Review
Turing-Gierer-Meinhardt models
Local excitation, global inhibition
2
2
2
2
22
x
i
Diak
t
i
x
a
Da
i
a
kr
t
a
iii
aaaa
?
?
+?=
?
?
?
?
+?+=
?
?
γ
γ
a: concentration activator
i: concentration inhibitor
t: time
x: position
variables
r
a
: basal activator synthesis rate
k
a
, k
i
: rate constant for synthesis
γ
a
,γ
i
: decay rates
D
a
, D
i
: diffusion constants
constants
(parameters)
1
2
2
2
2
22
x
i
Diak
t
i
x
a
Da
i
a
kr
t
a
iii
aaaa
?
?
+?=
?
?
?
?
+?+=
?
?
γ
γ
choose
dimensionless
variable
normalize
4 variables
()
2
2
2
2
22
1
s
I
PIAQ
τ
I
s
A
A
I
A
R
τ
A
?
?
+?=
?
?
?
?
+?+=
?
?
only one fixed
point, since both
A and I >0
2
)1(
1
+=
+=
RI
RA
homogeneous
solution
0// =??=?? ts
2
homogeneous
solution
0// =??=?? ts
A
3
A
s
I
I
s
stability of homogeneous solution
?
?
?
?
?
?
?
?
?+
+
?
+
?
=
?
?
?
?
?
?
?
?
?
??
QQR
R
R
R
R
QQA
I
AR
I
AR
)1(2
)1(1
1
2
1
2
2
2
2
trace < 0
det > 0
0
1
1
>
<
+
?
Q
Q
R
R
or in general
real part of eigenvalues > 0
),('),(
),('),(
ττ
ττ
sIIsI
sAAsA
+=
+=
inhomogeneous
solution:
4
inhomogeneous
solution
5
A
s
s
A
I
I’(s,τ)
),('),(
),('),(
ττ
ττ
sIIsI
sAAsA
+=
+=
I
2
2
2
2
2
'
'')1(2
'
'
'
)1(
'
1
1'
s
I
PQIARQ
I
s
A
I
R
R
A
R
RA
?
?
+?+=
?
?
?
?
+
+
?
+
?
=
?
?
τ
τ
),('),(
),('),(
ττ
ττ
sIIsI
sAAsA
+=
+=
)cos()(
?
),('
)cos()(
?
),('
l
l
s
IsI
s
AsA
ττ
ττ
=
=
trial solution:
6
7
)cos()(
?
),('
)cos()(
?
),('
l
l
s
IsI
s
AsA
ττ
ττ
=
=
A
I
s
s
A
I
I’(s,τ)
),('),(
),('),(
ττ
ττ
sIIsI
sAAsA
+=
+=
I
P
QARQ
d
Id
I
R
R
A
R
R
d
Ad
??
)1(2
?
?
)1(
?
1
1
1
?
2
22
?
?
?
?
?
?
+?+=
+
?
?
?
?
?
?
?
?
+
?
=
l
l
τ
τ
)cos()(
?
),('
)cos()(
?
),('
l
l
s
IsI
s
AsA
ττ
ττ
=
=
0
1
1
1
0
1
21
1
1
22
22
<
?
?
?
?
?
?
?
+
?
?+
>
+
+
?
?
?
?
?
?
+
?
?
?
?
?
?
?
+
?
?
ll
ll
R
RP
Q
R
QRP
Q
R
R
stability
inhomogeneous
solution
1
1
+
?
>
R
R
P
Q
8
1
1
+
?
>
R
R
Q
homogeneous stability:
stability against spatial distrubance:
1
1
+
?
>
R
R
P
Q
s
I
I’(s,τ)
I
9
if P < 1 (D
i
<D
a
), systems is always stable, against any
perturbation both spatial and temporal
s
I
I
homogeneously stable: I relaxes back to
previous value after
small uniform disturbance
s
I
I
I’ relaxes back to
after small spatial
disturbance
I
stable against spatial
disturbance:
10
Introducing the molecules:
- FtsZ function: Assembly of a polymeric ring of the
tubulin-like GTPase FtsZ (Z ring).
The Z-ring is localized to the center by the actions of
the MinC, MinD, and MinE proteins.
- MinC inhibits the initiation of the Z ring.
MinC colocalizes with MinD.
In wild-type (WT) cells, MinC/D forms a polar pattern
that oscillates between the poles, keeping the center
free for initiation of cell division.
Thus, virtually all of MinC/D dynamically assembles on the
membrane in the shape of a test tube covering the membrane
from one pole up to approximately midcell.
12
Most of MinE accumulates at the rim of this tube, in the shape
of a ring (the E ring). The rim of the MinC/D tube and
associated E ring move from a central position to the cell
pole until both the tube and ring vanish. Meanwhile, a new
MinC/D tube and associated E ring form in the opposite cell
half, and the process repeats, resulting in a pole-to-pole
oscillation cycle of the division inhibitor.
A full cycle takes about 50 s.
Image removed due to copyright considerations.
13
How does this work ?
modeling efforts:
? Meinhardt and de Boer, PNAS 98, 14202 (2001);
? Howard et al., Phys. Rev. Let. 87, 278102 (2001);
?Kruse, Biophys. J. 82, 618 (2002);
? Huang, Meir, and Wingreen, PNAS 100, 12724 (2003).
14
Summary of main functions of proteins:
polymerizes in a contractile Z-ring
that initiates septum formation
FtsZ
inhibits formation of Z-ring
MinC
membrane associated protein that
recruits minC and minE to membrane
MinD
ejects minC/minD from membrane into
cytoplasm
MinE
15
Howard et al. model (PRL)
mind
minD
cytoplasm
membrane
e
D
ρσ
ρσ
'
1
1
1+
ed
ρρσ
2
mine
minE
D
e
ρσ
ρσ
'
4
4
1+
ED
ρρσ
3
16
in words:
- first order reactions
for own species
- e inhibits membrane
association of D (MM)
- e enhances membrane
dissociation of d
(linear)
- D enhances membrane
association of E
(recruitment, linear)
- D inhibits membrane
dissociation of E (MM)
- d and e do not diffuse
- D and E diffuse
Howard et al. model (PRL)
mind
minD
cytoplasm
membrane
e
D
ρσ
ρσ
'
1
1
1+
ed
ρρσ
2
mine
minE
D
e
ρσ
ρσ
'
4
4
1+
ED
ρρσ
3
association of cytoplasmic
minD with membrane is
inhibited by mine in membrane
MM takes care of singularity
as minE goes to zero.
biological interpretation:
mine in membrane spatially
blocks membrane for minD
similar to minC blocking FtZ
association with membrane
17
Howard et al. model (PRL)
mind
minD
cytoplasm
membrane
e
D
ρσ
ρσ
'
1
1
1+
ed
ρρσ
2
mine
minE
D
e
ρσ
ρσ
'
4
4
1+
ED
ρρσ
3
dissociation of membrane
mind is stimulated by mine
in membrane, after mind is
ejected mine stays in membrane
biological interpretation:
binding of mine to mind lowers
affinity of mind with membrane
but membrane affinity of mine
remains unchanged
18
Howard et al. model (PRL)
mind
minD
cytoplasm
membrane
e
D
ρσ
ρσ
'
1
1
1+
ed
ρρσ
2
mine
minE
D
e
ρσ
ρσ
'
4
4
1+
ED
ρρσ
3
dissociation of membrane
mine is inhibited by minD
in cytoplasm
MM takes care of singularity
biological interpretation:
?
19
Howard et al. model (PRL)
mind
minD
cytoplasm
membrane
e
D
ρσ
ρσ
'
1
1
1+
ed
ρρσ
2
mine
minE
D
e
ρσ
ρσ
'
4
4
1+
ED
ρρσ
3
association of cytoplasmic
minE with membrane is
stimulated by minD in cytoplasm
after delivery of minE to the
membrane, minD dives back
in the cytoplasm
biological interpretation:
minD-minE complex has high
affinity to membrane
since the diffusion of this complex
doesn’t appear in the model it
should be very fast.
20
system of equations:
D
e
ED
e
D
e
ED
E
E
E
de
e
Dd
de
e
DD
D
D
t
x
D
t
t
x
D
t
ρσ
ρσ
ρρσ
ρ
ρσ
ρσ
ρρσ
ρρ
ρρσ
ρσ
ρσρ
ρρσ
ρσ
ρσρρ
'
4
4
3
'
4
4
3
2
2
2
'
1
1
2
'
1
1
2
2
1
1
1
1
+
?=
?
?
+
+?
?
?
=
?
?
?
+
=
?
?
+
+
?
?
?
=
?
?
21
stability analysis
1. find fixed point
(e.g. numerically:
how_homog.m)
different random initial conditions relax to
same fixed point
0
0
=
?
?
=
?
?
x
t
result: one fixed point:
d = 1383 e = 82
D = 117 E = 3
22
2. find stability matrix (Jacobian)
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+
?+
+
+
+
??
+
?
?
+
??
+
+
++
?
=
D
DE
D
e
D
DE
D
e
d
e
D
e
e
d
e
D
e
e
A
'
4
4
33
2'
4
'
44
'
4
4
33
2'
4
'
44
2
2'
1
'
11
2
'
1
1
2
2'
1
'
11
2
'
1
1
1
0
)1(
1
0
)1(
)1(
0
1
)1(
0
1
σ
σ
σσ
σ
σσ
σ
σ
σσ
σ
σσ
σ
σ
σσ
σ
σ
σ
σ
σ
σσ
σ
σ
σ
23
3. test stability of fluctuations around homogeneous solution
)cos()(
?
),(
)cos()(
?
),(
)cos()(
?
),(
)cos()(
?
),(
qxtdtxd
qxtDtxD
qxtetxe
qxtEtxE
=
=
=
=
δ
δ
δ
δ
x
δD(x,t)
D
24
3. test stability of fluctuations around homogeneous solution
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+
?+
+
+
+
???
+
?
?
+
??
+
+
+
?
+
?
=
D
DE
D
e
D
qDDE
D
e
d
e
D
e
e
d
e
D
eqD
e
A
E
D
'
4
4
33
2'
4
'
44
'
4
4
2
33
2'
4
'
44
2
2'
1
'
11
2
'
1
1
2
2'
1
'
11
2
2
'
1
1
1
0
)1(
1
0
)1(
)1(
0
1
)1(
0
1
?
σ
σ
σσ
σ
σσ
σ
σ
σσ
σ
σσ
σ
σ
σσ
σ
σ
σ
σ
σ
σσ
σ
σ
σ
25
4. - determine eigenvalues of stability matrix,
- find real part of eigenvalues,
- plot the largest as a function of q.
(e.g. how_eig.m)
q = 1.5 (μm)
-1
λ = 2π/q = 4.2 μm
q = 2.3 (μm)
-1
λ = 2π/q = 2.7 μm
q
Max(Real(Eigenvalues)) 1/s
26
Howard et al.: Results
27
Image removed due to copyright considerations.
Huang, Meir, and Wingreen, PNAS 100, 12724 (2003).
main differences:
- ATP cycle
- 1D versus 3D (projected on 2D)
Image removed due to copyright considerations.
28
Image removed due to copyright considerations.
ρ
d
: membrane bound minD:ATP complexes
ρ
de
: membrane bound minD:minE:ATP complexes
ρ
D:ADP
: concentration cytoplasmic minD bound to ADP
ρ
D:ATP
:concentration cytoplasmic minD bound to ATP
ρ
E
: concentration cytoplasmic minE
29
only minD-ATP can associate with membrane
minE only binds minD-ATP oligomers in membrane
only minD-minE-ATPcomplex can dissociate from membrane
Reaction 1:
minD-ATP binds both linearly
and autocatalytically to minD-ATP
in membrane
minD forms polymers in membrane
Image removed due to copyright considerations.
dedeD:ADP
ATPADP
D
ADPD
D
D:ADP
ρσρσ
dx
ρd
D
dt
dρ
+?=
→
2
:
2
()[]
ATPDdeddDDD:ADP
ATPADP
D
ATPD
D
D:ATP
ρρσ
dx
ρd
D
dt
dρ
:
2
:
2
ρρσσ ++?+=
→
EdEede
E
E
E
ρρσρσ
dx
ρd
D
dt
dρ
?+=
2
2
()[]
ATPDdeddDDEdE
d
ρ
dt
dρ
:
ρρσσρρσ +++?=
EdEdede
de
ρ
dt
dρ
ρσρσ +?=
30
Reaction 2:
minE binds minD-ATP in membrane
~ [minE]*[mind]
Image removed due to copyright considerations.
dedeD:ADP
ATPADP
D
ADPD
D
D:ADP
ρσρσ
dx
ρd
D
dt
dρ
+?=
→
2
:
2
()[]
ATPDdeddDDD:ADP
ATPADP
D
ATPD
D
D:ATP
ρρσ
dx
ρd
D
dt
dρ
:
2
:
2
ρρσσ ++?+=
→
EdEede
E
E
E
ρρσρσ
dx
ρd
D
dt
dρ
?+=
2
2
()[]
ATPDdeddDDEdE
d
ρ
dt
dρ
:
ρρσσρρσ +++?=
EdEdede
de
ρ
dt
dρ
ρσρσ +?=
31
Reaction 3:
minD-minE-ATP complex disassociates
from membrane hydrolyzing ATP
~ [mine]
Image removed due to copyright considerations.
dedeD:ADP
ATPADP
D
ADPD
D
D:ADP
ρσρσ
dx
ρd
D
dt
dρ
+?=
→
2
:
2
()[]
ATPDdeddDDD:ADP
ATPADP
D
ATPD
D
D:ATP
ρρσ
dx
ρd
D
dt
dρ
:
2
:
2
ρρσσ ++?+=
→
EdEdede
E
E
E
ρρσρσ
dx
ρd
D
dt
dρ
?+=
2
2
()[]
ATPDdeddDDEdE
d
ρ
dt
dρ
:
ρρσσρρσ +++?=
EdEdede
de
ρ
dt
dρ
ρσρσ +?=
32
Reaction 4:
charging of minD in cytoplasm
from ADP to ATP bound
Image removed due to copyright considerations.
dedeD:ADP
ATPADP
D
ADPD
D
D:ADP
ρσρσ
dx
ρd
D
dt
dρ
+?=
→
2
:
2
()[]
ATPDdeddDDD:ADP
ATPADP
D
ATPD
D
D:ATP
ρρσ
dx
ρd
D
dt
dρ
:
2
:
2
ρρσσ ++?+=
→
EdEdede
E
E
E
ρρσρσ
dx
ρd
D
dt
dρ
?+=
2
2
()[]
ATPDdeddDDEdE
d
ρ
dt
dρ
:
ρρσσρρσ +++?=
EdEdede
de
ρ
dt
dρ
ρσρσ +?=
33
ADPDPDA
D
D
D
dx
d
dt
d
:
2
2
ρσρσ
ρρ
+?=D
()
eeATPDddD
d
s
dt
d
ρσρρσ
ρ
?+=
:
()
DAATPDddD
ATPD
D
ATPD
s
dx
d
dt
d
ρσρρσ
ρρ
++?=
:
2
:
2
:
D
()
eeEeddE
e
dt
d
ρσρρρσ
ρ
??=
()
eeEeddE
E
E
E
dx
d
dt
d
ρσρρρσ
ρρ
+??=
2
2
D
eeADPDP
ADPD
D
ADPD
dx
d
dt
d
ρσρσ
ρρ
+?=
:
2
:
2
:
D
34