Wrapping up E. coli Chemotaxis (L7 & L8)
Main points of last 2 lectures:
L7: Biological background
what is the function of the individual molecules ?
L8: modeling of all possible chemotactic reactions
why doesn’t this model reproduce experimentally
observed perfect adaptation ?
L8-9: strip down full model to essentials based on
assumptions that are experimentally justified
(or sometimes not)
reduction
1
100, no. 23 (Nov 11, 2003): 13259-63.
Copyright (2003) National Academy of Sciences, U. S. A.
Figure 1A in Mittal, N., E. O. Budrene, M. P. Brenner, and A. Van Oudenaarden.
"Motility of Escherichia coli cells in clusters formed by chemotactic aggregation." Proc Natl Acad Sci U S A.
Images removed due to copyright considerations.
3
Absence of chemical attractant
4
Image by MIT OCW.
Tumble
Run
Presence of chemical attractant
5
Image by MIT OCW.
Tumble
Chemical Gradient Sensed in a Temporal Manner
Run
Attractant
6
Figure 1 of Spiro, P. A., J. S. Parkinson, and H. G. Othmer.
Proc Natl Acad Sci U S A 94, no. 14 (Jul 8, 1997): 7263-8.
"A model of excitation and adaptation in bacterial chemotaxis."
key player: Tar-CheA-CheW complex
Copyright (1997) National Academy of Sciences, U. S. A.
fast
slow
i
n
t
e
r
m
e
d
i
a
t
e
Copyright (1997) National Academy of Sciences, U. S. A.
Figure 2 of Spiro, P. A., J. S. Parkinson, and H. G. Othmer.
Proc Natl Acad Sci U S A 94, no. 14 (Jul 8, 1997): 7263-8.
"A model of excitation and adaptation in bacterial chemotaxis."
T
2
LT
2
T
3
LT
3
T
2p
LT
2p
T
3p
LT
3p
k
eff1
(L) k
eff2
(L)
k
eff3
(L)
k
eff4
(L)
k
eff3
(L)
k
eff4
(L)
k
pt
k
pt
First reduction
α1-α
[3][2]
[3]
α
+
≡
in steady state:
8
(L)
eff2
αk(L)
eff1
α)k(1
phos
k +?=
safe zone
net phosphorylated rate
perfect adaptation for large L
perfect adaptation for small L
9
fine-tune: net phoshorylation rate and k
eff1
and k
eff2
so that α falls in safe zone
net phosphorylated rate
no safe zone
never perfect adaptation
10
T
2
LT
2
T
3
LT
3
T
2p
LT
2p
T
3p
LT
3p
k
eff1
(L) k
eff2
(L)
k
eff3
(L)
k
eff4
(L)
k
eff3
(L)
k
pt
k
pt
Second reduction
additional assumption:
- CheB only demetylates phosphorylated receptors
experimental backup:
- not possible to directly measure if CheB demethylates
only active receptors
- rate of methylation drops immediately after addition
of ligand indicates that CheB works on active receptors
11
T
3
LT
3
T
3p
LT
3p
k
eff2
(L)
r
in
k
eff4
r
in
k
pt
Third reduction
additional assumption:
- [CheR]<< [receptors],
methylation operates at saturation
(r
in
is independent
of receptor concentrations)
experimental backup:
- Michaelis constant of CheR binding << [receptors]
so R
tot
~ R
bnd
ok
12
T
3
LT
3
T
3p
LT
3p
k
eff2
(L)
r
in
k
eff4
r
in
k
pt
Fourth reduction
additional assumption:
- demethylation is identical for
bound and unbound receptors, so
k
eff4
is independent of L.
experimental backup:
- kinetics of demethylation almost independent of
level of methylation and ligand binding.
ok
13
T
3
LT
3
T
3p
LT
3p
k
eff2
(L)
r
in
k
eff4
r
in
k
pt
This final module obeys
perfect adaptation for any
value of L.
eff4
k
in
2r
]
p
[3 =
14
Coming lectures: Biological oscillators
Biological relevance: Cell division cycle
Circadian Rhythms
etc.
What do you need to make an oscillator ?
How is an oscillator different from the systems we
already discussed (switches, chemotactic network) ?
? Graphical way to represent differential equations.
15
Refresh: Autocatalysis (Problem set #1).
XXA
kk
2
1,1
??→←+
+?
x=[X]
a=[A] = constant
(e.g. enormous surplus)
2
11
xkaxkx
?
?=
&
)(xfx =
&
This equation is of the type:
first order differential equation
Analysis recipe: 1. determine fixed points
2. stability analysis
16
1
1
*
2
*
1
0
?
=
=
k
ak
x
x
Fixed points: f(x*) = 0:
0>x
&
0<x
&
2 fixed points: one stable and one unstable
17
Guestimate of dynamics for
different initial conditions
[X]
time
18
more quantitative stability analysis:
small perturbation from fixed point:
))('exp(~)(
)('
)(')()(')()(
)()(
*
*
*2***
*
txft
xf
xfOxfxfxf
xtxt
η
ηη
ηηηη
η
≈
≈++=+
?=
&
0)('
0)('
*
*
<
>
xf
xf
unstable fixed point
stable fixed point
19
0)('
*
<xf
0)('
*
>xf
‘stable’
‘unstable’
20
Other example:
T
3
LT
3
T
3p
LT
3p
k
eff2
(L)
r
in
k
eff4
r
in
k
pt
C*
C
ineffpt
ineffeffpt
rCkCkC
rCkCkkC
+?=
++??=
2
*
2
*
4
*
)(
&
&
in
in
rdycxy
rbyaxx
++=
++=
&
&
bd
kc
kb
kka
Cy
Cx
pt
eff
effpt
?≡
≡
≡
??≡
≡
≡
2
4
*
)(
21
Nullclines:
x
k
k
k
r
x
d
c
d
r
y
x
k
kk
k
r
x
b
a
b
r
y
eff
pt
eff
inin
eff
effpt
eff
inin
22
2
4
2
+=?
?
=
+
+
?
=?
?
=
0
0
=
=
y
x
&
&
y
fixed point (stable or unstable ?)
0=y
&
x
0=x
&
22
23
y
x
ineffpt
ineffeffpt
rykxky
rykxkkx
+?=
+++?=
2
24
)(
&
&
0=y
&
0=x
&
),(
**
yx
0,0 >> yx
&&
0,0 >< yx
&&
0,0 <> yx
&&
0,0 << yx
&&
24
y
x
ineffpt
ineffeffpt
rykxky
rykxkkx
+?=
+++?=
2
24
)(
&
&
0=y
&
0=x
&
?
?
?
?
?
?
?
?
+
=
)(
2
,
2
),(
24
4
4
**
Lkk
krkr
k
r
yx
effeff
ptineffin
eff
in
increased ligand concentration
25
y
x
0=y
&
0=x
&
?
?
?
?
?
?
?
?
+
=
)(
2
,
2
),(
24
4
4
**
Lkk
krkr
k
r
yx
effeff
ptineffin
eff
in
TOT
Cyx =+
C
TOT
C
TOT
Guestimated response
C*
26
‘activity’
(phosphorylation
level)
time
C
TOT
(methylation level)
time
Oscillators ?
yxayby
yxayxx
2
2
??=
++?=
&
&
model for glycolysis
2
2
xa
b
y
xa
x
y
+
=
+
=
nullclines:
27
0
0
>
>
y
x
&
&
0
0
>
<
y
x
&
&
0
0
<
>
y
x
&
&
0
0
<
<
y
x
&
&
0=x
&
0=y
&
y
x
28
0
0
>
>
y
x
&
&
0
0
>
<
y
x
&
&
0
0
<
>
y
x
&
&
0
0
<
<
y
x
&
&
0=x
&
0=y
&
y
x
29
limitcycle
x
x
time
y
30
Dynamical response of switches, chemotactic network and oscillators
‘switch’
adaptation
(differentiator,
at least for small
frequencies)
oscillator
31
Dynamical response of switches,
chemotactic network and oscillators
two stable
fixed points
one stable
fixed point
unstable
fixed point
32
nullclines:
γ
u1
2
α
v
β
v1
1
α
u
+
=
+
=
Image removed due to copyright considerations.
v
γ
u1
2
α
dt
dv
u
β
v1
1
α
dt
du
?
+
=
?
+
=
33
y
x
ineffpt
ineffeffpt
rykxky
rykxkkx
+?=
+++?=
2
24
)(
&
&
0=y
&
0=x
&
?
?
?
?
?
?
?
?
+
=
)(
2
,
2
),(
24
4
4
**
Lkk
krkr
k
r
yx
effeff
ptineffin
eff
in
Adaptation (one stable fixed point)
sfp
34
increased ligand concentration
35
y
x
0=y
&
0=x
&
?
?
?
?
?
?
?
?
+
=
)(
2
,
2
),(
24
4
4
**
Lkk
krkr
k
r
yx
effeff
ptineffin
eff
in
TOT
Cyx =+
C
TOT
C
TOT
Oscillator (unstable fixed point)
0
0
>
>
y
x
&
&
0
0
>
<
y
x
&
&
0
0
<
>
y
x
&
&
0
0
<
<
y
x
&
&
0=x
&
0=y
&
ufp
y
x
36
0
0
>
>
y
x
&
&
0
0
>
<
y
x
&
&
0
0
<
>
y
x
&
&
0
0
<
<
y
x
&
&
0=x
&
0=y
&
y
x
37
38
Image removed due to copyright considerations. See Figures 1, 2, 3 in Elowitz, M. B., and S. Leibler.
"A synthetic oscillatory network of transcriptional regulators." Nature 403, no. 6767 (Jan 20, 2000): 335-8.
39