MIT - 16.20
Fall, 2002
Unit 11
Membrane Analogy (for Torsion)
Readings
:
Rivello
8.3, 8.6
T
&
G
107, 108, 109, 110, 112, 113, 114
Paul A. Lagace, Ph.D.
Professor of Aeronautics & Astronautics
and Engineering Systems
Paul A. Lagace
? 2001
MIT - 16.20
Fall, 2002
For a number of cross-sections, we cannot find stress functions. However, we can resort to an analogy introduced
by
Prandtl (1903).
Consider a
membrane
under pressure p
i
¡°
Membrane
¡±
:
structure whose thickness is small compared to surface
dimensions and it (thus) has negligible bending rigidity (e.g. soap bubble)
?
membrane carries load via a constant tensile force along itself.
N.B.
Membrane is 2-D analogy of a string (plate is 2-D analogy of a beam)
Stretch the membrane over a cutout of the cross-sectional shape in the
x-y plane:
Figure 11.1
Top view of membrane under pressure over cutout
membrane covering a cutout
Paul A. Lagace
? 2001
Unit 11 -
p
. 2
MIT - 16.20
Fall, 2002
N = constant tension force per unit length
[lbs/in]
[N/M]
Look at this from the side:
Figure 11.2
Side view of membrane under pressure over cutout
Assume
:
lateral displacements (w) are small such that no
appreciable changes in N occur.
We want to take equilibrium of a small element:
?
w
?
w
(assume small angles
?
x
,
?
y
)
Paul A. Lagace
? 2001
Unit 11 -
p
. 3
MIT - 16.20
Fall, 2002
Figure 11.3
Representation of deformation of infinitesimal element of
membrane
y
x
z
Look at side view (one side):
Figure 11.4
z
y
Side view of deformation of membrane under pressure
Note
:
we have similar picture in the x-z plane
Paul A. Lagace
? 2001
Unit 11 -
p
. 4
MIT - 16.20
Fall, 2002
We look at equilibrium in the z direction.
Take the z-components of N:
e. g.
w
z-component =
?
N
sin
?
?
y
note +z direction
for small angle:
sin
?
w
¡Ö
?
w
?
y
?
y
?
w
?
z-component
=
?
N
?
y
(acts over
dx
face)
Paul A. Lagace
? 2001
Unit 11 -
p
. 5
MIT - 16.20
Fall, 2002
With this established, we get:
?
w
?
?
w
?
2
w
?
+
¡Æ
F
z
=
0
?
p
i
dxdy
?
N
dx
+
N
?
+
2
dy
?
dx
?
y
?
?
y
?
y
?
?
w
?
?
w
?
2
w
?
?
N
dy
+
N
?
+
2
dx
?
dy
=
0
?
x
?
?
x
?
x
?
Eliminating like terms and canceling out
dxdy gives:
?
2
w
?
2
w
p
i
+
N
?
y
2
+
N
?
x
2
=
0
Governing Partial
?
?
?
?
?
2
2
2
2
w
x
w
y
pN
i
+
?
=
Differential Equation for deflection, w, of a membrane
Boundary
Condition
:
membrane is attached at boundary, so
w = 0 along contour
?
Exactly the same as torsion problem:
Paul A. Lagace
? 2001
Unit 11 -
p
. 6
MIT - 16.20
Fall, 2002
Torsion
Membrane
Partial Differential
?
2
¦Õ
= 2Gk
?
2
w = ¨C
p
i
/ N
Equation Boundary
¦Õ
= 0 on contour
w = 0 on contour
Condition
Analogy:
Torsion
Membrane
¦Õ
¡ú
w
- k
¡ú
p
i
¡ú
N
1
2G
¡ú
?
?
w
x
?
?
=
¦Õ
¦Ò
x
zy
¡ú
?
?
=
?
¦Õ
¦Ò
y
zx
?
?
w
y
¡ú
Volume
wdxdy
=
¡Ò¡Ò
?
¦³
2
Paul A. Lagace
? 2001
Unit 11 -
p
. 7
¦Õ¦Õ¦Õ
MIT - 16.20
Fall, 2002
Note
:
for orthotropic
, would need a membrane to give
different N
¡¯
s in different directions in proportion to
G
xz
and
G
yz
?
Membrane analogy only applies to isotropic
materials
?
This analogy gives a good
¡°physical
¡± picture for
¦Õ
?
Easy to visualize deflections of membrane for odd shapes
Figure 11.5
Representation of
¦Õ
and thus deformations for various
closed
cross-sections
under
torsion etc.
Can use (and people have used) elaborate soap film equipment and measuring devices
(See
Timoshenko
, Ch. 11)
Paul A. Lagace
? 2001
Unit 11 -
p
. 8
MIT - 16.20
Fall, 2002
From this, can see a number of things:
?
Location of maximum shear stresses (at the maximum slopes of the membrane)
?
Torque applied (volume of membrane)
?
¡°External
¡± corners do not add
appreciability
to the bending rigidity
(J)
?
eliminate these:
Figure 11.6€
Representation of effect of external corners
external corner
?
about
the
same
?
Fillets (i.e. @ internal corners) eliminate stress concentrations
Paul A. Lagace
? 2001
Unit 11 -
p
. 9
MIT - 16.20
Fall, 2002
Figure 11.7
Representation of effect of internal corners
relieved stress
high stress
concentration
concentration
To illustrate some of these points let
¡¯s
consider
specifically¡
Paul A. Lagace
? 2001
Unit 11 -
p
. 1
0
MIT - 16.20
Fall, 2002
Torsion of a Narrow Rectangular
Cross-Section
Figure 11.8
Representation of
torsion of structure with narrow
rectangular
cross-section
Cross-Section
b >> h
Paul A. Lagace
? 2001
Unit 11 -
p
. 1
1
MIT - 16.20
Fall, 2002
Use the Membrane Analogy for easy visualization:
Figure 11.9
Representation of cross-section for membrane analogy
Consider a cross-section in the middle (away from edges):
Figure 11.10
Side view of membrane under pressure
Paul A. Lagace
? 2001
Unit 11 -
p
. 1
2
MIT - 16.20
Fall, 2002
The governing Partial Differential Equation. is:
?
2
w
+
?
2
w
=
?
p
i
?
x
2
?
y
2
N
Near the middle of the long strip (away from y =
± b/2), we would
?
2
w
expect
2
to be small.
Hence approximate via:
?
y
?
2
w
¡Ö?
p
i
?
x
2
N
To get w, let
¡¯
s
integrate:
?
w
¡Ö?
p
i
x
+
C
1
?
x
N
w
¡Ö?
p
i
x
2
+
C
1
x
+
C
2
2
N
Now apply the boundary conditions to find the constants:
h
@
x
=+
,
w
=
0
2
Paul A. Lagace
? 2001
Unit 11 -
p
. 1
3
MIT - 16.20
Fall, 2002
?
0
=
?
p
i
h
2
+
C
1
h
+
C
2
2
N
4
2
h
@
x
=
?
,
w
=
0
2
?
0
=
?
p
i
h
2
?
C
1
h
+
C
2
2
N
4
2
This gives:
C
1
=
0
2
i
C
=
ph
2
8
N
Thus:
w
¡Ö
p
i
??
h
2
?
x
2
? ?
2
N
?
4
?
Check the volume:
Volume
=
¡Ò¡Ò
w
dxdy
Paul A. Lagace
? 2001
Unit 11 -
p
. 1
4
MIT - 16.20
Fall, 2002
integrating over
dy:
h
2
?
=
b
¡Ò
?
2
h
p
i
??
h
2
?
xd
x
?
2
2
N
?
4
?
h
pb
?
h
2
x
3
?
2
=
2
i
N
? ?
4
x
?
3
? ?
?
h 2
pb
?
h
2
2
h
?
2
h
3
?
i
=
2
N
? ?
4
2
38
? ?
3
i
?
Volume
=
pb
h
N
12
Using the Membrane Analogy:
p
i
=
?
k
1
N
=
2
G
3
Volume
=
?
T
=
p
i
b
h
2
N
1
2
Paul A. Lagace
? 2001
Unit 11 -
p
. 1
5
MIT - 16.20
Fall, 2002
?
kb
h
3
2
G
T
=
?
12
2
3
T
?
k
=
?
Gbh
3
(k -
T
relation)
d
¦Á
where:
k
=
dz
So:
d
¦Á
T
=
dz
GJ
bh
3
where:
J
=
3
To get the stress:
¦Ò
=
?
w
=
?
p
i
x
=
2
kGx
yz
?
x
N
¦Ò
yz
=
2
T
x
(maximum stress is twice
J
that in a circular rod)
Paul A. Lagace
? 2001
Unit 11 -
p
. 1
6
MIT - 16.20
Fall, 2002
?
w
¦Ò
xz
=
=
0
(
away
from
edges
)
?
y
Near the edges,
¦Ò
xz
¡Ù
0 and
¦Ò
yz
changes:
Figure 11.11
Representation of
shear stress
¡°flow
¡±
in narrow
rectangular cross-sections
2
¦³
at these
¦Ò
yz
=
J
x
points
different here
(generally, these are the maximum stresses)
Need formulae to correct for
¡°finite
¡± size dependent on ratio b/h.
This is the key in b >> h.
Paul A. Lagace
? 2001
Unit 11 -
p
. 1
7
MIT - 16.20
Fall, 2002
Other Shapes Through the Membrane Analogy, it can be seen that the previous theory for long, narrow rectangular sections applies also to other shapes. Figure 11.12
Representation of different thin open cross-sectional
shapes
for
which
membrane
analogy
applies
Slit tube
Channel
I-beam
Consider the above (as well as other similar shapes) as a long, narrow membrane
¡ú
consider the thin channel that then results
¡.
Paul A. Lagace
? 2001
Unit 11 -
p
. 1
8
MIT - 16.20
Fall, 2002
Figure 11.13
Representation of
generic thin channel cross-section
Volume
=
?
T
2
p
i
?
bh
3
b
h
3
b
h
3
?
T
11
+
22
+
33
=
?
N
? ?
12
12
12
? ?
2
(from solution for
narrow rectangle)
This gives:
Paul A. Lagace
? 2001
Unit 11 -
p
. 1
9
MIT - 16.20
Fall, 2002
?
bh
3
b
h
3
b
h
3
?
T
?
kG
?
11
+
22
+
33
=
?
2
?
12
12
12
? ?
2
T
?
k
=
?
k -
T
relation
GJ
where:
J
=
1
b
h
3
+
1
b
h
3
+
1
b
h
3
=
¡Æ
1
b
h
3
3
11
3
22
3
33
i
3
ii
For the stresses:
¦Ò
=
?
w
=
?
p
i
x
=
k
2
G
x
=
2
T
x
yz
?
x
N
J
?
maximum
(¡°local
¡± x)
2
T
h
1
¦Ò
yz
=
J
2
in section
1
2
T
h
2
¦Ò
yz
=
J
2
in section
2
2
T
h
3
¦Ò
yz
=
J
2
in section
3
Paul A. Lagace
? 2001
Unit 11 -
p
. 2
0
MIT - 16.20
Fall, 2002
Figure 11.14
Representation of shear stress
¡°flow
¡±
in thin channel
under
torsion
2
¦³
h
2
¦Ò
xz
=
J
2
Actually have shear concentrations at corners
(large slopes
?
w
?
w
)
,
?
y
?
x
?
make
¡°
fillets
¡± there
Figure 11.15
Channel cross-section with
¡°
fillets¡± at inner corners
decrease slope
Paul A. Lagace
? 2001
Unit 11 -
p
. 2
1
MIT - 16.20
Fall, 2002
Use the Membrane Analogy for other cross-sections
for example:
variable thickness (thin) cross-section
Figure 11.15
Representation of wing cross-section (variable thickness
thin cross-section)
Using the Membrane Analogy:
1
y
T
3
2
T
h
J
¡Ö
3
¡Ò
y
L
h
d
y
¦Ò
zy
¡Ö
J
2
etc.
Now that we
¡¯ve looked at open, walled sections; let
¡¯
s
consider closed (hollow) sections.
(thick, then thin)
Paul A. Lagace
? 2001
Unit 11 -
p
. 2
2