MIT - 16.20
Fall, 2002
Unit 21
Influence Coefficients
Readings
:
Rivell
o
6.6, 6.13 (again), 10.5
Paul A. Lagace, Ph.D.
Professor of Aeronautics & Astronautics
and Engineering Systems
Paul A. Lagace
? 2001
MIT - 16.20
Fall, 2002
Have considered the
vibrational
behavior of a discrete system.
How does one use this for a continuous structure? First need the concept of
…..
Influence
Coefficients
which tell how a force/displacement at a particular point “influences
”
a displacement/force at another point -->
useful in matrix methods
…
?
finite element method
?
lumped mass model (will use this in next unit)
-->
consider an arbitrary elastic body and define:
Figure 21.1
Representation of general forces on an arbitrary elastic body
Paul A. Lagace
? 2001
Unit 21 -
2
?
?
MIT - 16.20
Fall, 2002
q
i
= generalized displacement (linear or rotation)
Q
i
= generalized force (force or moment/torque)
Note that
Q
i
and
q
i
are:
?
at the same point
?
have the same sense (i.e. direction)
?
of the same
“type”
(force
?
displacement)
(moment
?
rotation)
For a linear, elastic body, superposition applies, so can write:
q
1
=
C
1
1
Q
1
+
C
1
2
Q
2
+
C
1
3
Q
3
q
i
=
C
i
j
Q
j
q
2
=
C
2
1
Q
1
+
C
2
2
Q
2
+
C
2
3
Q
3
q
3
=
C
3
1
Q
1
+
C
3
2
Q
2
+
C
3
3
Q
3
or in Matrix Notation:
?
q
1
?
?
C
11
C
12
C
13
?
?
Q
1
?
?
?
?
?
?
?
?
q
2
?
=
?
C
21
C
22
C
23
?
?
Q
2
?
?
?
?
?
?
q
3
?
?
C
31
C
32
C
33
?
?
Q
3
?
Paul A. Lagace
? 2001
Unit 21 -
3
MIT - 16.20
Fall, 2002
Note
:
|
|
--> row
{
} --> column
[
] --> full matrix
or
{}
=
[]
{}
q
i
C
i
j
Q
j
or
q = C Q
~~
~
C
ij
=
Flexibility Influence Coefficient
and it gives the deflection at i due to a unit load at j
C
12
= is deflection at 1 due to force at 2
Figure 21.2
Representation of deflection point 1 due to load at point 2
(
Note
: C
ij
can mix types)
Paul A. Lagace
? 2001
Unit 21 -
4
MIT - 16.20
Fall, 2002
Very important theorem:
Maxwell
’
s Theorem of Reciprocal Deflection
(Maxwell
’
s
Reciprocity Theorem)
Figure 21.3
Representation of loads and deflections at two points on an
elastic body
q
1
due to unit load at 2 is
equal
to
q
2
due to unit load at 1
i.e.
C
12
= C
21
Generally:
C
ij
=
C
ji
symmetric
Paul A. Lagace
? 2001
Unit 21 -
5
?
?
?
?
MIT - 16.20
Fall, 2002
This can be proven by energy considering (path independency of
work)
-->
Application of Flexibility Influence Coefficients
Look at a beam and consider 5 points
…
Figure 21.4
Representation of beam with loads at five points
Beam
The deflections q
1
…q
5
can be characterized by:
?
q
1
?
?
C
11
C
12
C
13
C
14
C
15
?
?
Q
1
?
?
?
?
q
2
?
? ?
C
21
C
22
LL
M
?
?
Q
2
?
?
?
?
?
?
?
?
?
q
3
?
=
?
M
O
M
?
?
Q
3
?
?
q
4
?
??
M
O
M
?
?
Q
4
?
?
?
?
?
?
?
q
5
?
??
C
51
L
L
L
C
55
? ?
?
Q
5
?
Paul A. Lagace
? 2001
Unit 21 -
6
MIT - 16.20
Fall, 2002
Since C
ij
= C
ji
, the [C
ij
] matrix is
symmetric
Thus, although there are 25 elements to the C matrix in this case,
only 15 need to be computed.
So, for the different loads Q
1
….Q
5
, one can easily compute the q
1
….q
5
from previous work
…
Example
:
C
ij
for a
Cantilevered Beam
Figure 21.5
Representation of cantilevered beam under load
find: C
ij
--> deflection at i due to unit load at j
?
Most efficient way to do this is via Principle of Virtual Work
(energy
technique)
?
Resort here to using simple beam theory:
2
EI
dw
=
Mx
dx
2
()
Paul A. Lagace
? 2001
Unit 21 -
7
MIT - 16.20
Fall, 2002
What is M(x)?
--> First find reactions:
Figure 21.6
Free body diagram to determine reactions in cantilevered
beam
1
?
M = -1x
j
V = 1
--> Now find M(x).
Cut beam short of
x
j
:
Figure 21.7
Free body diagram to determine moment along
cantilevered beam
Paul A. Lagace
? 2001
Unit 21 -
8
MIT - 16.20
Fall, 2002
∑
M
x
=
0
+
?
1
?
x
?
1
?
x
+
M
x
j
()
=
0
?
Mx
()
=
?
1
(
x
j
?
x
)
Plugging into deflection equation:
2
EI
dw
=
?
1
(
x
j
?
x
)
dx
2
for E
I
constant:
dw
1
?
x
2
?
=
?
?
xx
?
?
+
C
1
dx
E
I
?
j
2
?
3
1
?
x
2
x
?
w
=
?
?
x
j
2
?
?
+
Cx
+
C
2
EI
?
6
?
1
Boundary Conditions:
@
x
=
0
w
=
0
?
C
2
=
0
dw
@
x
=
0
=
0
?
C
1
=
0
dx
Paul A. Lagace
? 2001
Unit 21 -
9
MIT - 16.20
Fall, 2002
So:
3
1
?
x
2
x
?
w
=
?
EI
??
x
j
2
?
6
? ?
evaluate at
x
i
:
1
?
x
i
3
2
?
w
=
?
xx
j
??
2
EI
? ?
3
i
One
important
note:
w is defined as positive up, have defined
q
i
as positive down.
So:
3
2
q
i
=
?
w
=
1
? ?
xx
j
?
x
i
??
2
EI
?
i
3
?
?
C
EI
xx
x
ij
i
i
=
?
?
? ?
?
? ?
1
2
2
3
j
6
for x
i
≤
x
j
Deflection, q
i
, at x
i
due to unit force,
Q
j
, at x
j
Paul A. Lagace
? 2001
Unit 21 -
1
0
MIT - 16.20
Fall, 2002
-->
What about for
x
i
≤
x
j
? Does one need to go through this whole
procedure again?
No
!
Can use the
same
formulation due to the symmetry of
C
ij
(C
ij
= C
ji
)
-->
Thus far have looked at the influence of a force on a displacement.
May want to look at the
“opposite
”
:
the influence of a displacement
on a force. Do this vi
a
…
Stiffness Influence Coefficients
≡
k
ij
where can write:
Q
1
=
k
1
1
q
1
+
k
1
2
q
2
+
k
1
3
q
3
Q
2
=
k
2
1
q
1
+
k
2
2
q
2
+
k
2
3
q
3
Q
3
=
k
3
1
q
1
+
k
3
2
q
2
+
k
3
3
q
3
Paul A. Lagace
? 2001
Unit 21 -
1
1
MIT - 16.20
or
write:
{}
=
[]
{}
Q
i
k
i
j
q
j
or
:
Q = k q
~~
~
If compare this with:
q = C Q
~~
~
?
k = C
-1
~~
Fall, 2002
[]
?
1
k
ij
[]
=
C
ij
inverse matrix
Note
:
Had a similar situation in the continuum case:
E = S
-1
~~
elasticity
compliance
(stiffness)
(flexibility)
--> Look at the Physical Interpretations:
Paul A. Lagace
? 2001
Unit 21 -
1
2
MIT - 16.20
Fall, 2002
Flexibility
Influence
Coefficients
Figure 21.8
Physical representation of flexibility influence coefficients
for cantilevered beam
1 unit level
C
ij
= displacement at i due to unit load at j
Note
:
This is only defined for
sufficiently
constrained
structure
Paul A. Lagace
? 2001
Unit 21 -
1
3
MIT - 16.20
Fall, 2002
Stiffness
Influence
Coefficients
Figure 21.9
Physical representation of stiffness influence coefficients
for cantilevered beam
1 unit displacement
k
ij
= forces at i’
s to give a unit displacement at j and
zero
displacement everywhere else (at nodes)
(much harder to think of than
C
ij
)
Note
:
This can be defined for unconstrained
structures
Paul A. Lagace
? 2001
Unit 21 -
1
4
MIT - 16.20
Fall, 2002
-->
Can find
k
ij
by:
?
calculating [
C
ij
] first, then inverting
+
()
ij
minor
of
?
1
k
=
ij
?
C
ij
determinant of [
C
ij
]
Note
:
k
-1
may be singular (indicates
“rigid
body
”
modes)
--> rotation --> translation --> etc.
?
calculating [
k
ij
] directly from individual local [
k
ij
] elements and
adding up for the total system
Most
convenient
way
Note
:
This latter method is the basis for finite
element methods
Paul A. Lagace
? 2001
Unit 21 -
1
5