MIT - 16.20
Fall, 2002
Unit 17
The Beam-Column
Readings
:
Theory of Elastic Stability
,
Timoshenko (and Gere),
McGraw-Hill, 1961 (2nd edition), Ch. 1
Paul A. Lagace, Ph.D.
Professor of Aeronautics & Astronautics
and Engineering Systems
Paul A. Lagace
? 2001
MIT - 16.20
Thus far have considered separately:
?
beam -- takes bending loads
?
column -- takes axial loads
Now combine the two and look at the
“
beam-column
”
(
Note
:
same geometrical restrictions as on others:
l
>> cross- sectional dimensions)
Consider a beam with an axial load (general case):
Figure 17.1
Representation of beam-column
Fall, 2002
(could also have
p
y
for
bending in y direction)
Consider 2-D case:
Paul A. Lagace
? 2001
Unit 17 -
2
MIT - 16.20
Fall, 2002
Cut out a deformed element
dx:
Figure 17.2
Loads and moment acting on deformed infinitesimal
element of beam-column
Assume small angles such that:
sin
dw
≈
dw
dx
dx
dw
cos
≈
1
dx
Paul A. Lagace
? 2001
Unit 17 -
3
MIT - 16.20
Fall, 2002
Sum forces and moments:
+
?
∑
F
x
=
0
:
dF
?
FF
++
dx
+
p
x
d
x
dx
2
?
S
dw
+
? ?
S
+
dS
dx
??
??
dw
+
dw
dx
? ?
=
0
dx
?
dx
?
?
dx
dx
2
?
This leaves:
2
dF
?
dS
dw
S
dw
?
dx
+
p
x
d
x
+
?
+
2
?
dx
+
H
O
T
.
=
0
(dx)
2
..
dx
?
dx
dx
dx
?
?
dF
dx
p
d
dx
S
dw
dx
x
=
?
?
?
?
?
?
?
?
(17-1)
new term
Paul A. Lagace
? 2001
Unit 17 -
4
MIT - 16.20
Fall, 2002
?
∑
F
z
=
0
+ :
2
?
F
dw
+
? ?
F
+
dF
dx
??
??
dw
+
dw
dx
? ?
dx
?
dx
?
?
dx
dx
2
?
?
dS
?
+
S
?
?
S
+
dx
?
+
p
z
d
x
=
0
?
dx
?
This results in:
dS dx
p
d
dx
F
dw
dx
z
=
?
?
?
?
+
(17-2)
new term
?
∑
M
y
=
0
+ :
dM
dx
?
M
+
M
+
dx
+
p
z
d
x
dx
2
dw
dx
?
dS
?
?
pd
x
?
?
S
+
dx
?
dx
=
0
x
dx
2
?
dx
?
(using the previous equations) this results in:
Paul A. Lagace
? 2001
Unit 17 -
5
MIT - 16.20
Fall, 2002
dM
=
S
(17-3)
dx
Note
:
same as before (for Simple Beam Theory)
Recall from beam bending theory:
2
M
=
E
I
dw
(17-4)
dx
2
Do some manipulating - place (17-4) into (17-3):
2
S
=
d
??
EI
dw
?
dx
?
dx
2
??
(17-5)
and place this into (17-2) to get:
2
d
2
?
EI
dw
?
dx
2
? ?
dx
2
? ?
?
d
??
F
dw
? ?
=
p
z
(17-6)
dx
?
dx
?
Basic differential equation for
Beam
-
Column
--
(Bending equation -- fourth order differential equation)
Paul A. Lagace
? 2001
Unit 17 -
6
MIT - 16.20
Fall, 2002
--> To find the axial force F(x), place (17-5) into (17-1):
2
dF
=
?
p
x
?
d
?
dw
d
?
EI
dw
?
?
dx
dx
? ?
dx
dx
??
dx
2
??
??
For w small, this latter part is a second order term in w and is therefore negligible
Thus:
dF
=
?
p
x
(17-7)
dx
Note
:
Solve this equation first to find F(x)
distribution and use that in equation (17-6)
Examples
of solution to Equation (17-7)
?
End compression P
o
Figure 17.3
Simply-supported column under end compression
p
x
= 0
Paul A. Lagace
? 2001
Unit 17 -
7
MIT - 16.20
Fall, 2002
dF
dx
=
0
?
F = C
1
find C
1
via boundary condition
@x = 0,
F = -P
o
= C
1
?
F = -P
o
?
Beam under its own weight
Figure 17.4
Representation of end-fixed column under its own weight
p
x
= -mg
dF
=+
mg
?
F = mgx
+ C
1
dx
boundary condition:
@ x =
l
,
F = 0
So:
mg
l
+ C
1
= 0
?
C
1
= -mg
l
Paul A. Lagace
? 2001
Unit 17 -
8
MIT - 16.20
Fall, 2002
?
F = -mg (
l
- x)
?
Helicopter blade
Figure 17.5
Representation of helicopter blade
(radial force due to rotation)
similar to previous case
Once have F(x), proceed to solve equation (17-6). Since it is fourth order, need four boundary conditions (two at each end of the beam-column)
--> same possible boundary conditions as previously enumerated
Notes
:
?
When E
I
--> 0, equation (17-6) reduces to:
?
d
??
F
dw
? ?
=
p
z
dx
?
dx
?
this is a
string
(second order
?
only need two boundary conditions
-- one at each end)
Paul A. Lagace
? 2001
Unit 17 -
9
MIT - 16.20
Fall, 2002
(also note that a string cannot be clamped
since it cannot carry a moment)
?
If F = 0, get:
2
d
2
?
EI
dw
?
=
p
z
dx
2
? ?
dx
2
? ?
and for E
I
constant:
4
EI
dw
=
p
z
(basic bending equation)
dx
4
?
For p
z
= 0, E
I
constant, and F constant (= -P), get:
4
2
EI
dw
+
P
dw
=
0
(basic buckling equation)
dx
4
dx
2
Buckling of Beam-Column
Consider the overall geometry (assume beam-column initially straight)
Paul A. Lagace
? 2001
Unit 17 -
1
0
MIT - 16.20
Fall, 2002
Figure 17.6
Representation of general configuration of beam-column
Cut the beam-column:
Figure 17.7
Representation of beam-column with cut to determine
stress resultants
∑
M
=
0
:
Μ
?
Μ
primary
+
Pw
=
0
due to transverse loading
secondary moment (due to
deflection)
Paul A. Lagace
? 2001
Unit 17 -
1
1
MIT - 16.20
Fall, 2002
gives:
2
Μ
=
EI
dw
=
Μ
primary
?
Pw
dx
2
for transverse loading:
2
d
2
?
EI
dw
?
?
d
?
F
dw
? ?
=
p
z
dx
2
??
dx
2
? ?
dx
? ?
dx
?
integrate twice with F =
P = C
1
2
EI
dw
+
Pw
=
M
primary
dx
2
same equation as by doing equilibrium
Solve this by:
?
getting homogenous solution for w
?
getting particular solution for
M
primary
?
applying boundary condition
Paul A. Lagace
? 2001
Unit 17 -
1
2
MIT - 16.20
Fall, 2002
Figure 17.8
Representation of moment(s) versus applied load for
beam-column
large moment!
Examples ?
“Old” airplanes w/struts
Paul A. Lagace
? 2001
Unit 17 -
1
3
MIT - 16.20
Fall, 2002
?
Space structure undergoing rotation
inertial loading
Final note
:
The beam-column is an important concept and the moments
in a beam-column can be much worse/higher than beam theory or a perfect column alone
Paul A. Lagace
? 2001
Unit 17 -
1
4