk jk
i
jk jki
iikj
ki
iij
i
j
PX xY y Z z PY y Z z
x
PY y Z z PY y
xP X x Z z Y y
xP X x Y y
EXY y
= == ==
=?
== =
= ===
===
==
∑∑
∑∑


[( ),]
[( ),]
()
jk
jjk
j
EEXY Y y Z z
E EXYyYyZz
EXY y
==
====
==
由,
jk
yz的任意性,可得
[(,) ] ( ) [( ),]E EXYZ Y EXY EEXY YZ==
得证,
上式中第一个等式的直观意义为,分的较“粗”的区域上的平均等于分的其更“细”的局部区域上的加权平均的加权平均,
更准确地说,将{:() }=
jj
YyBωωω∈=按照{:()Zωω ω∈ =
}
kk
z C=划分为若干个
kj
CB,在每个
k
C上()X ω有均值,则在
j
B
上对这些均值再求加权平均,等于直接在
j
B上求()X ω的加权平均,
第一个等式可以看作是条件概率的全概率公式的推广,
上式中第二个等式的直观意义为,在{:(),()
j
YyZω ωω ω∈=
}
kjk
z BC==上,其中{:() }=
jj
YyBωω=,{,( ) }=
kk
Z zCωω=,则
j
B上()X ω的均值,与
k
C无关,
15,设),(~
2
σμNX,求X在0≥X下的条件概率密度函数,及当1,2 == σμ时的)0( ≥XXE,
{0}
00
(0)
(0 )
(0 )
()d ()d
x
x
PX x X
PXx
PX
fu u fu u I
+∞

≤≤
≤≤
=


=?


∫∫
所以条件概率密度函数为,
22
22
22
0
()/2
()/2
0
()/2
(0)
() ()d { 0}
{0}
d
{0}
2π ()
x
u
x
fxx
fx fu u Ix
e
Ix
eu
e
Ix
μσ
μσ
μσ
μ
+∞

+∞




=?≥


=?≥
=?≥
Φ


2
(2)/2
2,1
0
2
(0)
d
2π (2)
2 2.0553
2π (2)
x
EXX
xe x
e
μσ
+∞

==
∴≥
=
Φ
=+ =
Φ