REVIEW 1
Review
Conditional pdf
Let (Y1,··· ,YN) have joint pdf f (y1,··· ,yN). Let f (yJ+1,··· ,yN) be the marginal pdf
of (YJ+1,··· ,YN). The conditional pdf of Y1,··· ,YJ given YJ+1,··· ,YN is defined by
f (y1,···yJ|yJ+1,···yN) = f (y1,··· ,yJ+1,··· ,yN)f (y
J+1,···yN)
for f (yJ+1,··· ,yN) > 0.
Example 1 Let Y1 and Y2 be discrete r.v.s with bivariate pdf
f (y1,y2) =
braceleftbigg (y
1 + y2)/9 , y1 = 0,1,2 and y2 = 0,1
0 , otherwise.
The marginal pdf of Y1 is
f (y1) =
braceleftbigg summationtext1
y2=0 f (y1,y2) =
y1
9 +
y1+1
9 =
2y1+1
9 , y1 = 0,1,2
0 , otherwise.
The conditional pdf of Y2 given Y1 = y1 is
f (y2|y1) =
braceleftBigg
f(y1,y2)
f(y1) =
y1+y2
2y1+1 , y2 = 0,1
0 , otherwise.
Example 2 Let Y1 and Y2 be continuous r.v.s with bivariate pdf
f (y1,y2) =
braceleftbigg 2 , if 0 < y
1 < y2 < 1
0 , otherwise.
Then
f (y1) =
braceleftbigg integraltext1
y1 2dy2 = 2(1 ? y1) , 0 < y1 < 1
0 , otherwise.
f (y2|y1) =
braceleftbigg 1
1?y1 , if 0 < y1 < y2 < 1
0 , otherwise.
(a function of y1)
REVIEW 2
Conditional expectation
Let Y = (Y1,··· ,YN)prime be an N?dimensional random variable, let g(Y ) be a given
function,andlet f (y1,··· ,yJ|yJ+1,··· ,yN) beagivenconditionalprobabilityfunction.
Theconditionalexpectationof g(Y ), given YJ+1 = yJ+1,··· ,YN = yN is
E [g(y)|YJ+1 = yJ+1,··· ,YN = yN]
=
integraldisplay ∞
?∞
···
integraldisplay ∞
?∞
g(y1,··· ,yN)f (y1,··· ,yJ|yJ+1,··· ,yN)dy1 ···dyJ.
Thisisanonstochasticfunctionof yJ+1,··· ,yN.
E [g(Y )|YJ+1,··· ,YN] = h(YJ+1,··· ,YN)
isar.v. thattakesonrealizedvalues
E [g(Y )|YJ+1 = yJ+1,··· ,YN = yN].
Example 3 (continued)
f (y1,y2) =
braceleftbigg 2 , if 0 < y
1 < y2 < 1
0 , otherwise.
Then
E (Y2|Y1 = y1) =
integraldisplay 1
y1
y2 11 ? y
1
dy2
= 11 ? y
1
1
2
bracketleftbig1 ? y2
1
bracketrightbig
= 1 + y12 (a function of y1)
and
E (Y2|Y1) = 1 + Y12 (a random variable)
Expectationof g(Y ) isgivenby
Eg(Y ) = EYJ+1,··· ,EYNEY1,···YJ|YJ+1,···YN [g(Y )|YJ+1,··· ,YN]
Example 4 (continued)
E (Y2) = EY1
parenleftbigg1 + Y
1
2
parenrightbigg
= 12 (1 + EY1 (Y1))
= 12
parenleftbigg
1 +
integraldisplay 1
0
y12(1 ? y1)dy1
parenrightbigg
= 12
parenleftbigg
1 + 13
parenrightbigg
= 23.
REVIEW 3
Stochastic convergences
Markov’s inequality Assume g(y) ≥ 0 for all y ∈ R
P [g(Y ) ≥ c] ≤ g[Y ]c .
Proof. Assume that Y is a continuous r.v. with pdf f (·). Define A1 = {y|g(y) ≥ c}
and A2 = {y|g(y) < c}. Then
E [g(Y )] =
integraldisplay
A1
g(y)f (y)dy +
integraldisplay
A2
g(y)f (y)dy
≥
integraldisplay
A1
g(y)f (y)dy
≥
integraldisplay
A1
cf (y)dy
= cP [g(Y ) ≥ c].
The stated result follows from this.
Chebyshev’s inequality Let Y be a r.v. with E (Y ) = μ and V ar(Y ) = σ2.
Then
P [|Y ?μ| ≥ r] ≤ σ
2
r2 .
Proof.
P [|Y ?μ| ≥ r] = P bracketleftbig(Y ?μ)2 ≥ r2bracketrightbig
≤ E (Y ?μ)
2
r2
= σ
2
r2 .
Example 5
Zn =
braceleftbigg c with probability 1 ? 1
nn with probability 1
n
P [|Zn ?c| ≥ ε] = P [Zn = n] = 1n → 0.
Thus
Zn P→ c.
REVIEW 4
Example 6
Zn =
braceleftbigg 1 with probability 1
20 with probability 1
2
Z1,··· ,Zn are independent.
Let
Zn = 1n
nsummationdisplay
i=1
Zi
P
bracketleftbiggvextendsinglevextendsingle
vextendsinglevextendsingleZn ? 1
2
vextendsinglevextendsingle
vextendsinglevextendsingle > ε
bracketrightbigg
= P
bracketleftbiggvextendsinglevextendsingle
vextendsinglevextendsingle1
n
summationdisplayparenleftbigg
Zi ? 12
parenrightbiggvextendsinglevextendsingle
vextendsinglevextendsingle > ε
bracketrightbigg
≤ E
parenleftbig1
n
summationtextparenleftbigZ
i ? 12
parenrightbigparenrightbig2
ε2
= 1n2
nsummationdisplay
i=1
E
parenleftbigg
Zi ? 12
parenrightbigg2
= 1n2 ×n× 12
parenleftbigg
1? 12
parenrightbigg
→ 0.
Thus,
Zn P→ 12.
Example 7
Zn =
braceleftbigg 0 with probability 1? 1
nn2 with probability 1
n
P (|Zn| > ε) = P parenleftbigZn = n2parenrightbig = 1n → 0.
So
Zn P→ 0.
But
E (Zn) = 0×
parenleftbigg
1? 1n
parenrightbigg
+ n2 × 1n
= n →∞.
So we have an example for the statement that convergence in probability does not imply
mean square convergence.
REVIEW 5
Example 8
Z =
braceleftbigg 0 withprobability 1
21 withprobability 1
2
Define
Zn = 1?Z forall n.
Sinceallthe Zn havethesamedistribution,
Zn d→ Z.
However,
|Zn ?Z| = |1?2Z| = 1
regardlessofthevalueof Z. So, Zn doesnotconvergeinprobabilityto Z.
(P (|Zn ?Z| > ε) = P (|Zn ?Z| = 1) = 1)