Power Electroni
cs
Chapter 2
AC to DC Converters
(Rectifiers)
Power
E
l
e
ct
r
o
n
i
cs
2
Outline
2.1 Single-phase controlled rectifier
2.2 Three-phase controlled rectifier
2.3 Effect of transformer leakage inductance on
rectifier circuits
2.4 Capacitor-filtered uncontrolled rectifier
2.5 Harmonics and power factor of rectifier circuits
2.6 High power controlled rectifier
2.7 Inverter mode operation of rectifier circuit
2.8 Thyristor-DC motor system
2.9 Realization of phase-control in rectifier circuits
Power
E
l
e
ct
r
o
n
i
cs
3
2.1 Single-phase controlled
(controllable) rectifier
2.1.1 Single-phase half-wave controlled rectifier
2.1.2 Single-phase bridge fully-controlled rectifier
2.1.3 Single-phase full-wave controlled rectifier
2.1.4 Single-phase bridge half-controlled rectifier
Power
E
l
e
ct
r
o
n
i
cs
4
2.1.1 Single-phase half-wave
controlled rectifier
Resistive load
T
VT
R
u
1
u
2
u
VT
u
d
i
d
a)
0
ωt
1
π
2π
ωt
ωt
ωt
ωt
u
2
u
g
u
d
u
VT
α
θ
0
b)
c)
d)
e)
0
0
∫
+
=+==
π
α
α
α
π
ωω
π 2
cos1
45.0)cos1(
2
2
)(sin2
2
1
2
2
2d
U
U
ttdUU
(2-1)
Half-wave, single-pulse
Triggering delay angle, delay angle, firing angle
Power
E
l
e
ct
r
o
n
i
cs
5
2.1.1 Single-phase half-wave
controlled rectifier
Inductive (resistor-inductor) load
u
2
0 ωt
1
π 2π ωt
ωt
ωt
ωt
ωt
u
g
0
u
d
0
i
d
0
u
VT
0
θ
α
b)
c)
d)
e)
f)
a) u
1
T
VT
u
2
u
VT
u
d
i
d
Power
E
l
e
ct
r
o
n
i
cs
6
Basic thought process of time-domain
analysis for power electronic circuits
The time-domain behavior of a power electronic
circuit is actually the combination of consecutive
transients of the different linear circuits when the
power semiconductor devices are in different states.
a)
b)
VT
R
L
VT
R
L
u
2
u
2
tURi
t
i
L ωsin2
d
d
2d
d
=+
(2-2)
< t = αi
d
= 0
)sin(
2
)sin(
2
2
)(
2
d
?ω?α
αω
ω
?+??=
??
t
Z
U
e
Z
U
i
t
L
R
(2-3)
Power
E
l
e
ct
r
o
n
i
cs
7
Single-phase half-wave controlled
rectifier with freewheeling diode
Maximum forward voltage, maximum reverse voltage
Disadvantages:
– Only single pulse in one line cycle
– DC component in the transformer current
Inductive load (L is large enough)
VT i
a)
T
u
1
u
2
u
VT
L
R
d
u
d
VD
i
R
VD
R
u
2
u
d
i
d
u
VT
i
VT
I
d
I
d
ωt
1
ωt
ωt
ωt
ωt
ωt
ωtO
O
O
O
O
O
π α
π+α
b)
c)
d)
e)
f)
g)
i
VD
R
ddVT
2
II
π
απ ?
=
d
2
dVT
2
)(
2
1
ItdII
π
απ
ω
π
π
α
?
==
∫
ddVD
2
R
II
π
απ +
=
d
2
2
dVD
2
)(
2
1
R
ItdII
π
απ
ω
π
απ
π
+
==
∫
+
(2-5)
(2-6)
(2-7)
(2-8)
Power
E
l
e
ct
r
o
n
i
cs
8
2.1.2 Single-phase bridge
fully-controlled rectifier
π
ωt
ωt
ωt0
0
0
i
2
u
d
i
d
b)
c)
d)
u
d
(i
d
)
αα
u
VT
1,4
Resistive load
d
R
T
u
1
u
2
i
2
a
b
VT
1
VT
3
VT
2
VT
4
u
d
i
a)
For thyristor: maximum forward voltage, maximum reverse
voltage
Advantages:
– 2 pulses in one line cycle
– No DC component in the transformer current
Power
E
l
e
ct
r
o
n
i
cs
9
2.1.2 Single-phase bridge fully-
controlled rectifier
Resistive load
Average output (rectified) voltage
(2-9)
Average output current
(2-10)
For thyristor
(2-11)
(2-12)
For transformer
(2-13)
∫
+
=
+
==
π
α
αα
π
ωω
π 2
cos1
9.0
2
cos122
)(dsin2
1
2
2
2d
U
U
ttUU
2
cos1
9.0
2
cos122
22d
d
αα
π
+
=
+
==
R
U
R
U
R
U
I
2
cos1
45.0
2
1
2
ddVT
α+
==
R
U
II
π
απ
α
π
ωω
π
π
α
?
+==
∫
2sin
2
1
2
)(d)sin
2
(
2
1
2
2
2
VT
R
U
tt
R
U
I
π
απ
α
π
ωω
π
π
α
?
+===
∫
2sin
2
1
)()sin
2
(
1
2
2
2
2
R
U
tdt
R
U
II
Power
E
l
e
ct
r
o
n
i
cs
10
2.1.2 Single-phase bridge
fully-controlled rectifier
Inductive load
(L is large enough)
T
B
b
R
L
a)
u
1
u
2
i
2
VT
1
VT
3
VT
2
VT
4
u
d
i
d
u
2
O
ωt
O
ωt
O
ωt
u
d
i
d
i
2
b)
O ωt
O
ωt
u
VT
1,4
O ωt
O ωt
I
d
I
d
I
d
I
d
I
d
i
VT
2,3
i
VT
1,4
∫
+
===
απ
α
αα
π
ωω
π
cos9.0cos
22
)(dsin2
1
222d
UUttUU
(2-15)
Commutation
Thyristor voltages and currents
Transformer current
Power
E
l
e
ct
r
o
n
i
cs
11
Electro-motive-force (EMF) load
With resistor
a)
b)
R
E
i
d
u
d i
d
O
E
u
d
ωt
I
d
O ωt
α
θ δ
Discontinuous current i
d
Power
E
l
e
ct
r
o
n
i
cs
12
Electro-motive-force (EMF) load
With resistor and inductor
When L is large enough, the output voltage and
current waveforms are the same as ordinary
inductive load.
When L is at a critical value
O
u
d
E
i
d
ωt
ωt
π
δ
α
θ =π
dmin
2
3
dmin
2
1087.2
22
I
U
I
U
L
?
×==
πω
(2-17)
Power
E
l
e
ct
r
o
n
i
cs
13
2.1.3 Single-phase full-wave
controlled rectifier
a)
b)
u
1
T
R
u
2
u
2
i
1
VT
1
VT
2
u
d
u
d
i
1
O
O
α
ωt
ωt
Transformer with center tap
Comparison with single-phase bridge fully-controlled rectifier
Power
E
l
e
ct
r
o
n
i
cs
14
2.1.4 Single-phase bridge
half-controlled rectifier
Half-control
Comparison with fully-controlled rectifier
Additional freewheeling diode
O
b)
u
2
O
u
d
i
d
I
d
O
O
O
O
O
i
2
I
d
I
d
I
d
I
d
I
d
α
ωt
ωt
ωt
ωt
ωt
ωt
ωt
α
π?α
π?α
i
VT
1
i
VD
4
i
VT
2i
VD
3
i
VD
R
a
b
R
L
u
2
i
2
u
d
i
d
VT
1
VT
2
VD
3
VD
4
VD
R
T
Power
E
l
e
ct
r
o
n
i
cs
15
Another single-phase bridge
half-controlled rectifier
T
u
2
VD
3
VD
4
VT
1
VT
2
load
Comparison with previous circuit:
– No need for additional freewheeling diode
– Isolation is necessary between the drive circuits of the two
thyristors
Power
E
l
e
ct
r
o
n
i
cs
16
Summary of some important
points in analysis
When analyzing a thyristor circuit, start from a diode circuit with
the same topology. The behavior of the diode circuit is exactly
the same as the thyristor circuit when firing angle is 0.
A power electronic circuit can be considered as different linear
circuits when the power semiconductor devices are in different
states. The time-domain behavior of the power electronic
circuit is actually the combination of consecutive transients of
the different linear circuits.
Take different principle when dealing with different load
– For resistive load: current waveform of a resistor is the same as
the voltage waveform
– For inductive load with a large inductor: the inductor current can
be considered constant
Power
E
l
e
ct
r
o
n
i
cs
17
2.2 Three-phase controlled
(controllable) rectifier
2.2.1 Three-phase half-wave controlled rectifier
(the basic circuit among three-phase rectifiers)
2.2.2 Three-phase bridge fully-controlled rectifier
(the most widely used circuit among three-phase
rectifiers)
Power
E
l
e
ct
r
o
n
i
cs
18
2.2.1 Three-phase half-wave
controlled rectifier
Resistive load, α = 0o
u
2
u
a
u
b
u
c
O
ωt
1
ωt
2
ωt
3
u
G
O
u
d
O
O
u
ab
u
ac
O
i
VT
1
u
VT
1
ωt
ωt
ωt
ωt
ωt
T
R
u
d
i
d
VT
2
VT
1
VT
3
Common-cathode connection
Natural commutation point
Power
E
l
e
ct
r
o
n
i
cs
19
Resistive load, α = 30o
u
2
u
a
u
b
u
c
O
ωt
O
ωt
O
ωt
O
ωt
O
ωt
u
G
u
d
u
ab
u
ac
ωt
1
i
VT
1
u
VT
1
u
ac
T
R
u
d
i
d
VT
2
VT
1
VT
3
Power
E
l
e
ct
r
o
n
i
cs
20
Resistive load, α = 60o
T
R
u
d
i
d
VT
2
VT
1
VT
3
ωt
ωt
ωt
ωt
u
2
u
a
u
b
u
c
O
O
O
O
u
G
u
d
i
VT
1
Power
E
l
e
ct
r
o
n
i
cs
21
Resistive load, quantitative analysis
? When α≤ 30o, load current i
d
is continuous.
? When α > 30o, load current i
d
is discontinuous.
αα
π
ωω
π
α
π
α
π
cos17.1cos
2
63
)(sin2
3
2
1
22
6
5
6
2d
UUttdUU ===
∫
+
+
?
?
?
?
?
?
++=
?
?
?
?
?
?
++==
∫
+
)
6
cos(1675.0)
6
cos(1
2
23
)(sin2
3
2
1
2
6
2d
α
π
α
π
π
ωω
π
π
α
π
UttdUU
(2-18)
(2-19)
Average load current
Thyristor voltages
R
U
I
d
d
=
(2-20)
0 30 60 90 120 150
0.4
0.8
1.2
1.17
3
2
1
α/( ¢)
U
d
U
2
1- resistor load 2- inductor load
3- resistor-inductor load
Power
E
l
e
ct
r
o
n
i
cs
22
Inductive load, L is large enough
Load current i
d
is always continuous.
Thyristor voltage and currents, transformer current
a
b
c
T
R
L
u
2
u
d
e
L
i
d
VT
1
VT
2
VT
3
u
d
i
a
u
a
u
b
u
c
i
b
i
c
i
d
u
ac
u
ab
u
ac
O ωt
O ωt
O ωt
O ωt
O ωt
O ωt
α
u
VT
1
αα
π
ωω
π
α
π
α
π
cos17.1cos
2
63
)(sin2
3
2
1
22
6
5
6
2d
UUttdUU ===
∫
+
+
(2-18)
ddVT2
577.0
1
IIII ===
(2-23)
d
VT
VT(AV)
368.0
57.1
I
I
I == (2-24)
3
2RMFM
45.2 UUU ==
(2-25)
Power
E
l
e
ct
r
o
n
i
cs
23
2.2.2 Three-phase bridge
fully-controlled rectifier
Circuit diagram
b
a
c
i
d
u
d
VT
1
VT
3
VT
5
VT
4
VT
6
VT
2
d
2
d
1
T
n
i
a
load
Common-cathode group and common-anode group of
thyristors
Numbering of the 6 thyristors indicates the trigger sequence.
Power
E
l
e
ct
r
o
n
i
cs
24
Resistive load, α = 0o
b
a
T
n
load
i
a
i
d
u
d
VT
1
VT
3
VT
5
VT
4
VT
6
VT
2
d
2
d
1
u
2
u
d1
u
d2
u
2L
u
d
u
ab
u
ac
u
ab
u
ac
u
bc
u
ba
u
ca
u
cb
u
ab
u
ac
u
ab
u
ac
u
bc
u
ba
u
ca
u
cb
u
ab
u
ac
ú