BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
Brannon-Peppas theory of swelling in ionic hydrogels
? Original theory for elastic networks developed by Flory and Mehrer
1-3
, refined for treatment of ionic hydrogels by
Brannon-Peppas and Peppas
4,5
? Other theoretical treatments
6
Derivation of ionic hydrogel swelling
? Model structure of the system:
Model of system:
Inorganic anion, e.g. Cl
-
Inorganic cation, e.g. Na
+
(-)
(-)
(-)
(-)
(-)
(-)
(-)
(-)
(-)
water
? System is composed of permanently cross-linked polymer chains, water, and salt
? We will derive the thermodynamic behavior of the ionic hydrogel using the model we previously developed for
neutral hydrogels swelling in good solvent
? Model parameters:
a
+
activity of cations in gel
a
+
* activity of cations in solution
a
-
activity of anions in gel
a
-
* activity of anions in solution
c
+
concentration of cations in gel (moles/volume)
c
+
* concentration of cations in solution (moles/volume)
c
-
concentration of anions in solution (moles/volume)
c
-
* concentration of anions in solution (moles/volume)
c
s
concentration of electrolyte
c
2
concentration of ionizable repeat units in gel
(moles/volume)
*
μ
1
chemical potential of water in solution
μ
1
chemical potential of water in the hydrogel
μ
1
chemical potential of pure water in standard state
M Molecular weight of polymer chains before cross-linking
M
c
Molecular weight of cross-linked subchains
n
1
number of water molecules in swollen gel
χ polymer-solvent interaction parameter
o Asterisks denote parameters in solution
k
B
Boltzman constant
T absolute temperature (Kelvin)
v
m
,
1
molar volume of solvent (water, volume/mole)
v
m,2
molar volume of polymer (volume/mole)
v
sp
,
1
specific volume of solvent (water, volume/mass)
v
sp,2
specific volume of polymer (volume/mass)
V
2
total volume of polymer
V
s
total volume of swollen hydrogel
V
r
total volume of relaxed hydrogel
ν number of subchains in network
ν
e
number of ‘effective’ subchains in network
ν
+
stoichiometric coefficient for eletrolyte cation
ν
?
stoichiometric coefficient for eletrolyte anion
φ
1,s
volume fraction of water in swollen gel
φ
2,s
volume fraction of polymer in swollen gel
φ
2,r
volume fraction of polymer in relaxed gel
x
1
mole fraction of water in swollen gel
x
1
* mole fraction of water in solution
o Free energy has 3 components: free energy of mixing, elastic free energy, and ionic free energy
Eqn 1 ?G
total
=?G
mix
+?G
el
+?G
ion
Lecture 9 – polyelectrolyte hydrogels 1 of 6
0
? ?
? ?
? ?
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
o At equilibrium, the chemical potential of water inside and outside the gel are equal:
Eqn 2 μ
1
* = μ
1
Eqn 3 μ
1
* - μ
1
0
= μ
1
– μ
1
0
o Solution contains ions so μ
1
* is not equal to μ
1
0
Eqn 4 (?μ
1
*)
TOTAL
= (?μ
1
)
TOTAL
Eqn 5 (?μ
1
*)
ion
= (?μ
1
)
mix
+ (?μ
1
)
el
+ (?μ
1
)
ion
o The equation we’ll try to solve is a rearrangement of this:
Eqn 6 (?μ
1
*)
ion
- (?μ
1
)
ion
= (?μ
1
)
mix
+ (?μ
1
)
el
o Contributions to the free energy:
o Free energy of mixing:
Eqn 7 ?G
mix
= ?H
mix
– T?S
mix
o We previously derived the contribution from mixing using the Flory-Rehner lattice model:
Eqn 8 ?G
mix
= k
B
T[n
1
ln (1-φ
2,s
) + χn
1
φ
2,s
]
()
1
mix
=
?
?
?
?(?G
mix
)
?
?
?
= k
B
T[ln(1?φ
2,s
) +φ
2,s
+χφ
2,s 2,s
Eqn 9 ?μ
?n
1
T ,P
2
] = RT[ln(1?φ
2,s
) +φ
2,s
+χφ
2
]
o Second expression puts us on a molar basis instead of per molecule
o Elastic free energy:
Eqn 10 ?G
el
= (3/2)k
B
Tν
e
(α
2
– 1 – ln α)
Eqn 11
()
?μ =
?
?(?G
el
)
?
=
?
?(?G
el
)
?
?
?α
?
?
?
v
m,1
?
?
?
φ
2,s
?
1/3
?
1
?
φ
2,s
?
?
?
M
1
el
?
?
?n
1
?
?
T ,P
?
?
?α ?
?
T ,P
?
?
?n
1
?
?
T ,P
= RTν
?
?
?
1?
2 M
c
?
V
r
??
?
φ
2rs
?
?
2
?
?
φ
2rs
?
?
?
?
v
m,1
= RT
?
?
v
sp,2
M
c ?
?
?
?
?
?
1?
2M
c
?
?
?
φ
2,s
?
1/3
?
1
?
φ
2,s
?
?
?
M ?
?
φ
2,r
?
??
?
φ
2rs
?
?
2
?
?
φ
2rs
?
?
?
? Last equality uses:
o ν = V
2
/v
sp
,
2
M
c
(on handout)
o V
r
= V
2
/φ
2
,
r
(on handout)
o Thus ν/V
r
= φ
2
,
r
/v
sp,2
M
c
o Ionic free energy:
o Term driving dilution of ions diffusing into gel to maintain charge neutrality
o Chemical potential change in solution:
all _ solutes
()
*
Eqn 12 ?μ
1 11
ion
=μ
*
?μ
0
= RT ln a
1
*
? RT ln x
1
*
= RT ln(1?
∑
x
*
j
)
j
o approximation in third equality is used for dilute solutions
Lecture 9 – polyelectrolyte hydrogels 2 of 6
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
all _ ions all _ ions all _ ions all _ ions
Eqn 13
()
?μ
1
*
ion
??RT
∑
x
*
j
=?
RT
∑
n
*
j
=?
v
m,1
RT
∑
n
*
j
??v
m,1
RT
∑
c
*
j
j
n
j
v
m,1
n
j j
o The first approximation holds if Σx
j
* is small
o Fourth equality holds because we assume in the liquid lattice model that the molar volume of
all species is the same, thus v
m
,
1
n = V, the total volume of the system
o Chemical potential change in gel:
all ?ions
Eqn 14 (?μ
1
)
ion
= μ
1
?μ
1
0
= RT ln a
1
? ?v
m,1
RT
∑
c
j
j
all?ions
()
*
()
*
Eqn 15 ?μ
1
ion
= v
m,1
RT
∑(
c
j
? c
j
)
1
ion
??μ
j
o The electrolyte dissolved in water provides mobile cations and anions in the solution and in the gel:
o E.g. NaCl: Na
+
ν+
Cl
-
ν+ (s)
→ ν
+
Na
+
(aq)
+ ν
-
Cl
-
(aq)
o ν
+
= ν
-
= 1 stoichiometric coefficients
Eqn 16 C
ν
+
z?z +
A
ν
?
→ν
+
C
z +
+ν
?
A
z?
? e.g. CaCl
2
: ν
+
= 1, ν
-
= 2, z
+
= 2, z
-
= 1
Eqn 17 ν
+
+ν
?
=ν
?
…for a 1:1 electrolyte
?
Eqn 18 ν
+
=ν
?
=
ν
…for a 1:1 electrolyte
2
* * *
?
*
Eqn 19 c
+
+ c
?
= (ν
+
+ν
?
)c
s
=νc
s
…total concentration of ions
o We will derive equations for an anionic network
o Assuming activities ~ concentrations
o Inside gel:
Eqn 20 c
+
= ν
+
c
s
Eqn 21 c
-
= ν
-
c
s
+ ic
2
/z
-
o c
2
is the moles of ionizable repeat groups on gel chains per volume
o First term comes from electrolyte anions in gel, second term from ionized groups on the
polymer chains
o The degree of ionization i can be related to the pH of the environment and the pKa of the
network groups:
[]
Eqn 22 K
a
=
[
RCOO
?
]
H
+
[
RCOOH
]
Eqn 23
[
RCOO
?
]
K
a
H
+
i =
[
RCOO
?
] [RCOOH] [] K
a
K
a
10
? pK
a
= = = = =
H
+
[
RCOOH
]
+
[
RCOO
?
] [
RCOO
?
]
1+
K
a
[]
+ K
a
10
? pH
+ K
a
10
? pH
+ 10
? pK
a
H
+1+
[
RCOOH
]
[]
Lecture 9 – polyelectrolyte hydrogels 3 of 6
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
o Outside gel:
Eqn 24 c
+
* = ν
+
c
s
*
Eqn 25 c
-
* = ν
-
c
s
*
o Our relationship for the ionic chemical potentials is now:
all?ions
()
*
()
*
Eqn 26 ?μ
1
ion
= v
m,1
RT
∑(
c
j
? c
*
j
)
=v
m,1
RT
(
c
+
+ c
?
? c
+
? c
?
*
)
1
ion
??μ
j
o Using Eqn 20, Eqn 21, Eqn 24, and Eqn 25, Eqn 26 becomes:
? ? ? ?
*
Eqn 27
()
?μ
*
()
1
ion
= v
m,1
RT
?
?
ν
+
c
s
+ν
?
c
s
+
ic
2
?
?
c
s
*
?
?
= v
m,1
RT
?
?
ν c
s
+
ic
2
?
?
c
s
?
?
1
ion
??μ ν
?
ν
z
?
z
?
? ?
ν(c
s
= v
m,1
RT
?
?
ic
2
?
?
*
? c
s
)
?
?
z
?
o How can we relate c
s
and c
s
*?
o We can make simplifications for a 1:1 cation:anion electrolyte:
o The chemical potentials of the mobile ions must also be equilibrated inside/outside the gel:
Eqn 28 μ
+
= μ
+
*
Eqn 29 μ
-
= μ
-
*
o Add Eqn 29 to Eqn 28:
Eqn 30 μ
+
+ μ
-
= μ
+
* + μ
-
*
ν
+
Eqn 31 RT ln a
+
+ RT ln a
?
ν
?
= RT ln a
+
*ν
+
+ RT ln a
?
*ν
?
o Therefore we can write:
ν+
a
?
ν?
= a
+
Eqn 32 a
+
*ν+
a
?
*ν?
? Assuming dilute solutions where the activities are approximately equal to the concentrations:
ν+ ν?
?
c
+
? ?
c
?
*
?
Eqn 33
?
?
c
+
=
*
?
?
?
?
c
?
?
?
? ?
ν?
* ?
Eqn 34
?
ν
+
c
s
?
ν+
?
ν
?
c
s
?
?
?
ν
+
c
*
s
?
?
=
?
?
?
ν
?
c
s
+
ic
2 ?
?
?
z
?
?
ν?
? ?
ν+ ?
*
?
Eqn 35
?
?
?
?
c
c
s
*
s
?
?
?
?
=
?
?
?
c
s
+
c
s
ic
2
?
?
?
ν
?
z
? ?
?
Lecture 9 – polyelectrolyte hydrogels 4 of 6
? ?
? ? ? ?
? ? ? ?
? ?
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
ν?
? ?ν+
* ? *
?
1
?
?
??
ic
*
2
?
?
?
2
Eqn 36
c
*
s
c
?
*
s
c
s
= 1?
?
?
?
?
c
s
+
c
s
ic
2 ?
?
?
= 1 ?
c
s
+
c
s
ic
2
=
ν
ic
2
*
?
?
?
2z
+
z
?
ν
2
?
?
c
s
?
z
?
c
s
?
?
ν
?
z
?
?
ν
?
z
?
o Derivation of this equation in appendix
o Now Eqn 27 becomes:
?
i
2
c
2
2
?
()
*
Eqn 37 ?μ
()
1
ion
= v
m,1
RT
?
?
2z
+
z
?
ν
*
?
?
1
ion
??μ
?
c
s
o But definition of ionic strength I is:
all _ ions
?
c
s
*
Eqn 38 I =
1
∑
z
i
2
c
i
=
z
+
z
?
ν
…for a 1:1 electrolyte
2
i
2
null Where z
i
is the charge on ion i
o Therefore:
?
i
2
φ
2
?
()
*
()
2,s
Eqn 39 ?μ
1
ion
= v
m,1
RT
?
?
?
i
2
c
2
2
?
?
?
= v
m,1
RT
?
?
4Iv
sp,2
M
0
2
?
?
1
ion
??μ
4I
2
φ
2,s
o (Using relation c
2
=
v
sp,2
M
0
=moles ionizable groups/volume)
o Eqn 39 can be re-cast in terms of the solution pH:
2
?
()
1
*
ion
??
()
μ =
v
m,1
RT
?
K
a
?
2
?
φ
2,s
?
2
?
K
a
?
2
?
φ
2,s
2
Eqn 40 ?μ
1
ion
4I
?
?
10
? pH
+ K
a
?
?
?
?
z
?
v
sp,2
M
0 ?
?
= v
m,1
RT
?
?
10
? pH
+ K
a
?
?
?
?
4Iv
sp,2
M
0
2
?
?
o Returning to the equilibrium criterion:
Eqn 41
2
?
?
10
? pK
a ?
2
?
φ
2,s 2
?
v
m,1
?
?
?
?
1?
2 M
c
?
?
?
?
?
?
?
φ
2,s
?
?
1/3
?
1
?
?
φ
2,s
?
?
?
?
2
v
m,1
?
?
10
? pH
+ 10
? pK
a
?
?
?
?
4Iv
sp,2
M
0
2
?
?
= ln(1 ?φ
2,s
) +φ
2,s
+χφ
2,s
+φ
2,r
?
?
v
sp,2
M
c
?
?
M ?
?
φ
2,r
?
2
?
φ
2,r
?
?
o Brannon-Peppas paper analyzes Polyacrylates/polymethacrylates:
o In water pH 7.0 with I = 0.35
o χ = 0.8
o pK
a
= 6.0
o v
sp,2
= 0.8 cm
3
/g
o M = 75,000 g/mole
o M
c
= 12,000 g/mole
o M
0
= 90 g/mole
o φ
2,r
= 0.5
Lecture 9 – polyelectrolyte hydrogels 5 of 6
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003
References
1. James, H. M. & Guth, E. Simple presentation of network theory of rubber, with a discussion of other theories. J.
Polym. Sci. 4, 153-182 (1949).
2. Flory, P. J. & Rehner Jr., J. Statistical mechanics of cross-linked polymer networks. I. Rubberlike elasticity. J.
Chem. Phys. 11, 512-520 (1943).
3. Flory, P. J. & Rehner Jr., J. Statistical mechanics of cross-linked polymer networks. II. Swelling. J. Chem. Phys.
11, 521-526 (1943).
4. Brannonpeppas, L. & Peppas, N. A. Equilibrium Swelling Behavior of Ph-Sensitive Hydrogels. Chemical
Engineering Science 46, 715-722 (1991).
5. Peppas, N. A. & Merrill, E. W. Polyvinyl-Alcohol) Hydrogels - Reinforcement of Radiation-Crosslinked Networks
by Crystallization. Journal of Polymer Science Part a-Polymer Chemistry 14, 441-457 (1976).
6. Ozyurek, C., Caykara, T., Kantoglu, O. & Guven, O. Characterization of network structure of poly(N-vinyl 2-
pyrrolidone/acrylic acid) polyelectrolyte hydrogels by swelling measurements. Journal of Polymer Science Part B-
Polymer Physics 38, 3309-3317 (2000).
Lecture 9 – polyelectrolyte hydrogels 6 of 6