MIT - 16.20
Fall, 2002
Unit 8
Solution Procedures
Readings
:
R
Ch. 4
T & G
17, Ch. 3
(18-26)
Ch. 4
(27-46)
Ch. 6
(54-73)
Paul A. Lagace, Ph.D.
Professor of Aeronautics & Astronautics
and Engineering Systems
Paul A. Lagace
? 2001
MIT - 16.20
Fall, 2002
Summarizing what we
¡¯
ve looked at in elasticity, we have:
15 equations
in
15 unknowns
- 3 equilibrium
- 6 strains
- 6 strain-displacement
- 3 displacements
- 6 stress-strain
- 6 stresses
These must be solved for a generic body under some generic loading subject
to
the prescribed
boundary
conditions
(B.C.
¡¯s)
There are two types of boundary conditions:
1.
Normal (stress prescribed)
2.
Geometric (displacement prescribed)
--> you must have one or the other
To solve this system of equations subject to such constraints over the continuum of a generic body is, in general, quite a challenge. There are basically
two
solution procedures:
1.
Exact
-- satisfy all the equations and the B.C.
¡¯
s
2.
Numerical
-- come as
¡°close
as
possible
¡±
(energy methods, etc.)
Paul A. Lagace
? 2001
Unit 8 -
p
. 2
MIT - 16.20
Fall, 2002
Le
t
¡¯s consider
¡°exact¡±
techniques. A common, and classic, one is:
Stress Functions
?
Relate six stresses to (fewer) functions defined in such a manner that they identically satisfy the equilibrium
conditon
?
Can be done for 3-D case
?
Can be done for
anisotropic
(most often orthotropic
) case
--> See:
Lekhnitskii
,
Anisotropic
Plates
,
Gordan & Breach, 1968.
--> Let¡¯
s
consider
?
plane stress
?
(eventually) isotropic
8 equations
in
8
unknowns
- 2 equilibrium
- 3 strains
- 3 strain-displacement
- 2 displacements
- 3 stress-strain
- 3 stresses
Paul A. Lagace
? 2001
Unit 8 -
p
. 3
MIT - 16.20
Fall, 2002
Define
the ¡°
Airy
¡±
Stress Function =
¦Õ
(x, y)
English
a scalar
mathematician
?
2
¦Õ
¦Ò
xx
=
2
+
V
(8
-
1
)
?
y
?
2
¦Õ
¦Ò
yy
=
?
x
2
+
V
(8
-
2
)
2
¦Õ
¦Ò
xy
=
?
?
(8
-
3
)
xy
??
where:
V
= potential function for body forces
f
x
and
f
y
f
x
=
?
?
V
f
y
=
?
?
V
?
x
?
y
V
exists if
?
x
f
=
0
(
curl
)
that is:
?
f
x
=
?
f
y
?
y
?
x
Paul A. Lagace
? 2001
Unit 8 -
p
. 4
MIT - 16.20
Fall, 2002
Recall that curl f = 0
?
¡°
conservative
¡± field
- gravity forces - spring forces - etc.
What does that compare to in fluids?
Irrotational
flow
Look at how
¦Õ
has been defined and what happens if we place these
equations (8-1 - 8-3) into the plane stress equilibrium equations:
?
¦Ò
xx
+
?
¦Ò
xy
+
f
x
=
0
(E1)
?
x
?
y
?
¦Ò
?
¦Ò
xy
yy
?
x
+
?
y
+
f
y
=
0
(E2)
we then get:
Paul A. Lagace
? 2001
Unit 8 -
p
. 5
?
??
??
MIT - 16.20
Fall, 2002
2
?
?
?
2
¦Õ
E
1
()
:
?
2
+
V
? ?
+
?
? ?
?
?
¦Õ
??
?
?
V
=
0
?
x
?
x
?
?
y
?
?
y
?
??
y
?
?
x
?
3
¦Õ
+
?
V
?
?
3
¦Õ
?
?
V
=
0
(
yes
)
?
??
xy
xy
2
?
x
??
2
?
x
2
?
? ?
?
?
¦Õ
?
?
?
?
2
¦Õ
(
E
2
)
:
?
x
?
??
y
??
+
?
y
? ?
?
x
2
+
V
???
?
?
V
=
0
?
x
?
y
?
3
¦Õ
+
?
3
¦Õ
+
?
V
?
?
V
=
0
(
yes
)
?
2
2
xy
xy
?
y
?
y
?
Equilibrium
automatically
satisfied
using Airy stress function!
Does that mean that any function we pick for
¦Õ
(x, y) will be valid?
No
, it will satisfy equilibrium, but we still have the strain-displacement
and stress-strain equations. If we use these, we can get to the governing equation:
Paul A. Lagace
? 2001
Unit 8 -
p
. 6
(E
MIT - 16.20
Fall, 2002
Step 1
:
Introduce
¦Õ
into the stress-strain equations (compliance form):
1
E
3
¦Å
xx
=
E
(
¦Ò
xx
?
¦Í
¦Ò
yy
)
()
1
¦Å
yy
=
(
?
¦Í
¦Ò
xx
+
¦Ò
yy
)
(E4)
E
¦Å
xy
=
2
(
1
E
+
¦Í
)
¦Ò
xy
(E5)
So:
¦Å
xx
=
1
?
?
2
¦Õ
?
¦Í
?
2
¦Õ
?
+
(
1
?
¦Í
)
V
(
E
3
¡ä
)
E
? ?
?
y
2
?
x
2
??
E
¦Å
yy
=
1
?
?
2
¦Õ
?
¦Í
?
2
¦Õ
?
+
(
1
?
¦Í
)
V
(E
4
¡ä
)
E
? ?
?
x
2
?
y
2
? ?
E
¦Å
xy
=
?
2
(
1
+
¦Í
)
?
2
¦Õ
(E
5
¡ä
)
xy
E
??
Paul A. Lagace
? 2001
Unit 8 -
p
. 7
MIT - 16.20
Fall, 2002
Step 2
:
Use these in the plane stress compatibility equation:
?
2
¦Å
xx
?
2
¦Å
yy
?
2
¦Å
xy
+
=
xy
?
y
2
?
x
2
??
(
E
6
)
?
we get quite a mess! After some rearranging and
manipulation,
this
results
in:
V
V
??
+
?
??
+
??
=
?
?
(
)
?
+
?
(
)
?
??
?
?
?
?
?
(
)
??
+
??
??
?
??
?
4
4
4
2
2
4
2
2
2
2
2
2
2
2
1
¦Õ
¦Õ
¦Á
x
y
y
E
T
x
T
y
y
2
?
?
2
¦Õ
¦Í
x
x
?
(*)
temperature term we haven
¡¯
t yet considered
¦Á
= coefficient of thermal expansion
?
T = temperature differential
This is the basic equation for isotropic plane stress in Stress Function form
Recall
:
¦Õ
is a scalar
Paul A. Lagace
? 2001
Unit 8 -
p
. 8
MIT - 16.20
Fall, 2002
If we recall a little mathematics, the
Laplace
Operator
in 2-D is:
?
2
?
2
?
2
=
+
?
x
2
?
y
2
?
4
?
4
?
4
??
2
?
2
=
?
4
=
?
x
4
+
2
2
2
+
?
y
4
x
??
y
This is the
biharmonic
operator
(also used in fluids)
So the (*) equation can be written:
?
4
¦Õ
=
?
E
¦Á
?
2
(
?
T
)
?
(
1
?
¦Í
)
?
2
V
(*)
Finally, in the absence of temperature effects and body forces this becomes:
?
4
¦Õ
=
0
homogeneous
form
What happened to E,
¦Í
??
Paul A. Lagace
? 2001
Unit 8 -
p
. 9
MIT - 16.20
Fall, 2002
?
this function, and accompanying governing equation, could
be defined in any curvilinear system (we
¡¯
ll see one such
example later) and in plane strain as well.
But
¡what
¡¯
s this all useful for???
This may all seem like
¡°
magi
c
¡±
.
Why were the
¦Ò
¡¯s
assumed as they
were? This is not a direct solution to a posed problem,
per se
, but is known
as¡
The Inverse Method
In general, for cases of plane stress without body force or temp (
?
4
¦Õ
=
0
):
1.
A stress function
¦Õ
(x, y) is assumed that satisfies the
biharmonic equation
2.
The stresses are determined from the stress function as defined in equations (8-1) - (8-3)
3.
Satisfy the boundary conditions (of applied tractions)
4.
Find the (
structural
) problem that this satisfies
Paul A. Lagace
? 2001
Unit 8 -
p
. 1
0
MIT - 16.20
Fall, 2002
?
Mathematicians actually did this and created many solutions. So there are many stress functions that have been found to solve specific structural problems
(see, for example,
Rivell
o
, pp, 72-73 also T & G)
?
These are linear solutions and thus the
¡°
Principle of
Superposition
¡± applies such that these can be combined to solve
any particular problem
?
The inverse method yields an
exact
solution
. In real life, an
exact
solution generally cannot be obtained. We often
¡°
notch it down
one
¡± and resort to the
¡
The Semi-Inverse Method
This is basically the same as the Inverse Method except that the solution is not exact in that we
¡
?
Make simplifying assumptions to get solvable equations. These can be with regard to:
¨C
stress components
¨C
displacement components
Paul A. Lagace
? 2001
Unit 8 -
p
. 1
1
MIT - 16.20
Fall, 2002
?
Assumptions are based on physical intuition, experimental evidence, prior experience
(sheer need?)
?
Assumptions may be due to
¡
¨C
boundary conditions not properly met
¨C
etc.
(
Note
:
plane stress is generally an assumption)
?
There is an important concept that allows us to make such assumptions:
St.
Venant
¡¯
s
Principle
¡°If the loading distribution on the small section of the surface of an elastic body is replaced by another loading which has the same resultant force and moment as the original loading, then no appreciable changes will occur in the stresses in the body except in the region near the surface where the loading is altered¡±.
What does this really say?
?
¡°Far¡±
from the specifics of load introduction / boundary
conditions, the specifics of such are unimportant
?
This is a ramification of the issue of
¡°scale¡± as discussed
earlier in this course and in Unified.
Paul A. Lagace
? 2001
Unit 8 -
p
. 1
2
MIT - 16.20
Fall, 2002
?(
¡°
Rule of Thumb
¡±
)
Generally, the area where
¡°specifics
¡±
are important extends into the body for a distance equal to about the greatest linear dimension of the portion of the surface on which the loading / B.C. occurs.
?
This allows us to get solutions for most parts of a structure via such a method.
But
failure often originates/occurs in a region of load
introduction/boundary condition
(
example
:
where do nailed/screwed boards
break?)
Examples
(for stress functions)
Example 1
(assume
?
T = 0, V = 0 [no body forces])
Pick
¦Õ
= C
1
y
2
this satisfies
?
4
¦Õ
=
0
C
1
is
a
constant
¡will be determined by satisfying the
B.C.¡¯
s
Paul A. Lagace
? 2001
Unit 8 -
p
. 1
3
MIT - 16.20
Fall, 2002
Using the definitions:
?
2
¦Õ
¦Ò
xx
=
2
=
2
C
1
?
y
?
2
¦Õ
¦Ò
=
=
0
yy
?
x
2
¦Ò
=
0
xy
gives the state of stress
What problem does this solve???
Uniaxial
loading
Figure 8.1
Representation of
Uniaxial
Plane Stress Loading
applied stress (uniform
stress on end)
Paul A. Lagace
? 2001
Unit 8 -
p
. 1
4
MIT - 16.20
Fall, 2002
Check the B.C.
¡¯
s
:
@
x
=
l
, 0
¦Ò
¦Ò
xx
=
¦Ò
o
=
2
C
1
?
C
1
=
o
2
¦Ò
=
0
xy
@
y
=
±
w
2
¦Ò
=
0
yy
¦Ò
=
0
xy
Thus:
¦Õ
=
¦Ò
o
y
2
2
Paul A. Lagace
? 2001
Unit 8 -
p
. 1
5
MIT - 16.20
Fall, 2002
?
The strains can then be evaluated using the stress-strain equations (compliance form).
?
The displacements can then be determined by using the strain-displacement relations and integrating and applying the displacement B.C.
¡¯
s
.
In this case, you get:
¦Ò
o
u
=
x
E
v
=
?
¦Í
¦Ò
o
y
E
(
Note
:
elastic constants now come in)
-->
Let¡¯
s
look
at
the
¡°real
¡± case and see where/why we have to apply St.
Venant
¡¯
s
Principle
and
the
¡°Semi
-
Inverse
Method
¡±
.
Consider a test coupon in mechanical grips (end of specimen is fixed):
Paul A. Lagace
? 2001
Unit 8 -
p
. 1
6
MIT - 16.20
Fall, 2002
Figure 8.2
Representation of
uniaxial
test specimen and resultant
stress state
x
y
These grips allow
no
displacement in the y-direction
--> v = 0
both
@ x = 0,
l
The solution gives:
?
¦Í¦Ò
v
=
y
¡Ù
0
i
n
general
@
x
=
0
,
l
E
But
,
¡°far
¡±
from the effects of load introduction, the solution
¦Õ
holds.
Near the grips, biaxial stresses arise. Often failure occurs here. (
Note
:
not
in a pure
uniaxial
field. This is a common problem with test
specimens.)
Paul A. Lagace
? 2001
Unit 8 -
p
. 1
7
MIT - 16.20
Fall, 2002
Example 2
Let
¡¯s now get a bit more involved and consider the
¡
Stress Distribution Around a Hole
Figure 8.3
Configuration of uniaxially
loaded plate with a hole
Large (
¡°
infinite
¡±) plate subjected to uniform far - field tension
Since the
¡°local
specific
¡±
of interest is a circle, it makes sense to use
polar
coordinates.
By using the transformations to polar coordinates of Unit #7, we find:
Paul A. Lagace
? 2001
Unit 8 -
p
. 1
8
MIT - 16.20
Fall, 2002
1
?
¦Õ
1
?
2
¦Õ
¦Ò
rr
=
r
?
r
+
r
2
?
¦È
2
+
V
?
2
¦Õ
+
V
¦Ò
¦È¦È
=
?
r
2
1
?
2
¦Õ
1
?
¦Õ
+
r
¦Ò
r
¦È
=
?
r
??
¦È
r
2
?
¦È
These are, again, defined such that equilibrium equations are automatically satisfied.
where:
f
r
=
?
?
V
f
¦È
=
?
1
?
V
?
r
r
?
¦È
?
f
¦È
+
f
¦È
1
?
f
r
and
V
exists if:
=
?
r
r
r
?
¦È
The governing equation is again:
?
4
¦Õ
=
?
E
¦Á
?
2
(
?
T
)
?
(
1
?
¦Í
)
?
2
V
for plane stress, isotropic
Paul A. Lagace
? 2001
Unit 8 -
p
. 1
9
?
?
MIT - 16.20
Fall, 2002
but
the
Laplace
operator in polar coordinates is:
?
2
=
?
2
+
1
?
+
1
?
2
?
r
2
r
?
r
r
2
?
¦È
2
Let
¡¯s go through the steps
¡
Step 1
:
Assume a
¦Õ
(r,
¦È
)
¡°We know
¡± the correct function is:
¦Õ
=
[
A
0
+
B
0
ln
r
+
C
0
r
2
+
D
0
r
2
ln
r
]
+
??
A
2
r
2
+
B
2
2
+
Cr
4
+
D
2
??
cos
2
¦È
2
r
Does this satisfy equilibrium?
It
must
.
One can show it satisfies
?
4
¦Õ
However, it can also be shown that non-zero values of D
0
result in
mulitvalued
displacements in the y-direction (v), so we must
get D
0
= 0
[don¡¯
t worry about this, just
¡°accept
¡±
it
¡I do!]
Paul A. Lagace
? 2001
Unit 8 -
p
. 2
0
?
?
?
?
?
?
MIT - 16.20
Fall, 2002
Step 2
:
Determine stresses
Performing the derivatives from the
¦Õ
-
¦Ò
relations in polar coordinates
results in:
¦Ò
rr
=
B
2
0
+
2
C
0
+
??
?
2
A
2
?
6
B
4
2
?
4D
2
?
cos
2
¦È
r
r
r
2
?
¦Ò
¦È¦È
=
?
B
2
0
+
2
C
0
+
??
2
A
2
+
6
B
4
2
+
12C
2
r
2
??
cos
2
¦È
r
r
2
in
¦Ò
r
¦È
=
? ?
2
A
2
?
6
B
4
2
+
6C
2
r
2
?
2D
2
??
s2
¦È
r
r
Note that we have a term involving
r
2
. As r gets larger, the stresses
would become infinite.
This is not possible. Thus, the coefficient C
2
must be zero:
C
2
= 0
So we have
five
constants remaining:
A
2
, B
0
, B
2
, C
0
, D
2
we find these by
¡
Paul A. Lagace
? 2001
Unit 8 -
p
. 2
1
MIT - 16.20
Fall, 2002
Step 3
:
Satisfy the boundary conditions
What are the boundary conditions here?
?
at the edge of the hole there are no stresses (stress-free edge)
?
@ r =
a:
¦Ò
rr
= 0,
¦Ò
¦È
r
= 0
?
at the y-edge, there are no stresses
?
@ y =
±
¡Þ
:
¦Ò
yy
= 0,
¦Ò
yx
= 0
?
at the x-edges, the stress is equal to the applied stress and there is no strain
?
@ x =
±
¡Þ
:
¦Ò
xx
=
¦Ò
0
,
¦Ò
xy
= 0
Paul A. Lagace
? 2001
Unit 8 -
p
. 2
2
MIT - 16.20
Fall, 2002
Since we are dealing with polar coordinates, we need to change the last two sets of B. C
.
¡¯
s
to polar coordinates. We use:
¦Ò
?
¦Á¦Ñ
=
l
2
?
¦Ò
l
?
¦Â¦Ã
l
¦Ò¦Ã
and look at r =
¡Þ
¦Ò
?
xx
=
¦Ò
rr
=
cos
2
¦È
¦Ò
o
¦Ò
?
yy
=
¦Ò
¦È¦È
=
s
in
2
¦È
¦Ò
o
¦Ò
?
xy
=
¦Ò
r
¦È
=
?
sin
¦È
cos
¦È
¦Ò
o
Figure 8.4
Representation of local rotation of stresses from polar to
Cartesian system
We use the double angle trigonometric identities to put this in a more convenient form:
Paul A. Lagace
? 2001
Unit 8 -
p
. 2
3
MIT - 16.20
Fall, 2002
cos
2
¦È
=€
1
(
1
+
cos
2
¦È
)
2
1
sin
¦È
cos
¦È
=
sin
2
¦È
2
sin
2
¦È
=€
1
(
1
?
cos
2
¦È
)
2
Thus at r =
¡Þ
¦Ò
¦Ò
o
¦Ò
=
o
+
cos
2
¦È
rr
2
2
¦Ò
¦Ò
r
¦È
=
?
o
s
in
2
¦È
2
Why don
¡¯t we include
¦Ò
¦È¦È
?
At the boundary in polar coordinates, this stress does not act on the edge/boundary.
Paul A. Lagace
? 2001
Unit 8 -
p
. 2
4
MIT - 16.20
Fall, 2002
Figure 8.5
Stress condition at boundary of hole
So we (summarizing) appear to have 4 B. C.
¡¯s:
¦Ò
¦Ò
¦Ò
rr
=
o
+
o
cos
2
¦È
@ r =
¡Þ
2
2
¦Ò
¦Ò
r
¦È
=
?
o
s
in
2
¦È
@ r =
¡Þ
2
¦Ò
rr
=
0
@ r = a
¦Ò
r
¦È
=
0
@ r = a
Paul A. Lagace
? 2001
Unit 8 -
p
. 2
5
MIT - 16.20
Fall, 2002
And we have
5
constants to determine.
What happened?
The condition of
¦Ò
rr
at r =
¡Þ
is really two B. C.
¡¯s
?
a constant part
?
a part multiplying
cos
2
¦È
Going through (and skipping) the math, we end up with:
¦Ò
¦Ò
¦È
¦Ò
¦Ò
¦È
¦Ò
¦Ò
¦È¦È
¦È
rr
o
2
2
o
2
2
4
4
o
2
2
o
4
4
o
2
2
1
a
r
2
1
4
a
r
3
a
r
2
1
a
r
2
1
3
a
r
2
1
2
a
r
=
?
?
? ?
?
? ?
+
?
+
?
?
?
?
? ?
=
?
? ?
?
? ?
?
+
?
?
?
?
? ?
=
?
+
cos
cos
2
2
r
22
4
4
3
a
r
in
?
?
?
?
?
?
?
s2
¦È
¦Ò
¦Ò
+
for: ¡
Paul A. Lagace
? 2001
Unit 8 -
p
. 2
6
MIT - 16.20
Fall, 2002
Figure 8.6
Polar coordinate configuration for
uniaxially
loaded plate
with center hole
So we have the solution to find the stress field around a hole.
Let¡¯
s
consider one important point. Wher
e
¡¯s the largest stress?
At the edge of the hole. Think of
¡°flo
w
¡± around the hole:
Figure 8.7
Representation of stress
¡°flow
¡±
around a hole
Paul A. Lagace
? 2001
Unit 8 -
p
. 2
7
MIT - 16.20
Fall, 2002
@
¦È
= 90
°,
r = a
¦Ò
?
a
2
?
¦Ò
?
a
4
?
o
¦Ò
¦È¦È
=
¦Ò
xx
=
2
o
? ?
1
+
a
2
??
?
2
??
1
+
3
a
4
? ?
(
?
1
)
=
3
¦Ò
o
Define the:
Stress
Concentration
Facto
r (SCF) =
local stress
far - field stress
SCF = 3 at hole in isotropic plate
The SCF is a more general concept. Generally the
¡°
sharper¡± the
discontinuity, the higher the SCF. The SCF will also depend on the material. For
orthotropic
materials,
it
depends on E
x
and
E
y
getting higher as
E
x
/
E
y
increases. In a
un
i
-directional
composite, can have SCF = 7. Can do stress functions for
orthotropic
materials, but need to go to
complex
variable
mapping
--> (See
Lekhnitskii
as noted earlier)
Paul A. Lagace
? 2001
Unit 8 -
p
. 2
8
MIT - 16.20
Fall, 2002
Example 3
-- Beam in Bending
(we¡¯ll save for a problem set or a recitation)
There are many other cases (use earlier references)
?
circular disks
?
rotary disks
. .
¡°
c
lassic
¡±
cases
But
¡what
¡¯
s
really the point?
Are these still used?
Yes!
This is a very powerful technique which is especially well-suited for preliminary design and exploratory development
?
parametric study
?
know assumptions and resulting limitations and then interpret results accordingly
?
linear solutions --> can use
principle of superposition
?
can find many solutions in books
(See attached page)
Paul A. Lagace
? 2001
Unit 8 -
p
. 2
9
MIT - 16.20
1. 2. 3.
Fall, 2002
Roark, Raymond J.,
¡°Roark¡¯
s Formulas for
Stresses and Strain, 6th Ed.,
¡±
New York,
McGraw-Hill, 1989. Peterson, Rudolph E.,
¡°
Stress Concentration
Factors:
Charts and Relations Useful in
Making Strength Calculations for Machine Parts and Structural Elements,
¡±
New York,
Wiley, 1974. Pilkey
,
Walter
D., ¡°Formulas for Stress, Strain,
and Structural Matrices,
¡±
New York, John
Wiley, 1994.
Paul A. Lagace
? 2001
Unit 8 -
p
. 3
0