Satellite Communication
Col John Keesee
Satellite Communications
Architecture
? Identify Requirements
? Specify Architectures
? Determine Link Data Rates
? Design & Size each link
? Document your rationale
Definition
? Uplinks
? Downlinks
? Crosslinks
? Relays
? TT & C
Uplink
Downlink
Intersatellite
links
Relay
satellite
Relay
satellite
Relay
satellite
Sensor
satellite
Sensor
satellite
Crossover or
Intersatellite
links
Mission data
Launch
phase
TT&C
TT&C
Satellite
Ground station
TT&C
Tracking, Telemetry
and Control
The communications architecture consists of satellites and ground stations interconnected
with communications links. (Adapted from SMAD.)
Architectures:
Defined by Satellite-Ground Geometry
? Store & Forward
? Geostationary
? Molniya
? Geostationary/
Crosslink
? LEO/ Crosslink
Adapted from SMAD.
Architectures:
Defined by Function
? System Function
– Tracking Telemetry & Command
– Data Collection
– Data Relay
? Satellite Design
– Onboard Processing
– Autonomous Satellite Control
– Network Management
Communications Architecture:
Selection Criteria
?Orbit
? RF Spectrum
? Data Rate
? Duty Factor
? Link Availability
? Link Access Time
? Threat
Advantages of Digital
Communication
? Less distortion and interference
? Easy to regenerate
? Low error rates
? Multiple streams can be easily multiplexed
into a single stream
? Security
? Drift free, miniature, low power hardware
Tracking Telemetry & Control
? Telemetry
– Voltages, currents, temperatures, accelerations, valve and relay states
? Commanding
– Low data rate
– Store, verify, execute or execute on time
– Programmable control
? Range or Range Rate
– Round trip delay yields range
– Doppler shift yields range rate
– Pseudo-random code
? Existing TT&C Systems
– AFSCN (SGLS) - AF Satellite Control Network (Space Ground Link System)
– NASA DSN - Deep Space Network
– Intelsat/ COMSAT
– TDRS - Tracking and Data Relay Satellite
Data Collection Mission
cycleduty
SecondSamples
sample
Pixels
pixel
Bits
imagerDR
b
Y
Vn
X
Sw
pushbroomDR
_
/
)(
)(
Adapted from SMAD.
Variable Definitions
Chart 9
Variable Definition Units
DR Data Rate Bits/second
SW Swath Width Meters
X Across track pixel
dimension
Meters
Vn Ground track velocity Meters/second
Y Along track pixel
dimension
Meters
b Bits/pixel Bits
Reducing the Data Rate
? Increase the Duty Cycle
? Collect only above-threshold data
? Amplitude changes only
? Data compression
Link Design Process
1. Define Requirements for each link
2. Design Each Link
– Select frequency
– Select modulation & coding
– Apply antenna size & beam width constraints
– Estimate atmospheric, rain attenuation
– Estimate received noise, interference power
– Calculate required antenna gain & transmitter power
3. Size the Payload
– Payload antenna configuration, size & mass
– Estimate transmitter mass & power
– Estimate payload mass & power
Link Equation
E
b
N
o
P L
l
G
t
L
s
L
a
G
r
kT
s
R
Energy/bit to noise-density ratio
Variable Definitions
Chart 12
Variable Definition Units Units dB
E
b
Energy per bit Watt-seconds dB
N
o
Noise spectral
density
Watts/hertz dB
P Transmitter
power
Watts dBW
L
l
Line loss dB
G
t
Transmitter
antenna gain
db
L
s
Space loss DB
Variable Definitions
Chart 12 continued
Variable Definition Units Units (dB)
L
a
Transmission
path loss
dB
G
r
Receiver gain dB
kBoltzman
constant
J/K dBW/(Hz-K)
T
s
System noise
temperature
K
R Data rate Bits/
second
Power Flux Density
W
f
PL
l
G
t
L
a
4 SS
2
(EIRP)L
a
4 SS
2
EIRP - Effective Isotropic Radiated Power
Variable Definitions
for Chart 16
Variable Definition Units Units (dB)
W
f
Power flux
density
W/m
2
SPath lengthM
EIRP Effective
Isentropic
Radiated
Power
WDBW
Received Power
C Wf ?
SDr
2
K
4
PL
l
G
t
L
a
Dr
2
K
16S
2
G
r
(
SDr
2
K
4
)
4 S
O
2
S
2
Dr
2
K
O
2
Space Loss L
s
(
O
4 SS
)
2
C EIRP * L
s
* L
a
* G
r
Variable Definitions
Chart 18
Variable Definition Units Units (dB)
CRcved
power
W
D
r
Receiver
antenna
diameter
mdB
K
Antenna
efficiency
O
Wavelength m
L
s
Space loss
Link Equation Concluded
E
b
energy/bit
C
R
N
o
noise spectral density
N total received noise power
B receiver noise bandwidth
N
o
= kT
s
N / B
E
b
N
o
P u L
l
u G
t
u L
a
u G
r
u L
s
k ?T
s
?R
Link Equation in dB
E
b
N
o
P L
l
G
t
L
s
L
a
G
r
228 .6 10 log T
s
10 log R
EIRP L
s
L
a
G
r
228 .6 10 log T
s
10 log R
C
N
o
EIRP L
s
L
a
G
r
T
s
228.6
C
N
EIRP L
s
L
a
G
r
T
s
228.6 10log B
RIP
E
b
N
o
G
r
T
s
228.6 10log R
(Received isentropic
power)
Gain in dB
G
r
S
2
D
r
2
K
O
2
f
c
O
G 20log S 20log D 20 log f 10log K
20log c (dB)
159.59 20log D 20log f 10log K (dB)
Beamwidth
T [degrees]
f [GHz]
D [m]
T
21
f ? D
G
27,000
T
2
L
T
12(e / T)
2
(dB)
Antenna gain
Offset beam loss
Space loss in dB
L
s
O
4 SS
§