Alternative views on gradient sensing:
- Postma and van Haastert. ‘A diffusion-translocation model
for gradient sensing by chemotactic cells.’
Biophys. J. 81, 1314 (2001).
- Levchenko and Iglesias. ‘Models of eukaryotic gradient
sensing: applications to chemotaxis of amoeba and neutrophils’
Biophys. J. 82, 50 (2002).
Main point: - how to prevent cells to polarize ‘inreversibly’?
1
Pmk
x
m
D
dt
dm
m
+?
?
?
=
?1
2
2
D
m
~ 1 μm
2
s
-1
(membrane protein. lipid)
D
m
~ 100 μm
2
s
-1
(cytosolic small molecule)
For a second messenger to
establish and maintain a
gradient the dispersion
range λ should be smaller
than cell size
Images removed due to copyright considerations.
See Postma, M., and P. J. Van Haastert.
"A diffusion-translocation model for gradient sensing
by chemotactic cells." Biophys J. 81, no. 3 (Sep, 2001): 1314-23.
mL
sk
k
D
m
μ
λ
10
1
1
1
1
=
=
=
?
?
?
2
?
?
?
?
?
?
??=
+?
?
?
=
?
r
x
RRkxP
xPmk
x
m
D
dt
dm
R
m
**
1
2
2
)(
)(
Second mesenger production
in a gradient
D
m
~ 1 μm
2
s
-1
(membrane protein. lipid)
D
m
~ 100 μm
2
s
-1
(cytosolic small molecule)
Diffusion flattens internal
gradient
Gain is < 1 (the larger
D
m
the smaller the gain)
How to amplify ?
3
Images removed due to copyright considerations.
See Postma, M., and P. J. Van Haastert.
"A diffusion-translocation model for gradient sensing
by chemotactic cells." Biophys J. 81, no. 3 (Sep, 2001): 1314-23.
Amplification by positive feedback
4
A. Before receptor stimulation
only a small number of effectors
(inactive) bound to membrane
B. After receptor stimulation,
membrane bound effectors will be
stimulated to produce more
phospholipid second mesengers
C. Local phospholipid increase
leads to increased translocation of
effector molecules
D. receptor can signal to more
effectors leading to even more
phospholipid production and
further depletion of cytosolic
effector molecules.
E
m
: effector concentration in
membrane
E
c
: effector concentration in
cytosol.
)()()(
)(
*
1
2
2
xExRkkxP
xPmk
x
m
D
dt
dm
mEo
m
+=
+?
?
?
=
?
Images removed due to copyright considerations.
See Postma, M., and P. J. Van Haastert.
"A diffusion-translocation model for gradient sensing
by chemotactic cells." Biophys J.
81, no. 3 (Sep, 2001): 1314-23.
5
Images removed due to copyright considerations. See
Postma, M., and P. J. Van Haastert.
"A diffusion-translocation model for gradient sensing by chemotactic cells." Biophys J.
81, no. 3 (Sep, 2001): 1314-23.
Molecules ??
Image removed due to copyright considerations. See Levchenko, A., and P. A. Iglesias.
"Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils."
Biophys J. 82 (1 Pt 1)(Jan 2002): 50-63.
receptor binding →
G-protein activation →
activation of PI3K (activator) →
activation of PTEN (inhibitor) →
P3 ~ R* (binding PH domains)
6
Perfect adaptation module:
R*
A* k
R
k
-R
I*
k
-A
k
A’
k
I’
k
-I
R
7
A
I
S
)(
)(
*'*'*
*
*'*'*
*
***
*
IISkIkSIkIk
dt
dI
AASkAkSAkAk
dt
dA
RAkRIk
dt
dR
totIIII
totAAAA
RR
?+?=+?=
?+?=+?=
+?=
??
??
?
Main assumption: k
-A
& k
-I
>> k
’
A
& k
’
I
(A
tot
>>A*, I
tot
>>I*)
SkIk
dt
dI
SkAk
dt
dA
RAkRIk
dt
dR
II
AA
RR
+?=
+?=
+?=
?
?
?
*
*
***
*
totII
totAA
Ikk
Akk
=
=
'
'
8
Steady state:
RssssR
ssssR
ss
I
I
ss
A
A
ss
kIAk
IAk
R
S
k
k
I
S
k
k
A
?
?
?
+
=
=
=
**
**
*
*
*
/
/
Image removed due to copyright considerations.
for the rest of the calculations
ignore ‘*’ for I and A ! 9
Now introduce diffusion:
- only I diffuses, other components are local
2
2
),(
),(),(
),(
x
txI
DtxSktxIk
t
txI
II
?
?
++?=
?
?
?
- assume signal S varies linearly with S
xssxS
o 1
)( +=
- no flux boundary conditions for I
0
),1(),0(
=
?
?
=
?
?
x
tI
x
tI
in steady state,this system can be solved
analytically !
10
2
2
),(
),(),(
),(
x
txI
DtxSktxIk
t
txI
II
?
?
++?=
?
?
?
[]
cxbxaI
x
xI
xss
D
k
xI
D
k
x
xI
o
II
??=
?
?
+?=
?
?
?
)(
)(
)(
)(
2
2
1
2
2
steady-state:
MATLAB can solve this for you:
>> dsolve('D2x=a*x-b-c*t','Dx(0)=0,Dx(1)=0')
ans =
(b+c*t)/a+c*(-1+cosh(a^(1/2)))/a^(3/2)/sinh(a^(1/2))*cosh(a^(1/2)*t)
-c/a^(3/2)*sinh(a^(1/2)*t)
11
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+?+=
?
σ
σ
σ
σ
σ
σ
sinh
1coshcoshsinh
)(
1
xx
xss
k
k
xI
o
I
I
12
x
I(x)
k
I
/k
-I
=1
s
0
=1 μM
s
1
=0.1 μM
σ=0.25 (μm)
-1
Dk
I
/
?
≡σ
Remember: Perfect adaptation module:
diffuses
fixed in space
R*
A* k
R
k
-R
I*
k
-A
k
A’
k
I’
k
-I
R
13
A
I
S
Steady state:
RssssR
ssssR
ss
I
I
ss
A
A
ss
kIAk
IAk
R
S
k
k
I
S
k
k
A
?
?
?
+
=
=
=
**
**
*
*
*
/
/
independent of S,
perfect adaptation
A does not diffuse, so
A(x) directly reflects S(x)
For finding R* only the ratio A/I is important
14
()
1
10
1
1
1
sinh
sinh
1coshcosh
1
)(
)(
sinh
1coshcoshsinh
)(
)(
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+
+=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
+?+=
+=
σ
σ
σ
σ
σ
σ
σ
σ
σ
σ
σ
σ
xx
xss
s
kk
kk
xI
xA
xx
xss
k
k
xI
xss
k
k
xA
IA
IA
o
I
I
o
A
A
15
4.0~/ Dk
I?
≡σ
small
well mixed, A/I directly reflects signal
A(x)/I(x)~R*
x
16
x
)(/)()(
)()(
)()(
*
SISAxR
SAxA
constSIxI
=
=
==
I(x)