Chapter 12.1: Modern Portfolio
Theory
Fan Longzhen
Outline
? Mean-variance analysis;
? Mean-variance analysis and utility
maximization;
? Does high moment matter?
Eliciting preference
? Through experiment:
? Consider gaining 50000 vs losing 10000
? U(50000)=1, U(-10000)=0
? Let G1 be a 50/50 gamble:
? Finding certainty equivalent X1 of G1: X1=?, then
? U(x1)=E[U(G1)];
? Define G2 and G3 similarly:
? This yield five points:
? U(-10000)=0
? U(x2)=0.75
? U(x1)=0.5
? U(x3)=0.25
? U(50000)=1
?
?
?
?
=
5.0000,10
5.0000,50
1
G
?
?
?
=
5.0
5.0000,50
1
2
X
G
?
?
?
?
=
5.0000,10
5.0
1
3
X
G
Maximize expected utility and mean-variance analysis
? What about mean-variance preference?
? Investors like mean, dislike variance:
? Consistent with expected utility?
? Consider second order Taylor expansion
22
),( σμσμ baV ?=
...)(''2/1)(')())1(()(
);1(
2
0000
0
+++=+=
+=
rwUrwUwUrwUwU
rww
)(
2
...))var())()(((''
2
1
)()(')()(),(
22
2
000
2
σμμ
σμ
+?∝
++++==
b
rrEwUrEwUwUwEUV
0,/10 <<>
σμ
μ VbifV
Version 1 of the investment problem
? Two dates: 0 and 1 (today and tomorrow);
? Current wealth W0 and future wealth W1;
? Preference U(W1);
? No consumption, no income, no dynamics;
? n assets with expected returns
?
?variance
{}
n
RRR ,...,
21
( )',...,,
21 n
RE μμμμ ==
r
v
?
?
?
?
?
?
?
?
?
?
?
?
?
?
=
2
21
2
2
221
112
2
1
...
...
...
...
)var(
nnn
n
n
R
σσσ
σσσ
σσσ
r
To be continued
? Investment problem
? Subject to
{}
)]([
1
max
WUE
i
?
∑
∑
=
=
=
=
+=
n
i
i
n
i
iiP
P
RR
RWW
1
1
01
1
)1(
ω
ω
Expected return and variance
? Portfolio return
? Expected return
?variance
RRR
n
i
iiP
'
1
?ω ==
∑
=
)('
1
REERER
n
i
iiP
?ω ==
∑
=
)(
')var(
ij
P
R
σ
??
=Σ
Σ=
Portfolio optimization without riskless asset
? Problem A
? Use method of lagrange
? Minimize L
? First order conditions:
{}
11'
'
'
2
1
min
=
=
Σ
r
v
?
μμω
??
ω
p
tosubject
i
)1'1()'('
2
1
v
r
?λμ?μγ?? ?+?+Σ=
p
L
010 =??Σ?=
?
?
r
r
λμγ?
?
L
0'0 =??=
?
?
p
L
μμ?
γ
v
011'0 =??=
?
?
v
?
λ
L
Minimum-Variance portfolio
0'1
1*
11
11
=?Σ+Σ
Σ+Σ=
??
??
p
μμμγμλ
μγλ?
rr
r
r
r
01'111
11
=?Σ+Σ
??
μγλ
rrr
Solution
0
,
2
≥?=
?
=
?
=
BACD
D
BA
D
BC
pp
μ
γ
μ
λ
Define
μμ
vv
vvvv
Σ=Σ=Σ=
??
',11,11
11
CBA
Properties of MVPs
? Characterization of MVP set:
? In the mean-standard deviation space, the curve is a hyperbola
p
p
γμλ
μγ?λ?
μγλ?
??σ
+=
+=
Σ+ΣΣ=
Σ=
??
r
r
r
r
*'1*'
1(*'
*'
11
2
)
pp
γμλσ +=
2
D
CBA
pp
p
+?
=
μμ
σ
2
2
2
parabola
The global minimum variance portfolio
?Let
? We have
? All MVPs are portfolios of two distinct portfolios;
?
D
CBA
pp
p
+?
=
μμ
σ
2
2
2
0
2
=
p
p
d
d
μ
σ
0
22
=
?
D
BA
p
μ
AAA
B
ggg
1
,
1
,
1
2
r
?
Σ
=== ?σμ
)1,0,
'
',(
1*
11
11
=+=
?
=
Σ
==
Σ
=
+=
Σ+Σ=
??
??
BA
D
B
B
C
C
BB
BA
ddd
dg
γλλ
μμ
μ?μ
μ
?
?γ?λ
μγλ?
rr
r
v
r
r
continued
? Both and are MVP’s
? Any two MVP’s ‘span’ the MV frontier.
g
?
d
?
Mutual fund separation theorem
? Choose any two minimum-variance
portfolios--calls them X any Y, then all
minimum-variance portfolios can be
expressed as a linear combination of X and
Y.
Alternative representation of MVP
? Covariance properties of MVP’s
? For any MVP P with weight
? Consider any two MVP’s P and Q
?
)1(
1
)1(
1
1
1
11
11
11
11
μ?
μ?
μ??μ
μμ
μγλ?
v
v
v
v
vv
vvv
v
v
v
??
??
??
??
Σ?Σ=
Σ?Σ=
+=Σ
?
+Σ
?
=
Σ+Σ=
BA
D
BC
D
D
BA
D
BC
b
a
pba
pp
p
?
v
AA
RR
p
pggp
1
1
'),cov(
1
=
ΣΣ
=Σ=
?
?
??
r
r
rr
dpgpp
?δ?δ?
vvv
+?= )1(
dqgqq
?δ?δ?
vvv
+?= )1(
[ ]
?
?
?
?
?
?
??+=+=
?+?++??=
A
B
A
B
D
A
A
D
ABA
RR
qp
qp
gdqpqpdqpgqpqp
μμ
δδ
σδδδδσδδσδδ
)(
11
)1()1(1)(1(),cov(
2
222
)
Portfolio correlation
? For any minimum-variance portfolio P except the global-minimum-
variance portfolio, there exists a unique minimum-variance portfolio-
denoted by Z which has zero covariance with P;
? Consider P and Z
A
B
AD
A
B
satisfieswhen
A
B
A
B
D
A
A
RR
p
z
z
zpzp
?
?=
??+=
μ
μ
μ
μμ
2
/
))((
1
),cov(
Portfolio optimization with a riskless asset
? Expand universe of assets:
? N risky assets and 1 riskless asset;
? Return of riskless asset is Rf;
? proportion invested in riskless asset;
? proportion invested in riskless asset;
? Minimize variance becomes
{}'...,
21 n
????,,=
v
∑
=
?
n
i
i
1
1 ?
{}
pf
Rst μ?μ?
??
?
=?+
Σ
)1'1('
'
2
1
min
v
v
rr
vv
v
solution
? Form Lagrange
? First-order condition
))1'1('('
2
1
fp
RL
v
vvvvv
?μ?μλ?? ???+Σ=
pff
RR
L
μμ?
λ
=?+?=
?
?
)1('0
v
vv
)1(0
v
vv
v
f
R
L
?=Σ?=
?
?
μλ?
?
)1(*
1
v
vv
f
R?Σ=
?
μλ?
ARBRC
R
RR
R
ff
fp
ff
fp
2
1
2
)1()'1(
+?
?
=
?Σ?
?
=
?
μ
μμ
μ
λ v
v
v
v
Solution-continued
?Set of MVP’s
? Two rays in space:
? Assume
? Sharpe ratio
? Two-fund separation still holds
? ----riskless fund;
? ----tangency portfolio M
ARBRCE
E
R
ff
fp
p
2
2
2
2,
)(
+?=
?
=
μ
σ
),( σμ
E
R
fp
p
?
=
μ
σ
A
B
R
f
<
E
R
p
fp
=
?
σ
μ
2
2
1
)(
,,
)1(
f
m
f
f
m
f
f
m
ARB
E
ARB
BRC
ARB
R
?
=
?
?
=
?
?Σ
=
?
σμ
μ
?
v
v
Investor’s preference and Mean-Variance analysis
? Prefer higher expected return;
? Prefer lower variance of return;
? Why mean-variance analysis
? Multivariate normality: is sufficient;
? analytically tractable and insightful;
? second-order approximation of
?
? Ignore high-order terms;
? Is this always appropriates?
),( Σμ
r
)(
1
WU
...)(
)(
2
1
)()([)]([
2
0
2
2
00
00
+?
?
?
+?
?
?
+=
==
WW
W
WU
WW
W
U
WUEWUE
WWWW
Investor’s preference and Mean-Variance analysis--
continued
? proportional to tangency portfolio;
? remainder invested in riskless asset;
? all investors behave similarly
)'),1('(),()(
2
1
??μ?σμ
vv
v
v
r
Σ?+==
ffpp
RRVVWEU
0,0
21
≤≥ VV
02)1(
21
=Σ+?=
?
?
?μ
?
v
v
v
v
VRV
V
f
)1(
2
*
1
2
1
v
v
f
R
V
V
?Σ
?
=
?
μ?
:*?
Investor’s preference and Mean-Variance analysis--
continued
? no risk-free asset;
? The solution
? Optimal solutions
[ ])1'1),(max
2
v
v
?λσμ ?+(
pp
V
1'10
120
21
v
v
v
vv
v
?
λ?μ
?
?=
?Σ+=
?
?
= VV
L
gd
V
BV
V
BV
VV
V
??
λ
μ?
vv
v
vv
)
2
1(
2
1
22
2
1
2
1
1
2
1
2
1
++?=
Σ+Σ?=
??
Does higher moments matter?
? Apart from tractability and traditions, there
are no reasons not to consider third and
higher moments in portfolio problems.
Example
? Moments of return distributions
5
5
5
5
5
20
15
14.5
5
5
5
6
5
-10
-5
-5.5
R0(%)
R1
R2
R3
Asset 0
Asset 1
Asset 2
Asset 3
1/31/31/3probabilityAsset
Mean321state
Between asset 0 and 1, which one would you choose?
Between asset 1 and 2……
Between asset 2 and 3……
These returns have the following moments
-0.578.165R3
08.165R2
012.255R1
00.005R0 (%)
SkewnessSt. D.Mean
{ } xofDStExxESkewness ./][(
3/1
3
?=
Outline the equilibrium by using mean-variance-
skewness analysis
?Skewnes
? Here we define skewness as
? Cosskewness of three assets:
? Skewness of portfolio
? Consider an investor with derived utility function
? Optimal portfolio characterized by moments
?
3
3
)(
σ
ERRE
skewness
?
=
3
)( ERREskewness ?=
[ ]))()((
kkjjiiijk
ERRERRERREm ???=
∑∑∑
∑
===
=
=
=
n
i
n
j
n
k
ijkkjip
n
i
iip
mm
RR
111
3
1
ωωω
?
),,(
32
ppp
mV σμ
3
0
2
00
,, mσμ
Outline the equilibrium by using mean-variance-
skewness analysis--continued
? The portfolio combination of asset and the optimal portfolio is
characterized by the moments:
? Since at the optimum, differential changes in the optimal portfolio
leave utility unchanged.
33
0
2
00
23
0
3
3
22
0
2
0
22
0
)1(3)1(3)1(
)1(2)1(
)1(
iiiip
iip
ip
mmmmm ωωωωωω
σωσωωσωσ
ωμμωμ
+?+?+?=
+?+?=
+?=
i
)(3)(2)(
0
3
0003
2
00201
0
3
3
2
21
mmVVV
d
dm
V
d
d
V
d
d
V
iii
p
p
?+?+?=
++=
=
σσμμ
ωω
σ
ω
μ
?
)1()(
3
)(
2
3
000
1
3
2
0
1
2
0
mm
V
V
V
V
iioi
????= σσμμ
Outline the equilibrium by using mean-variance-
skewness analysis--continued
? The equation also holds for the riskless asset
? Solving (2) for and substitute for (1)
? The contribution of the skewness term
? Assume higher skewness is preferred
? A decrease in skewness requires an increase in expected return.
)2(
32
3
0
1
3
2
0
1
2
0
m
V
V
V
V
R
f
++= σμ
3
0
00
0
2
0
0
0
00
1
3
03
0
0
,
)(
3
)(
m
m
V
mV
RR
i
i
i
i
iififi
==
?+?+=
γ
σ
σ
β
γβμβμ
1
3
00
3
V
V
m
i
i
?=
?
?μ
0
3
1
3
00
<?=
?
?
V
V
m
i
i
μ
12
/2 VV