Power Electroni
cs
Chapter 3
DC to DC Converters
(Choppers)
Power
E
l
e
ct
r
o
n
i
cs
2
Outline
3.1 Basic DC to DC converters
3.1.1 Buck converter (Step-down converter)
3.1.2 Boost converter (Step-up converter)
3.1.3 Buck-Boost converter (Step-down/step-up converter) and
Cuk converter
3.1.4 Sepic converter and Zeta converter
3.2 Composite DC/DC converters and connection of
multiple DC/DC converters
3.2.1 A current-reversible chopper
3.2.2 Bridge chopper (H-bridge DC/DC converter)bridge DC/D
3.2.3 Multi-phase multi-channel DC/DC converters
Power
E
l
e
ct
r
o
n
i
cs
3
3.1 Basic DC to DC converters
Introduction—Buck converter
SPDT switch changes dc
component
Switch output voltage
waveform
Duty cycle D:
0 ≤ D ≤ 1
complement D’:
D’ = 1 - D
Power
E
l
e
ct
r
o
n
i
cs
4
Dc component of switch output voltage
Fourier analysis: Dc component = average value
Power
E
l
e
ct
r
o
n
i
cs
5
Insertion of low-pass filter to remove switching
harmonics and pass only dc component
Power
E
l
e
ct
r
o
n
i
cs
6
Basic operation principle of buck converter
Buck converter with
ideal switch
Realization using
power MOSFET
and diode
Power
E
l
e
ct
r
o
n
i
cs
7
Thought process in analyzing basic
DC/DC converters
Basic operation principle (qualitative analysis)
– How does current flows during different switching states
– How is energy transferred during different switching states
Verification of small ripple approximation
Derivation of inductor voltage waveform during different
switching states
Quantitative analysis according to inductor volt-second
balance or capacitor charge balance
Power
E
l
e
ct
r
o
n
i
cs
8
Actual output voltage waveform of
buck converter
Buck converter
containing practical
low-pass filter
Actual output voltage
waveform
v(t) = V + v
ripple
(t)
Power
E
l
e
ct
r
o
n
i
cs
9
The small ripple approximation
v(t) = V + v
ripple
(t)
In a well-designed converter, the output voltage ripple is
small. Hence, the waveforms can be easily determined by
ignoring the ripple:
Power
E
l
e
ct
r
o
n
i
cs
10
Buck converter analysis:
inductor current waveform
Power
E
l
e
ct
r
o
n
i
cs
11
Inductor voltage and current
subinterval 1: switch in position 1
Power
E
l
e
ct
r
o
n
i
cs
12
Inductor voltage and current
subinterval 2: switch in position 2
Power
E
l
e
ct
r
o
n
i
cs
13
Inductor voltage and current waveforms
Power
E
l
e
ct
r
o
n
i
cs
14
Determination of inductor
current ripple magnitude
Power
E
l
e
ct
r
o
n
i
cs
15
Inductor current waveform
during start-up transient
Power
E
l
e
ct
r
o
n
i
cs
16
The principle of inductor volt-second
balance: Derivation
Power
E
l
e
ct
r
o
n
i
cs
17
Inductor volt-second balance:
Buck converter example
Power
E
l
e
ct
r
o
n
i
cs
18
The principle of capacitor charge
balance: Derivation
Power
E
l
e
ct
r
o
n
i
cs
19
Boost converter example
Power
E
l
e
ct
r
o
n
i
cs
20
Boost converter analysis
Power
E
l
e
ct
r
o
n
i
cs
21
Subinterval 1: switch in position 1
Power
E
l
e
ct
r
o
n
i
cs
22
Subinterval 2: switch in position 2
Power
E
l
e
ct
r
o
n
i
cs
23
Inductor voltage and capacitor current
waveforms
Power
E
l
e
ct
r
o
n
i
cs
24
Inductor volt-second balance
Power
E
l
e
ct
r
o
n
i
cs
25
Conversion ratio M(D) of
the boost converter
Power
E
l
e
ct
r
o
n
i
cs
26
Determination of inductor current
dc component
E
V
+
M
R
L
VD
i
o
E
M
u
o
i
G
t
t
t
O
O
O
CCM mode
T
E
i
G
t
on
t
off
i
o i
1
i
2
I
10
I
20
t
1
u
o
O
O
O
t
t
t
T
EE
DCM mode
i
G
i
G
t
on
t
off
i
o
t
x
i
1
i
2
I
20
t
1
t
2
u
o
E
M
Power
E
l
e
ct
r
o
n
i
cs
27
Continuous-Conduction-Mode (CCM) and
Discontinuous-Conduction-Mode (DCM) of buck
Power
E
l
e
ct
r
o
n
i
cs
t
t
T
E
i
O
O
b)
t
O
T
O
E
t
c)
i
1
i
2
I
10
I
20
I
10
t
on
t
off
u
o
i
o
i
1
i
2
t
1
t
2
t
x
t
on
t
off
I
20
u
o
CCM mode DCM mode
E
M
VDL
V
a)
E
M
u
o
Continuous-Conduction-Mode (CCM) and
Discontinuous-Conduction-Mode (DCM) of boost
28
E L
V
1
VD
1
u
o
i
o
V
2
VD
2
E
M
M
R
29
Power
E
l
e
ct
r
o
n
i
cs
Can be considered as a
combination of a Buck and a
Boost
Can realize two-quadrant ( I & II)
operation of DC motor:
forward motoring,
forward braking
3.2 Composite DC/DC converters and ` ` ` `
` connection of multiple DC/DC converters
A current reversible chopper
Power
E
l
e
ct
r
o
n
i
cs
30
Bridge chopper (H-bridge chopper)
E
L
R
+
V
1
VD
1
u
o
V
3
E
M
V
2
VD
2
i
o
V
4
VD
3
VD
4
M
Can be considered as the combination of two
current-reversible choppers.
Can realize 4-quadrant operation of DC motor.
Power
E
l
e
ct
r
o
n
i
cs
31
Multi-phase multi-channel DC/DC converter
tO
t
t
t
t
t
t
t
O
O
O
O
O
O
O
u
1
u
2
u
3
u
o
i
1
i
2
i
3
i
o
C
L
E
M
V
1
V
2
V
3
i
1
i
2
i
3
VD
3
VD
2
L
1
L
2
L
3
i
o
u
o
u
1
u
2
u
3
VD
1
Current output capability is
increased due to multi-channel
paralleling.
Ripple in the output voltage and
current is reduced due to multi-
channel paralleling.
Ripple in the input current is
reduced due to multi-phase
paralleling.