BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
Lecture 9: Polyelectrolyte Hydrogels
Last Day: Physical hydrogels
Structure and chemistry
Today: polyelectrolyte hydrogels, complexes, and coacervates
Polyelectrolyte multilayers
theory of swelling in ionic hydrogels
Reading: S.K. De et al., ‘Equilibrium swelling and kinetics of pH-responsive hydrogels: Models,
experiments, and simulations,’ J. Microelectromech. Sys. 11(5) 544 (2002).
Supplementary Reading: L. Brannon-Peppas and N.A. Peppas, ‘Equilibrium swelling behavior of pH-sensitive
hydrogels,’ Chem. Eng. Sci. 46(3) 715-722 (1991).
USE DEMO OF AMINOETHYL METHACRYLATE HYDROGEL TO SHOW PH-DEPENDENT SWELLING?
Covalent polyelectrolyte hydrogels
Response of polyelectrolyte gels to pH of environment
o Reminder of the response of ionizable groups to pH changes:
ionization of charged groups
1.2
1
0.8
0.6
0.4
0.2
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
pH
o Presence of ionizable groups makes polyelectrolyte hydrogels sensitive to:
o pH
o Ionic strength
o Electric fields
o (T)
Lecture 9 – polyelectrolyte hydrogels 1 of 17
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
o Observed swelling as a function of pH:
o Data
1
for poly(2-hydroxyethyl methacrylate-co-acrylic acid) gels cross-linked with ethylene glycol
dimethacrylate
o Physical chemistry of swelling at high pH (example for anionic gels):
o Stepwise process in basic solutions:
1
1. Ionization of carboxyl groups, releasing H
+
a. At high ionic group density, carboxylate anions repel one another, driving
swelling- but this is not the main driving force for swelling in typical conditions
i. Electrostatic force decays as 1/r
2
, too weak at typical charged group
separation to have a significant effect
ii. In water: F = q
1
q
2
/4πεr
2
= -e
2
/4τεr
2
= 2.04x10
-39
/r
2
(r in m)
1. ε = 80 in water
2. e = 1.602x10
-19
C
iii. F1 nm/F0.2 nm = 0.04!
2. H
+
recombines with OH
-
to give water
3. Charge is compensated by diffusion of cations (e.g. Na
+
) and OH
-
into gel
4. Influx of new ions creates osmotic pressure that drives swelling
2
Lecture 9 – polyelectrolyte hydrogels 2 of 17
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
o Kinetics: deswelling faster (~10X) than swelling
? Swelling in ~166 min.
? De-swelling in ~16 min.
? (300 μm thick gels)
? Theory based on diffusion of ions into and out of gel semi-quantitatively predicts observed
swelling behavior
o Implies that response time of gels will scale inversely with the size of the gel
o Swelling rate inversely proportional to square of gel size
3
o Swelling rate can also be increased by creating greater porosity in gel- increase
surface/volume ratio allows solute to diffuse into gel more rapidly
Rapid swelling/deswelling of superporous gels:
Low pH High pH
(Zhao and Moore, 2001)
o hydrogels containing basic groups show opposite pH sensitivity
o swelling in acidic solutions
o e.g. Peppas papers
Lecture 9 – polyelectrolyte hydrogels 3 of 17
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
Polyion complex hydrogels
4
Coacervates
o complexation between two oppositely charged polyelectrolytes can lead to:
1. precipitation (insoluble solid phase)
null driven by charge neutralization on hydrophobic polymers
null driven by macro-aggregate formation
2. coacervate formation (dense liquid phase)
3. soluble complexes
o mechanisms of formation
1. initial rapid Coulombic bonding
2. formation of new bonds/restructuring of chain distortions
3. aggregation of secondary complexes
o mixing of two polyions can lead to 90% complex formation
o Polyelectrolytes studied as coacervates for biomaterials:
4
o Polyanions
o Carboxymethylcellulose
o Alginate
o Dextran sulfate
o Carboxymethyl dextran
o Heparin
o Carrageenan
o Pectin
o xanthan
o Polycations
o Chitosan (derived from crab shells)
o Polyethyleneimine
o Poly(4-vinyl-N-butylpyridinium) bromide
o Quarternized polycations
o Poly(vinylbenzyltrimethyl)ammonium hydroxide
Lecture 9 – polyelectrolyte hydrogels 4 of 17
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
o Microstructure of coacervate hydrogels
o Example structures: xanthan/chitosan coacervates (Dumitriu et al. 1998)
o Pore sizes formed 0.1-1 μm; fiber diameters ~100 nm
Polyelectrolyte multilayers (PEMs)
Structure of PEMs
Assembly
? Layer-by-layer deposition
o How is it done
o Surface properties change in digital fashion with adsorption of sequential layers
5
Lecture 9 – polyelectrolyte hydrogels 5 of 17
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
Surface properties dominated by last
layer deposited:
θ
null Assembly figure source: http://www.chem.fsu.edu/multilayers/
? Assembly on complex surfaces
o Polyelectrolytes will adsorb to surfaces with complex topography
o Polyelectrolytes themselves may have complex geometries (e.g. particles or dendrimers)
6
Generation 7 poly(amidoamine) dendrimer:
(Khopade and Caruso, 2002)
null Dendrimer image source: http://www.foresight.org/Conferences/MNT7/Papers/Cagin3/
Lecture 9 – polyelectrolyte hydrogels 6 of 17
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
o Assembly on protein crystals to encapsulate proteins:
7
null Blah blah
(Caruso et al., 2000)
? Cells as living PEM assembly substrates:
SEM micrograph of
multilayer-coated
echinocyte blood cell
(F. Caruso)
(Source: http://www.chem.fsu.edu/multilayers/)
o What else
Building PEMs on biomaterials
8
? Assembly of PEMs on amino-modified poly(lactide)
5
o Alternating adsorption of sulfonated polystyrene and chitosan (polycation)
Lecture 9 – polyelectrolyte hydrogels 7 of 17
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
H
2N
-
C
H
CH
3
O
-(CH -C-O)
n
-
2 -
N
H
2
CH
3
O H
-CH -C-N-CH
2
CH
2
-NH
2
+ HO-
PEM-modified polylactide
2C
H
Lecture 9 – polyelectrolyte hydrogels 8 of 17
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
Utility of polyeletrolyte gels in biomaterials/bioengineering
o Cell encapsulation: In situ formation with no ‘additives’, no change in pH, no change in temperature, in physiological
solutions
o Useful for safe encapsulation of cells
o Drug delivery: Ionic interactions for protein-polymer complexes prior to gel formation allow high protein entrapment
efficiencies
o PEMs can form hollow capsules
Drug release from PSS/PAMAM PEM capsules:
Fluorescent drug-loaded PEM capsules
o Enzyme immobilization: binding to ionic groups for biosensors or active biomaterials
o Protein separations/recovery:
9
some binding specificity can be achieved in certain situations to allow for selective
sorption of a target protein
o Addition of polycation or polyanion to solution of protein leads to protein-polyelectrolyte coacervate formation
o Bound proteins released by adjustment of pH/ionic strength
Lecture 9 – polyelectrolyte hydrogels 9 of 17
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
o Microvalves for bioMEMS and lab-on-a-chip applications:
10,11
Utilize fast response of swelling in microsized gels
to control flow through microfluidics
o Example: PHEMA-co-AA networks patterned in microfluidic channels:
? Schematic shows an example lab-on-a-chip analysis approach
Lecture 9 – polyelectrolyte hydrogels 10 of 17
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
? Second figure on right depicts a sorting valve that can determine whether fluid flow goes left or right
based on pH of solution
o Composed of one polybase gel (poly(dimethylaminoethyl methacrylate-co-hydroxyethyl
methacrylate) cross-linked by ethylene glycol dimethacrylate and other gel poly(acrylic acid
co-hydroxyethyl methacrylate)
o Base gel swells at low pH, acid gel swells at high pH
? Surface modification agents: as described above for polylactide and other biomaterials
Brannon-Peppas theory of swelling in ionic hydrogels
? Original theory for elastic networks developed by Flory and Mehrer
12-14
, refined for treatment of ionic hydrogels by
Brannon-Peppas and Peppas
15,16
? Other theoretical treatments
17
Derivation of ionic hydrogel swelling
? Model structure of the system:
Model of system:
Inorganic anion, e.g. Cl
(-)
(-)
(-)
(-)
(-)
(-)
(-)
(-)
(-)
Inorganic cation, e.g. Na
+
water
? System is composed of permanently cross-linked polymer chains, water, and salt
? We will derive the thermodynamic behavior of the ionic hydrogel using the model we previously developed for
neutral hydrogels swelling in good solvent
? Model parameters:
a
+
activity of cations in gel
a
+
* activity of cations in solution
a
-
activity of anions in gel
a
-
* activity of anions in solution
c
+
concentration of cations in gel (moles/volume)
c
+
* concentration of cations in solution (moles/volume)
c
-
concentration of anions in solution (moles/volume)
c
-
* concentration of anions in solution (moles/volume)
c
s
concentration of electrolyte
c
2
concentration of ionizable repeat units in gel
(moles/volume)
*
μ
1
chemical potential of water in solution
μ
1
chemical potential of water in the hydrogel
μ
1
0
chemical potential of pure water in standard state
M Molecular weight of polymer chains before cross-linking
M
c
Molecular weight of cross-linked subchains
n
1
number of water molecules in swollen gel
χ polymer-solvent interaction parameter
k
B
Boltzman constant
T absolute temperature (Kelvin)
v
m
,
1
molar volume of solvent (water, volume/mole)
v
m,2
molar volume of polymer (volume/mole)
v
sp
,
1
specific volume of solvent (water, volume/mass)
v
sp,2
specific volume of polymer (volume/mass)
V
2
total volume of polymer
V
s
total volume of swollen hydrogel
V
r
total volume of relaxed hydrogel
ν number of subchains in network
ν
e
number of ‘effective’ subchains in network
ν
+
stoichiometric coefficient for eletrolyte cation
ν
?
stoichiometric coefficient for eletrolyte anion
φ
1,s
volume fraction of water in swollen gel
φ
2,s
volume fraction of polymer in swollen gel
φ
2,r
volume fraction of polymer in relaxed gel
x
1
mole fraction of water in swollen gel
x
1
* mole fraction of water in solution
Lecture 9 – polyelectrolyte hydrogels 11 of 17
? ?
? ?
? ?
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
o Asterisks denote parameters in solution
o Free energy has 3 components: free energy of mixing, elastic free energy, and ionic free energy
Eqn 1 ?G
total
=?G
mix
+?G
el
+?G
ion
o At equilibrium, the chemical potential of water inside and outside the gel are equal:
Eqn 2 μ
1
* = μ
1
Eqn 3 μ
1
* - μ
1
0
= μ
1
– μ
1
0
o Solution contains ions so μ
1
* is not equal to μ
1
0
Eqn 4 (?μ
1
*)
TOTAL
= (?μ
1
)
TOTAL
Eqn 5 (?μ
1
*)
ion
= (?μ
1
)
mix
+ (?μ
1
)
el
+ (?μ
1
)
ion
o The equation we’ll try to solve is a rearrangement of this:
Eqn 6 (?μ
1
*)
ion
- (?μ
1
)
ion
= (?μ
1
)
mix
+ (?μ
1
)
el
o Contributions to the free energy:
o Free energy of mixing:
Eqn 7 ?G
mix
= ?H
mix
– T?S
mix
o We previously derived the contribution from mixing using the Flory-Rehner lattice model:
Eqn 8 ?G
mix
= k
B
T[n
1
ln (1-φ
2,s
) + χn
1
φ
2,s
]
()
1
mix
=
?
?
?
?(?G
mix
)
?
?
?
= k
B
T[ln(1?φ
2,s
) +φ
2,s
+χφ
2,s 2,s
Eqn 9 ?μ
?n
1
T ,P
2
] = RT[ln(1?φ
2,s
) +φ
2,s
+χφ
2
]
o Second expression puts us on a molar basis instead of per molecule
o Elastic free energy:
Eqn 10 ?G
el
= (3/2)k
B
Tν
e
(α
2
– 1 – ln α)
Eqn 11
()
?μ =
?
?(?G
el
)
?
=
?
?(?G
el
)
?
?
?α
?
?
?
v
m,1
?
?
?
φ
2,s
?
1/3
?
1
?
φ
2,s
?
?
?
M
1
el
?
?
?n
1
?
?
T ,P
?
?
?α ?
?
T ,P
?
?
?n
1
?
?
T ,P
= RTν
?
?
?
1?
2 M
c
?
V
r
??
?
φ
2rs
?
?
2
?
?
φ
2rs
?
?
?
?
v
m,1
= RT
?
?
v
sp,2
M
c ?
?
?
?
?
?
1?
2M
c
?
?
?
φ
2,s
?
1/3
?
1
?
φ
2,s
?
?
?
M ?
?
φ
2,r
?
??
?
φ
2rs
?
?
2
?
?
φ
2rs
?
?
?
? Last equality uses:
o ν = V
2
/v
sp
,
2
M
c
(on handout)
o V
r
= V
2
/φ
2
,
r
(on handout)
o Thus ν/V
r
= φ
2
,
r
/v
sp,2
M
c
o Ionic free energy:
o Term driving dilution of ions diffusing into gel to maintain charge neutrality
Lecture 9 – polyelectrolyte hydrogels 12 of 17
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
o Chemical potential change in solution:
all _ solutes
()
*
Eqn 12 ?μ
1 11
ion
=μ
*
?μ
0
= RT ln a
1
*
? RT ln x
1
*
= RT ln(1?
∑
x
*
j
)
j
o approximation in third equality is used for dilute solutions
all _ ions all _ ions all _ ions all _ ions
Eqn 13
()
?μ
1
*
ion
??RT
∑
x
*
j
=?
RT
∑
n
*
j
=?
v
m,1
RT
∑
n
*
j
??v
m,1
RT
∑
c
*
j
j
n
j
v
m,1
n
j j
o The first approximation holds if Σx
j
* is small
o Fourth equality holds because we assume in the liquid lattice model that the molar volume of
all species is the same, thus v
m
,
1
n = V, the total volume of the system
o Chemical potential change in gel:
all?ions
Eqn 14 (?μ
1
)
ion
= μ
1
?μ
1
0
= RT ln a
1
? ?v
m,1
RT
∑
c
j
j
all?ions
*
Eqn 15 (?μ
1
)
ion
? (?μ
1
)
ion
=?v
m,1
RT
∑
(c
j
? c
*
j
)
j
o The electrolyte dissolved in water provides mobile cations and anions in the solution and in the gel:
o E.g. NaCl: Na
+
ν+
Cl
-
ν+ (s)
→ ν
+
Na
+
(aq)
+ ν
-
Cl
-
(aq)
o ν
+
= ν
-
= 1 stoichiometric coefficients
Eqn 16 C
ν
+
z?z +
A
ν
?
→ν
+
C
z +
+ν
?
A
z?
? e.g. CaCl
2
: ν
+
= 1, ν
-
= 2, z
+
= 2, z
-
= 1
Eqn 17 ν
+
+ν
?
=ν
?
…for a 1:1 electrolyte
?
Eqn 18 ν
+
=ν
?
=
ν
…for a 1:1 electrolyte
2
* * *
?
*
Eqn 19 c
+
+ c
?
= (ν
+
+ν
?
)c
s
=νc
s
…total concentration of ions
o We will derive equations for an anionic network
o Assuming activities ~ concentrations
o Inside gel:
Eqn 20 c
+
= ν
+
c
s
Eqn 21 c
-
= ν
-
c
s
+ ic
2
/z
-
o c
2
is the moles of ionizable repeat groups on gel chains per volume
o First term comes from electrolyte anions in gel, second term from counter-ions associated
with ionized groups on the polymer chains
o The degree of ionization i can be related to the pH of the environment and the pKa of the
network groups:
[]
Eqn 22 K
a
=
[
RCOO
?
]
H
+
[
RCOOH
]
Lecture 9 – polyelectrolyte hydrogels 13 of 17
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
Eqn 23
[
RCOO
?
]
K
a
H
+
i =
[
RCOO
?
] [RCOOH] [] K
a
K
a
10
? pK
a
= = = = =
H
+
[
RCOOH
]
+
[
RCOO
?
] [
RCOO
?
]
1+
K
a
[]
+ K
a
10
? pH
+ K
a
10
? pH
+ 10
? pK
a
H
+1+
[
RCOOH
]
[]
o Outside gel:
Eqn 24 c
+
* = ν
+
c
s
*
Eqn 25 c
-
* = ν
-
c
s
*
o Our relationship for the ionic chemical potentials is now:
all?ions
()
*
()
*
Eqn 26 ?μ
1
ion
= v
m,1
RT
∑(
c
j
? c
*
j
)
=v
m,1
RT
(
c
+
+ c
?
? c
+
? c
?
*
)
1
ion
??μ
j
o Using Eqn 20, Eqn 21, Eqn 24, and Eqn 25, Eqn 26 becomes:
? ? ? ?
*
Eqn 27
()
?μ
*
()
1
ion
= v
m,1
RT
?
?
ν
+
c
s
+ν
?
c
?
+
ic
2
?
?
c
s
?
?
= v
m,1
RT
?
?
ν c
s
+
ic
2
?
?
c
s
?
?
1
ion
??μ ν
?
ν
*
z
?
z
?
? ?
ν(c
s
? c
s
= v
m,1
RT
?
?
ic
2
?
?
*
)
?
?
z
?
o How can we relate c
s
and c
s
*?
o We can make simplifications for a 1:1 cation:anion electrolyte:
o The chemical potentials of the mobile ions must also be equilibrated inside/outside the gel:
Eqn 28 μ
+
= μ
+
*
Eqn 29 μ
-
= μ
-
*
o Add Eqn 29 to Eqn 28:
Eqn 30 μ
+
+ μ
-
= μ
+
* + μ
-
*
ν
+
Eqn 31 RT ln a
+
+ RT ln a
?
ν
?
= RT ln a
+
*ν
+
+ RT ln a
?
*ν
?
o Therefore we can write:
ν+
a
?
ν?
= a
+
Eqn 32 a
+
*ν+
a
?
*ν?
? Assuming dilute solutions where the activities are approximately equal to the concentrations:
ν+ ν?
?
c
+
? ?
c
?
*
?
Eqn 33
?
?
c
+
=
*
?
?
?
?
c
?
?
?
Lecture 9 – polyelectrolyte hydrogels 14 of 17
? ?
? ? ? ?
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
? ?
ν?
?
ν
+
c
s
?
ν+
? * ?
?
Eqn 34
?
?
ν
+
c
*
s
?
?
=
?
ν
?
c
s
?
?
ν
?
c
s
+
ic
2 ?
?
?
ν
?
z
?
?
ν?
? ?
ν+ ?
*
?
? c ? c
Eqn 35
?
?
c
*
s
?
? =
?
? s
ic
2
?
?
? s ?
?
c
s
+
ν
?
z
? ?
?
?
ν?
? ?ν+
* ? *
?
1
?
?
??
ic
*
2
?
?
?
2
Eqn 36
c
*
s
c
?
*
s
c
s
= 1?
?
?
?
?
c
s
+
c
s
ic
2 ?
?
?
= 1 ?
c
s
+
c
s
ic
2
=
ν
ic
2
*
?
?
?
2z
+
z
?
ν
2
?
?
c
s
?
z
?
c
s
?
?
ν
?
z
?
?
ν
?
z
?
o Derivation of this equation in appendix
o Now Eqn 27 becomes:
?
i
2
c
2
2
?
()
*
Eqn 37 ?μ
()
1
ion
= v
m,1
RT
?
?
2z
+
z
?
ν
*
?
?
1
ion
??μ
?
c
s
o But definition of ionic strength I is:
all _ ions
?
c
s
*
Eqn 38 I =
1
∑
z
i
2
c
i
=
z
+
z
?
ν
…for a 1:1 electrolyte
2
i
2
null Where z
i
is the charge on ion i
o Therefore:
?
i
2
φ
2
?
()
*
2,s
Eqn 39 ?μ
()
1
ion
= v
m,1
RT
?
?
?
i
2
c
2
2
?
?
?
= v
m,1
RT
?
?
4Iv
sp,2
M
0
2
?
?
1
ion
??μ
4I
2
φ
2,s
o (Using relation c
2
=
v
sp,2
M
0
=moles ionizable groups/volume)
o Eqn 39 can be re-cast in terms of the solution pH:
2
?
()
1
*
ion
??
()
μ =
v
m,1
RT
?
K
a
?
2
?
φ
2,s
?
2
?
K
a
?
2
?
φ
2,s
2
Eqn 40 ?μ
1
ion
4I
?
?
10
? pH
+ K
a
?
?
?
?
z
?
v
sp,2
M
0 ?
?
= v
m,1
RT
?
?
10
? pH
+ K
a
?
?
?
?
4Iv
sp,2
M
0
2
?
?
o Returning to the equilibrium criterion:
Lecture 9 – polyelectrolyte hydrogels 15 of 17
? ? ? ?
? ?
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
Eqn 41
2
?
?
10
? pK
a
?
2
?
φ
2,s 2
?
v
m,1
?
?
?
?
1?
2 M
c
?
?
?
?
?
?
?
φ
2,s
?
?
1/3
?
1
?
?
φ
2,s
?
?
?
?
2
v
m,1
?
?
10
? pH
+ 10
? pK
a
?
?
?
?
4Iv
sp,2
M
0
2
?
?
= ln(1 ?φ
2,s
) +φ
2,s
+χφ
2,s
+φ
2,r
?
?
v
sp,2
M
c
?
?
M ?
?
φ
2,r
?
2
?
φ
2,r
?
?
o Brannon-Peppas paper analyzes Polyacrylates/polymethacrylates:
o In water pH 7.0 with I = 0.35
o χ = 0.8
o pK
a
= 6.0
o v
sp,2
= 0.8 cm
3
/g
o M = 75,000 g/mole
o M
c
= 12,000 g/mole
o M
0
= 90 g/mole
o φ
2,r
= 0.5
Lecture 9 – polyelectrolyte hydrogels 16 of 17
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
References
1. De, S. K. et al. Equilibrium swelling and kinetics of pH-responsive hydrogels: Models, experiments, and
simulations. Journal of Microelectromechanical Systems 11, 544-555 (2002).
2. Tanaka, T. & Fillmore, D. J. Kinetics of Swelling of Gels. Journal of Chemical Physics 70, 1214-1218 (1979).
3. Zhao, B. & Moore, J. S. Fast pH- and ionic strength-responsive hydrogels in microchannels. Langmuir 17, 4758-
4763 (2001).
4. Chornet, E. & Dumitriu, S. Inclusion and release of proteins from polysaccharide-based polyion complexes. Adv
Drug Deliv Rev 31, 223-246. (1998).
5. Zhu, Y., Gao, C., He, T., Liu, X. & Shen, J. Layer-by-Layer assembly to modify poly(L-lactic acid) surface toward
improving its cytocompatibility to human endothelial cells. Biomacromol. 4, 446-452 (2003).
6. Khopade, A. J. & Caruso, F. Stepwise self-assembled poly(amidoamine) dendrimer and poly(styrenesulfonate)
microcapsules as sustained delivery vehicles. Biomacromolecules 3, 1154-1162 (2002).
7. Caruso, F., Trau, D., Mohwald, H. & Renneberg, R. Enzyme encapsulation in layer-by-layer engineered polymer
multilayer capsules. Langmuir 16, 1485-1488 (2000).
8. Elbert, D. L., Herbert, C. B. & Hubbell, J. A. Thin polymer layers formed by polyelectrolyte multilayer techniques
on biological surfaces. Langmuir 15, 5355-5362 (1999).
9. Wang, Y. F., Gao, J. Y. & Dubin, P. L. Protein separation via polyelectrolyte coacervation: Selectivity and
efficiency. Biotechnology Progress 12, 356-362 (1996).
10. Beebe, D. J. et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature
404, 588-+ (2000).
11. Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annual Review
of Biomedical Engineering 4, 261-286 (2002).
12. James, H. M. & Guth, E. Simple presentation of network theory of rubber, with a discussion of other theories. J.
Polym. Sci. 4, 153-182 (1949).
13. Flory, P. J. & Rehner Jr., J. Statistical mechanics of cross-linked polymer networks. I. Rubberlike elasticity. J.
Chem. Phys. 11, 512-520 (1943).
14. Flory, P. J. & Rehner Jr., J. Statistical mechanics of cross-linked polymer networks. II. Swelling. J. Chem. Phys.
11, 521-526 (1943).
15. Brannonpeppas, L. & Peppas, N. A. Equilibrium Swelling Behavior of Ph-Sensitive Hydrogels. Chemical
Engineering Science 46, 715-722 (1991).
16. Peppas, N. A. & Merrill, E. W. Polyvinyl-Alcohol) Hydrogels - Reinforcement of Radiation-Crosslinked Networks
by Crystallization. Journal of Polymer Science Part a-Polymer Chemistry 14, 441-457 (1976).
17. Ozyurek, C., Caykara, T., Kantoglu, O. & Guven, O. Characterization of network structure of poly(N-vinyl 2-
pyrrolidone/acrylic acid) polyelectrolyte hydrogels by swelling measurements. Journal of Polymer Science Part B-
Polymer Physics 38, 3309-3317 (2000).
Lecture 9 – polyelectrolyte hydrogels 17 of 17