‘Fine tuned model for perfect adaptation’
Spiro et al. PNAS 94, 7263-7268 (1997)
A model of excitation and adaptation in
bacterial chemotaxis
key player: Tar-CheA-CheW complex
Copyright (1997) National Academy of Sciences, U. S. A.
Figure 1 of Spiro, P. A., J. S. Parkinson, and H. G. Othmer.
Proc Natl Acad Sci U S A 94, no. 14 (Jul 8, 1997): 7263-8.
"A model of excitation and adaptation in bacterial chemotaxis."
assumptions:
1. Tar is only receptor type, CheW and CheA
always bound to Tar
2. Methylation occurs in specific order
3. Consider only 3 highest methylation states
4. Only CheB
p
demethylates
5. Phoshorylation of CheA does not affect
ligand (un)binding
6. Tar-CheR binding does not affect ligand
un(binding) and phosphorylation of CheA
7. CheZ is not regulated
8. Phosphotransfer from complex to CheY or
CheB is not affected by occupancy or
methylation state.
fast
slow
i
n
t
e
r
m
e
d
i
a
t
e
Copyright (1997) National Academy of Sciences, U. S. A.
Figure 2 of Spiro, P. A., J. S. Parkinson, and H. G. Othmer.
Proc Natl Acad Sci U S A 94, no. 14 (Jul 8, 1997): 7263-8.
"A model of excitation and adaptation in bacterial chemotaxis."
Ligand bound states generally have lower
autophosphoryalation rates
Copyright (1997) National Academy of Sciences, U. S. A.
Copyright (1997) National Academy of Sciences, U. S. A.
Figure 2 of Spiro, P. A., J. S. Parkinson, and H. G. Othmer.
Proc Natl Acad Sci U S A 94, no. 14 (Jul 8, 1997): 7263-8.
"A model of excitation and adaptation in bacterial chemotaxis."
CheR methylates ligand-bound states more
rapidly
Copyright (1997) National Academy of Sciences, U. S. A.
Figure 2 of Spiro, P. A., J. S. Parkinson, and H. G. Othmer.
Proc Natl Acad Sci U S A 94, no. 14 (Jul 8, 1997): 7263-8."A model of excitation and adaptation in bacterial chemotaxis."
Consider step in aspartate concentration
time ~ 1 ms, increase in ligand bound complex
Copyright (1997) National Academy of Sciences, U. S. A.
Figure 2 of Spiro, P. A., J. S. Parkinson, and H. G. Othmer.
Proc Natl Acad Sci U S A 94, no. 14 (Jul 8, 1997): 7263-8."A model of excitation and adaptation in bacterial chemotaxis."
time ~ 5 s, total # of phosphorylated complexes
decreases gradually because ligand bound
complexes do not autophoshorylate very well
also: CheB
p
decreases
low CheA
p
, low CheY
p
,
tumble suppression
Copyright (1997) National Academy of Sciences, U. S. A.
Figure 2 of Spiro, P. A., J. S. Parkinson, and H. G. Othmer.
"A model of excitation and adaptation in bacterial chemotaxis."
Proc Natl Acad Sci U S A 94, no. 14 (Jul 8, 1997): 7263-8.
time ~ 50 s, slowly the complex methylates.
Note that demethylation is switched off
because of low levels of CheA
p
(low CheB
p
).
also low CheA
p
, low CheY
p
,
tumble suppression
Copyright (1997) National Academy of Sciences, U. S. A.
Figure 4 of Spiro, P. A., J. S. Parkinson, and H. G. Othmer.
"A model of excitation and adaptation in bacterial chemotaxis."
Proc Natl Acad Sci U S A 94, no. 14 (Jul 8, 1997): 7263-8.
Higher methylation states autophosphorylate
easier, so slowly CheA
p
adapts to its initial
level
high CheA
p
, high CheY
p
,
tumbling
Copyright (1997) National Academy of Sciences, U. S. A.
Figure 4 of Spiro, P. A., J. S. Parkinson, and H. G. Othmer.
"A model of excitation and adaptation in bacterial chemotaxis."
Proc Natl Acad Sci U S A 94, no. 14 (Jul 8, 1997): 7263-8.
CheY
p
CheB
p
Copyright (1997) National Academy of Sciences, U. S. A.
Spiro, P. A., J. S. Parkinson, and H. G. Othmer. Figures 1, 2, and 4 in "
Proc Natl Acad Sci U S A 94, no. 14 (July 8, 1997): 7263-8.
A model of excitation and adaptation in
bacterial chemotaxis."
Image removed due to copyright considerations. See Figures 2 and 3 in Barkai, N., S. Leibler.
"Robustness in simple biochemical networks." Nature 387, no. 6636 (Jun 26, 1997): 913-7.
Image removed due to copyright considerations. See Figures 2 and 3 in Barkai, N., S. Leibler.
"Robustness in simple biochemical networks." Nature 387, no. 6636 (Jun 26, 1997): 913-7.
Image removed due to copyright considerations. See Figures 2 and 3 in Barkai, N., S. Leibler.
"Robustness in simple biochemical networks." Nature 387, no. 6636 (Jun 26, 1997): 913-7.