BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
Hydrogels in drug delivery
Control of drug release kinetics by hydrogel structure
6,7
o Release from stable hydrogels is controlled by diffusion of solute through the network
o Diffusion is described by Fick’s second law:
?C ?
2
C
Eqn 1
?t
= D
gel
?x
2
o Recall the solution to Fick’s second law for a semi-infinite slab contacting a perfect sink:
Eqn 2
c
0
? c(x)
= 1 ? erf
?
?
?
2 tD
x
?
?
?
c
0
o Diffusion of drugs through a network is controlled by the mesh size (ζ)
c(x)
c
0
Increasing time
erf(z) solution
x
Free surface
Lecture 10 – Bioengineering Applications of Hydrogels 1 of 4
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
o The mesh size is related to the network swelling Q and the end-to-end distance between cross-links:
(<r
0
2
>)
1/2
=N
c
1/2
a
statistical segment length
Number of segments
between cross-links
Eqn 3 r
0
2
1/ 2 ? 2M
c
?
1/ 2
C
1/ 2
l() =
?
?
?
M
0 ?
?
?
n
o …assuming a polymer chain that has 2 carbon-carbon bonds per repeat unit
o derived from random walk chain statistics
null Where l is the bond length in the polymer backbone
null M
c
is the molecular weight between cross-links
null M
0
is the molecular weight per repeat unit
null Where C
n
is the characteristic ratio for the polymer chain
()
2
1/2
Eqn 4 ξ =
r
0
1/3
= Q
1/3
()
r
0
2
1/2
= C
n
1/2
Q
1/3
N
1/2
l
φ
2,s
null Q is the degree of swelling = V
swollen polymer
/V
dry polymer
null N is the degree of polymerization between cross-links
null The mesh size is related to the diffusion constant of a solute in the network
null Eyring theory of diffusion:
?
?G
*
?
?H
*
?S
*
Eqn 5 D = Tνe
kT
= Tνe
kT
e
k
o Where ?G* is the activation energy, ?H* is activation enthalpy, and ?S* is activation entropy
o N = translational oscillating frequency of solute molecule (jump rate!)
o T = temperature
o k = Boltzman constant
null The ratio of diffusion constant in the gel to that in solution is:
*
?S
gel
k
?
Eqn 6 D =
D
gel
=
e
?S
0
*
D
0
e
k
o Where ?S*
gel
is the activation entropy for diffusion in the gel and ?S*
0
is the activation entropy
in for diffusion in the solvent
o This assumes the activation enthalpy and oscillation frequencies for diffusion are
approximately the same in the gel and pure solvent (reasonable for dilute and chemically
inert systems)
null The activation entropies are:
Eqn 7 ?S*
gel
= k ln P* - k ln P
0
Lecture 10 – Bioengineering Applications of Hydrogels 2 of 4
? ?
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
Eqn 8 ?S*
0
= k ln P*
0
– k ln P
0
* * *
Eqn 9 D =
P
gel
=
P
gel,opening
P
gel,volume
?
* *
P
0
P
0,volume
o Where P*volume is the probability that a solute-sized volume of free space exists to jump into
o P*opening is the probability that the network has a solute-sized gap to jump through
P*
gel,opening
drug
r
drug
P*
gel,volume
*
ξ? r
Eqn 10 P
gel,opening
=
ξ
= 1?
r
ξ
o Where r is the size of the solute (drug) and ξ is the network mesh size
null The probability of a volume to jump into is an exponential of the ratio of the solute size to the available
free volume per mole:
v*
?
*
Eqn 11 P
gel,volume
~ e
v
free,gel
v*
?
*
Eqn 12 P
0,volume
~ e
v
free,1
o Where vfree is the specific free volume and v* is the volume of the solute (drug)
o Refs for free volume theory applied here:
null Yasuda et al. Makromol. Chem. 26, 177 (1969)
null Peppas and Reinhart, J. Membrane Sci. 15, 275 (1983)
null Now:
*
?
v* v*
?
Eqn 13
P
gel,volume
= e
?
?
?
v
free,gel
?
v
free,1 ?
?
*
P
0,volume
null The free volume in a swollen gel is approximately vfree,1 since the free volume contribution from
polymer is extremely low (2.5% even in solid polymers at 25°C)
Eqn 14 v
free,gel
= φ
1vfree,1
+ φ
2
v
free,2
null Therefore:
Eqn 15 v
free
,
gel
~ φ
1
v
free,1
= (1-φ
2
)v
free,1
= (1-1/Q)v
free,1
o Where Q is the swelling degree = V
swollen gel
/V
dry gel
= 1/φ
2
null Therefore:
Lecture 10 – Bioengineering Applications of Hydrogels 3 of 4
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
? ?
?
?
?
v*
?
v*
?
?
* ?
Q
)v
free,1
v
free,1
?
?
?
v*
?
?
1
? ?
1
?
Eqn 16
P
gel,volume
= e
?
?
(1?
1
?
= e
v
free,1
? Q?1?
?
≈ e
?
?
? Q?1?
?
*
P
0,volume
o v*/v
free,1
~ 1 for most polymers, experimentally
null Therefore:
? ? ?
?
?1
?
?
?
Eqn 17 D ?
?
?
1?
r
?
?
e
?(Q?1)?
ξ
null And thus finally:
? ? ?
?
?1
?
?
Eqn 18 D
gel
? D
0
?
?
1?
r
?
?
e
?(Q?1)?
ξ
o Insulin: MW – 5900 g/mole; hydrodynamic radius = 16 ?
References
1. Byrne, M. E., Oral, E., Hilt, J. Z. & Peppas, N. A. Networks for recognition of biomolecules: Molecular imprinting
and micropatterning poly(ethylene glycol)-containing films. Polymers for Advanced Technologies 13, 798-816
(2002).
2. Hart, B. R. & Shea, K. J. Molecular imprinting for the recognition of N-terminal histidine peptides in aqueous
solution. Macromolecules 35, 6192-6201 (2002).
3. Tan, Y. Y. & Vanekenstein, G. O. R. A. A Generalized Kinetic-Model for Radical-Initiated Template
Polymerizations in Dilute Template Systems. Macromolecules 24, 1641-1647 (1991).
4. Shi, H. Q., Tsai, W. B., Garrison, M. D., Ferrari, S. & Ratner, B. D. Template-imprinted nanostructured surfaces
for protein recognition. Nature 398, 593-597 (1999).
5. Shi, H. Q. & Ratner, B. D. Template recognition of protein-imprinted polymer surfaces. Journal of Biomedical
Materials Research 49, 1-11 (2000).
6. Lustig, S. R. & Peppas, N. A. Solute Diffusion in Swollen Membranes .9. Scaling Laws for Solute Diffusion in
Gels. Journal of Applied Polymer Science 36, 735-747 (1988).
7. Canal, T. & Peppas, N. A. Correlation between Mesh Size and Equilibrium Degree of Swelling of Polymeric
Networks. Journal of Biomedical Materials Research 23, 1183-1193 (1989).
8. Podual, K., Doyle, F. J. & Peppas, N. A. Dynamic behavior of glucose oxidase-containing microparticles of
poly(ethylene glycol)-grafted cationic hydrogels in an environment of changing pH. Biomaterials 21, 1439-1450
(2000).
9. Podual, K., Doyle, F. J. & Peppas, N. A. Preparation and dynamic response of cationic copolymer hydrogels
containing glucose oxidase. Polymer 41, 3975-3983 (2000).
10. Podual, K., Doyle, F. J. & Peppas, N. A. Glucose-sensitivity of glucose oxidase-containing cationic copolymer
hydrogels having poly(ethylene glycol) grafts. Journal of Controlled Release 67, 9-17 (2000).
Lecture 10 – Bioengineering Applications of Hydrogels 4 of 4